Displaying publications 21 - 40 of 49 in total

Abstract:
Sort:
  1. Rahman MA, Ramli F, Karimian H, Dehghan F, Nordin N, Ali HM, et al.
    PLoS One, 2016;11(3):e0151466.
    PMID: 27019365 DOI: 10.1371/journal.pone.0151466
    Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae). This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3 analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5 μg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell line T1074, with IC50 value of 32.5±0.5 μg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways.
  2. Syam S, Bustamam A, Abdullah R, Sukari MA, Hashim NM, Mohan S, et al.
    J Ethnopharmacol, 2014 Apr 28;153(2):435-45.
    PMID: 24607509 DOI: 10.1016/j.jep.2014.02.051
    The fruit hull of Garcinia mangostana Linn. has been used in traditional medicine for treatment of various inflammatory diseases. Hence, this study aims to investigate the in vitro and in vivo anti-inflammatory effect of β mangostin (βM), a major compound present in Garcinia mangostana.
  3. Hashim NM, Rahmani M, Ee GC, Sukari MA, Yahayu M, Amin MA, et al.
    Molecules, 2012;17(5):6071-82.
    PMID: 22614861 DOI: 10.3390/molecules17056071
    One of the most promising plants in biological screening test results of thirteen Artocarpus species was Artocarpus obtusus FM Jarrett and detailed phytochemical investigation of powdered dried bark of the plant has led to the isolation and identification of three xanthones; pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2) and pyranocycloartobiloxanthone B (3). These compounds were screened for antioxidant, antimicrobial and tyrosinase inhibitory activities. Pyranocycloartobiloxanthone A (1) exhibited a strong free radical scavenger towards DPPH free radicals with IC50 value of 2 µg/mL with prominent discoloration observed in comparison with standard ascorbic acid, α-tocopherol and quercetin, The compound also exhibited antibacterial activity against methicillin resistant Staphylococcus aureus (ATCC3359) and Bacillus subtilis (clinically isolated) with inhibition zone of 20 and 12 mm, respectively. However the other two xanthones were found to be inactive. For the tyrosinase inhibitory activity, again compound (1) displayed strong activity comparable with the standard kojic acid.
  4. Etti IC, Rasedee A, Hashim NM, Abdul AB, Kadir A, Yeap SK, et al.
    Drug Des Devel Ther, 2017;11:865-879.
    PMID: 28356713 DOI: 10.2147/DDDT.S124324
    Artonin E is a prenylated flavonoid compound isolated from the stem bark of Artocarpus elasticus. This phytochemical has been previously reported to be drug-like with full compliance to Lipinski's rule of five and good physicochemical properties when compared with 95% of orally available drugs. It has also been shown to possess unique medicinal properties that can be utilized in view of alleviating most human disease conditions. In this study, we investigated the cytotoxic mechanism of Artonin E in MCF-7 breast cancer cells, which has so far not been reported. In this context, Artonin E significantly suppressed the breast cancer cell's viability while inducing apoptosis in a dose-dependent manner. This apoptosis induction was caspase dependent, and it is mediated mainly through the intrinsic pathway with the elevation of total reactive oxygen species. Gene and protein expression studies revealed significant upregulation of cytochrome c, Bax, caspases 7 and 9, and p21 in Artonin E-treated MCF-7 cells, while MAPK and cyclin D were downregulated. Livin, a member of the inhibitors of apoptosis, whose upregulation has been noted to precede chemotherapeutic resistance and apoptosis evasion was remarkably repressed. In all, Artonin E stood high as a potential agent in the treatment of breast cancer.
  5. Al-Madhagi WM, Hashim NM, Awadh Ali NA, Taha H, Alhadi AA, Abdullah AA, et al.
    J Chem Inf Model, 2019 05 28;59(5):1858-1872.
    PMID: 31117526 DOI: 10.1021/acs.jcim.8b00969
    Bioassay-guided isolation protocol was performed on petroleum ether extract of Peperomia blanda (Jacq.) Kunth using column chromatographic techniques. Five compounds were isolated and their structures were elucidated via one-dimensional (1D) and two-dimensional (2D) NMR, gas chromatography mass sectroscopy (GCMS), liquid chromatography mass spectroscopy (LCMS), and ultraviolet (UV) and infrared (IR) analyses. Dindygulerione E (a new compound), and two compounds isolated from P. blanda for the first time-namely, dindygulerione A and flavokawain A-are reported herein. Antimicrobial activity was screened against selected pathogenic microbes, and minimum inhibitory concentrations (MIC) were recorded within the range of 62-250 μg/mL. Assessment of the pharmacotherapeutic potential has also been done for the isolated compounds, using the Prediction of Activity spectra for Substances (PASS) software, and different activities of compounds were predicted. Molecular docking, molecular dynamics simulation and molecular mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calculations have proposed the binding affinity of these compounds toward methylthioadenosine phosphorylase enzyme, which may explain their inhibitory actions.
  6. Omar H, Hashim NM, Zajmi A, Nordin N, Abdelwahab SI, Azizan AH, et al.
    Molecules, 2013 Jul 29;18(8):8994-9009.
    PMID: 23899833 DOI: 10.3390/molecules18088994
    The oxoaporphine alkaloid lysicamine (1), and three proaporphine alkaloids, litsericinone (2), 8,9,11,12-tetrahydromecambrine (3) and hexahydromecambrine A (4) were isolated from the leaves of Phoebe grandis (Nees) Merr. (Lauraceae). Compounds 2 and 3 were first time isolated as new naturally occurring compounds from plants. The NMR data for the compounds 2-4 have never been reported so far. Compounds 1 and 2 showed significant cytotoxic activity against a MCF7 (human estrogen receptor (ER+) positive breast cancer) cell line with IC₅₀ values of 26 and 60 µg/mL, respectively. Furthermore, in vitro cytotoxic activity against HepG2 (human liver cancer) cell line was evaluated for compounds 1-4 with IC₅₀ values of 27, 14, 81 and 20 µg/mL, respectively. Lysicamine (1) displayed strong antibacterial activity against Bacillus subtilis (B145), Staphylococcus aureus (S1434) and Staphylococus epidermidis (a clinically isolated strain) with inhibition zones of 15.50 ± 0.57, 13.33 ± 0.57 and 12.00 ± 0.00 mm, respectively. However, none of the tested pathogenic bacteria were susceptible towards compounds 2 and 3.
  7. Al-Ani LA, Yehye WA, Kadir FA, Hashim NM, AlSaadi MA, Julkapli NM, et al.
    PLoS One, 2019;14(5):e0216725.
    PMID: 31086406 DOI: 10.1371/journal.pone.0216725
    Nanotechnology-based antioxidants and therapeutic agents are believed to be the next generation tools to face the ever-increasing cancer mortality rates. Graphene stands as a preferred nano-therapeutic template, due to the advanced properties and cellular interaction mechanisms. Nevertheless, majority of graphene-based composites suffer from hindered development as efficient cancer therapeutics. Recent nano-toxicology reviews and recommendations emphasize on the preliminary synthetic stages as a crucial element in driving successful applications results. In this study, we present an integrated, green, one-pot hybridization of target-suited raw materials into curcumin-capped gold nanoparticle-conjugated reduced graphene oxide (CAG) nanocomposite, as a prominent anti-oxidant and anti-cancer agent. Distinct from previous studies, the beneficial attributes of curcumin are employed to their fullest extent, such that they perform dual roles of being a natural reducing agent and possessing antioxidant anti-cancer functional moiety. The proposed novel green synthesis approach secured an enhanced structure with dispersed homogenous AuNPs (15.62 ± 4.04 nm) anchored on reduced graphene oxide (rGO) sheets, as evidenced by transmission electron microscopy, surpassing other traditional chemical reductants. On the other hand, safe, non-toxic CAG elevates biological activity and supports biocompatibility. Free radical DPPH inhibition assay revealed CAG antioxidant potential with IC50 (324.1 ± 1.8%) value reduced by half compared to that of traditional citrate-rGO-AuNP nanocomposite (612.1 ± 10.1%), which confirms the amplified multi-potent antioxidant activity. Human colon cancer cell lines (HT-29 and SW-948) showed concentration- and time-dependent cytotoxicity for CAG, as determined by optical microscopy images and WST-8 assay, with relatively low IC50 values (~100 μg/ml), while preserving biocompatibility towards normal human colon (CCD-841) and liver cells (WRL-68), with high selectivity indices (≥ 2.0) at all tested time points. Collectively, our results demonstrate effective green synthesis of CAG nanocomposite, free of additional stabilizing agents, and its bioactivity as an antioxidant and selective anti-colon cancer agent.
  8. Al-Ani LA, Kadir FA, Hashim NM, Julkapli NM, Seyfoddin A, Lu J, et al.
    Heliyon, 2020 Nov;6(11):e05360.
    PMID: 33163675 DOI: 10.1016/j.heliyon.2020.e05360
    Natural plants derivatives have gained enormous merits in cancer therapy applications upon formulation with nanomaterials. Curcumin, as a popular research focus has acquired such improvements surpassing its disadvantageous low bioavailability. To this point, the available research data had confirmed the importance of nanomaterial type in orienting cellular response and provoking different toxicological and death mechanisms that may range from physical membrane damage to intracellular changes. This in turn underlines the poorly studied field of nanoformulation interaction with cells as the key determinant in toxicology outcomes. In this work, curcumin-AuNPs-reduced graphene oxide nanocomposite (CAG) was implemented as a model, to study the impact on cellular membrane integrity and the possible redox changes using colon cancer in vitro cell lines (HT-29 and SW-948), representing drug-responsive and resistant subtypes. Morphological and biochemical methods of transmission electron microscopy (TEM), apoptosis assay, reactive oxygen species (ROS) and antioxidants glutathione and superoxide dismutase (GSH and SOD) levels were examined with consideration to suitable protocols and vital optimizations. TEM micrographs proved endocytic uptake with succeeding cytoplasm deposition, which unlike other nanomaterials studied previously, conserved membrane integrity allowing intracellular cytotoxic mechanism. Apoptosis was confirmed with gold-standard morphological features observed in micrographs, while redox parameters revealed a time-dependent increase in ROS accompanied with regressive GSH and SOD levels. Collectively, this work demonstrates the success of graphene as a platform for curcumin intracellular delivery and cytotoxicity, and further highlights the importance of suitable in vitro methods to be used for nanomaterial validation.
  9. Ismail NZ, Mohamed WAS, Ab Rahim N, Hashim NM, Adebayo IA, Mohamad Zain NN, et al.
    J Biomol Struct Dyn, 2023;41(13):6104-6120.
    PMID: 35899385 DOI: 10.1080/07391102.2022.2101530
    Clinacanthus nutans is a medicinal plant recognised for its anticancer properties. We previously discovered that the C. nutans extract had the most potent inhibitory effect on MCF7 breast cancer cell and significantly induced apoptosis. However, there is a scarcity of studies demonstrating the molecular interactions of C. nutans-derived chemical compounds associated with apoptosis-related proteins. Therefore, the objective of this study was to determine the potential chemical compounds found in the C. nutans extract and examine their interactions with the targeted apoptotic proteins using molecular docking and molecular dynamic simulations. To address this objective, the compounds found in the SF2 extract of C. nutans were analysed using Gas Chromatography-Mass Spectrometry (GC-MS). The molecular interaction of the compounds with the targeted apoptotic proteins were determined using molecular docking and molecular dynamic simulations. GC-MS analysis revealed a total of 32 compounds in the SF2 extract. Molecular docking analysis showed that compound β-amyrenol had the highest binding affinity for MDM2-P53 (-7.26 kcal/mol), BCL2 (-11.14 kcal/mol), MCL1-BAX (-6.42 kcal/mol), MCL1-BID (-6.91 kcal/mol), and caspase-9 (-12.54 kcal/mol), whereas campesterol had the highest binding affinity for caspase-8 (-10.11 kcal/mol) and caspase-3 (-10.14 kcal/mol). These selected compounds were subjected to molecular dynamic simulation at 310 K for 100 ns. The results showed that the selected protein-ligand conformation complexes were stable, compact, and did not alter much when compared to the protein references. The findings indicate that β-amyrenol and campesterol are potentially significant compounds that might provide insight into the molecular interactions of the compounds with the apoptosis-related proteins.Communicated by Ramaswamy H. Sarma.
  10. Ibrahim MY, Hashim NM, Omer FAA, Abubakar MS, Mohammed HA, Salama SM, et al.
    Int J Mol Sci, 2023 Jun 17;24(12).
    PMID: 37373429 DOI: 10.3390/ijms241210283
    In this study, the chemotherapeutic effect of α-mangostin (AM) was assessed in rats injected with LA7 cells. Rats received AM orally at 30 and 60 mg/kg twice a week for 4 weeks. Cancer biomarkers such as CEA and CA 15-3 were significantly lower in AM-treated rats. Histopathological evaluations showed that AM protects the rat mammary gland from the carcinogenic effects of LA7 cells. Interestingly, AM decreased lipid peroxidation and increased antioxidant enzymes when compared to the control. Immunohistochemistry results of the untreated rats showed abundant PCNA and fewer p53-positive cells than AM-treated rats. Using the TUNEL test, AM-treated animals had higher apoptotic cell numbers than those untreated. This report revealed that that AM lessened oxidative stress, suppressed proliferation, and minimized LA7-induced mammary carcinogenesis. Therefore, the current study suggests that AM has significant potential for breast cancer treatment.
  11. Mekzali NW, Chee CW, Abdullah I, Lee YK, Rashid NN, Lee VS, et al.
    Med Chem, 2023;19(9):897-905.
    PMID: 37046198 DOI: 10.2174/1573406419666230410134213
    BACKGROUND: KRAS and p53 are two of the most common genetic alterations associated with colorectal cancer. New drug development targeting these mutated genes in colorectal cancer may serve as a potential treatment avenue to the current regimen.

    OBJECTIVE: The objective of the present study was to investigate the effects of alkoxy chain length and 1-hydroxy group on anticolorectal cancer activity of a series of 2-bromoalkoxyanthraquinones and corroborate it with their in silico properties.

    METHODS: In vitro anticancer activity of 2-bromoalkoxyanthraquinones was evaluated against HCT116, HT29, and CCD841 CoN cell lines, respectively. Molecular docking was performed to understand the interactions of these compounds with putative p53 and KRAS targets (7B4N and 6P0Z).

    RESULTS: 2-Bromoalkoxyanthraquinones with the 1-hydroxy group were proven to be more active than the corresponding counterparts in anticancer activity. Among the tested compounds, compound 6b with a C3 alkoxy chain exhibited the most promising antiproliferation activity against HCT116 cells (IC50 = 3.83 ± 0.05 μM) and showed high selectivity for HCT116 over CCD841 CoN cells (SI = 45.47). The molecular docking reveals additional hydrogen bonds between the 1-hydroxy group of 6b and the proteins. Compound 6b has adequate lipophilicity (cLogP = 3.27) and ligand efficiency metrics (LE = 0.34; LLE = 2.15) close to the proposed acceptable range for an initial hit.

    CONCLUSION: This work highlights the potential of the 1-hydroxy group and short alkoxy chain on anticolorectal cancer activity of 2-bromoalkoxyanthraquinones. Further optimisation may be warranted for compound 6b as a therapeutic agent against colorectal cancer.

  12. Sidahmed HM, Hashim NM, Abdulla MA, Ali HM, Mohan S, Abdelwahab SI, et al.
    PLoS One, 2015;10(3):e0121060.
    PMID: 25798602 DOI: 10.1371/journal.pone.0121060
    BACKGROUND: Zingiber zerumbet Smith is a perennial herb, broadly distributed in many tropical areas. In Malaysia, it's locally known among the Malay people as "lempoyang" and its rhizomes, particularly, is widely used in traditional medicine for the treatment of peptic ulcer disease beyond other gastric disorders.

    AIM OF THE STUDY: The aim of the current study is to evaluate the gastroprotective effect of zerumbone, the main bioactive compound of Zingiber zerumbet rhizome, against ethanol-induced gastric ulcer model in rats.

    MATERIALS AND METHODS: Rats were pre-treated with zerumbone and subsequently exposed to acute gastric ulcer induced by absolute ethanol administration. Following treatment, gastric juice acidity, ulcer index, mucus content, histological analysis (HE and PAS), immunohistochemical localization for HSP-70, prostaglandin E2 synthesis (PGE2), non-protein sulfhydryl gastric content (NP-SH), reduced glutathione level (GSH), and malondialdehyde level (MDA) were evaluated in ethanol-induced ulcer in vivo. Ferric reducing antioxidant power assay (FRAP) and anti-H. pylori activity were investigated in vitro.

    RESULTS: The results showed that the intragastric administration of zerumbone protected the gastric mucosa from the aggressive effect of ethanol-induced gastric ulcer, coincided with reduced submucosal edema and leukocyte infiltration. This observed gastroprotective effect of zerumbone was accompanied with a significant (p <0.05) effect of the compound to restore the lowered NP-SH and GSH levels, and to reduce the elevated MDA level into the gastric homogenate. Moreover, the compound induced HSP-70 up-regulation into the gastric tissue. Furthermore, zerumbone significantly (p <0.05) enhanced mucus production, showed intense PAS stain and maintained PG content near to the normal level. The compound exhibited antisecretory activity and an interesting minimum inhibitory concentration (MIC) against H. pylori strain.

    CONCLUSION: The results of the present study revealed that zerumbone promotes ulcer protection, which might be attributed to the maintenance of mucus integrity, antioxidant activity, and HSP-70 induction. Zerumbone also exhibited antibacterial action against H. pylori.

  13. Hashim NM, Che Daud AZ, Ibrahim AH, Ab Majid MH, Mohd Ghazali MN, Abdul Razak MM, et al.
    Prosthet Orthot Int, 2024 Jan 01;48(1):89-99.
    PMID: 37639558 DOI: 10.1097/PXR.0000000000000270
    BACKGROUND: An excellent validated and reliable instrument is paramount in holistically evaluating the prosthetic and orthotic (P&O) service, encompassing functional outcomes, health-related quality of life (HRQoL), and patient satisfaction with devices and service.

    OBJECTIVE: To perform a translation and cross-cultural adaptation of 3 modules of the Orthotics and Prosthetics Users' Survey (OPUS): (1) lower-extremity functional status (LEFS), (2) client satisfaction with device and services (CSDS), and (3) HRQoL in Malay language, and analyze its psychometric properties.

    STUDY DESIGN: Translation and validation study.

    METHODS: This translation process consisted of 4 phases: (1) a forward-backward translation, (2) content and face validity by utilizing content and face validity indices, (3) pilot testing and psychometric analysis using exploratory factor analysis, and (4) test-retest reliability.

    RESULTS: One item from OPUS Health Quality of Life Index-Malay pilot version, 5 items from OPUS LEFS-Malay pilot version, and 4 items of OPUS Satisfaction with Device and Services-Malay pilot version were deleted because of poor factor loading of <0.6. The final version of Modified OPUS HRQoL-M, Modified OPUS LEFS-M, and Modified OPUS CSDS-M consisted of 22 items, 15 items, and 17 items, respectively. The final versions of all 3 Modified OPUS Malay version possess good internal consistency of 0.854, 0.927, and 0.98, and intraclass correlation of 0.773, 0.871, and 0.821, respectively .

    CONCLUSION: Modified OPUS HRQoL-M, Modified OPUS LEFS-M, and Modified OPUS CSDS-M are valid and reliable instruments to be adopted into the local Malaysia population.

  14. Hashim NM, Rahmani M, Ee GC, Sukari MA, Yahayu M, Oktima W, et al.
    J Biomed Biotechnol, 2012;2012:130627.
    PMID: 21960741 DOI: 10.1155/2012/130627
    An investigation of the chemical constituents in Artocarpus obtusus species led to the isolation of three new xanthones, pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2), and pyranocycloartobiloxanthone B (3). The compounds were subjected to antiproliferative assay against human promyelocytic leukemia (HL60), human chronic myeloid leukemia (K562), and human estrogen receptor (ER+) positive breast cancer (MCF7) cell lines. Pyranocycloartobiloxanthone A (1) consistently showed strong cytotoxic activity against the three cell lines compared to the other two with IC(50) values of 0.5, 2.0 and 5.0 μg/mL, respectively. Compound (1) was also observed to exert antiproliferative activity and apoptotic promoter towards HL60 and MCF7 cell lines at respective IC(50) values. The compound (1) was not toxic towards normal cell lines human nontumorigenic breast cell line (MCF10A) and human peripheral blood mononuclear cells (PBMCs) with IC(50) values of more than 30 μg/mL.
  15. Ibrahim MY, Hashim NM, Mohan S, Abdulla MA, Kamalidehghan B, Ghaderian M, et al.
    Drug Des Devel Ther, 2014;8:1629-47.
    PMID: 25302018 DOI: 10.2147/DDDT.S66105
    Cratoxylum arborescens is an equatorial plant belonging to the family Guttiferae. In the current study, α-Mangostin (AM) was isolated and its cell death mechanism was studied. HCS was undertaken to detect the nuclear condensation, mitochondrial membrane potential, cell permeability, and the release of cytochrome c. An investigation for reactive oxygen species formation was conducted using fluorescent analysis. To determine the mechanism of cell death, human apoptosis proteome profiler assay was conducted. In addition, using immunofluorescence and immunoblotting, the levels of Bcl-2-associated X protein (Bax) and B-cell lymphoma (Bcl)-2 proteins were also tested. Caspaces such as 3/7, 8, and 9 were assessed during treatment. Using HCS and Western blot, the contribution of nuclear factor kappa-B (NF-κB) was investigated. AM had showed a selective cytotoxicity toward the cancer cells with no toxicity toward the normal cells even at 30 μg/mL, thereby indicating that AM has the attributes to induce cell death in tumor cells. The treatment of MCF-7 cells with AM prompted apoptosis with cell death-transducing signals. This regulated the mitochondrial membrane potential by down-regulation of Bcl-2 and up-regulation of Bax, thereby causing the release of cytochrome c from the mitochondria into the cytosol. The liberation of cytochrome c activated caspace-9, which, in turn, activated the downstream executioner caspace-3/7 with the cleaved poly (ADP-ribose) polymerase protein, thereby leading to apoptotic alterations. Increase of caspace 8 had showed the involvement of an extrinsic pathway. This type of apoptosis was suggested to occur through both extrinsic and intrinsic pathways and prevention of translocation of NF-κB from the cytoplasm to the nucleus. Our results revealed AM prompt apoptosis of MCF-7 cells through NF-κB, Bax/Bcl-2 and heat shock protein 70 modulation with the contribution of caspaces. Moreover, ingestion of AM at (30 and 60 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that AM is a potentially useful agent for the treatment of breast cancer.
  16. Sidahmed HM, Hashim NM, Amir J, Abdulla MA, Hadi AH, Abdelwahab SI, et al.
    Phytomedicine, 2013 Jul 15;20(10):834-43.
    PMID: 23570997 DOI: 10.1016/j.phymed.2013.03.002
    Pyranocycloartobiloxanthone A (PA), a xanthone derived from the Artocarpus obtusus Jarret, belongs to the Moraceae family which is native to the tropical forest of Malaysia. In this study, the efficacy of PA as a gastroprotective compound was examined against ethanol-induced ulcer model in rats. The rats were pretreated with PA and subsequently exposed to acute gastric lesions induced by absolute ethanol. The ulcer index, gastric juice acidity, mucus content, histological analysis, glutathione (GSH) levels, malondialdehyde level (MDA), nitric oxide (NO) and non-protein sulfhydryl group (NP-SH) contents were evaluated in vivo. The activities of PA as anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitor and free radical scavenger were also investigated in vitro. The results showed that the oral administration of PA protects gastric mucosa from ethanol-induced gastric lesions. PA pretreatment significantly (p<0.05) restored the depleted GSH, NP-SH and NO levels in the gastric homogenate. Moreover, PA significantly (p<0.05) reduced the elevated MDA level due to ethanol administration. The gastroprotective effect of PA was associated with an over expression of HSP70 and suppression of Bax proteins in the ulcerated tissue. In addition, PA exhibited a potent FRAP value and significant COX-2 inhibition. It also showed a significant minimum inhibitory concentration (MIC) against H. pylori bacterium. The efficacy of PA was accomplished safely without the presence of any toxicological parameters. The results of the present study indicate that the gastroprotective effect of PA might contribute to the antioxidant and anti-inflammatory properties as well as the anti-apoptotic mechanism and antibacterial action against Helicobacter pylori.
  17. Mohan S, Abdelwahab SI, Kamalidehghan B, Syam S, May KS, Harmal NS, et al.
    Phytomedicine, 2012 Aug 15;19(11):1007-15.
    PMID: 22739412 DOI: 10.1016/j.phymed.2012.05.012
    The plant Artocarpus obtusus is a tropical plant that belongs to the family Moraceae. In the present study a xanthone compound Pyranocycloartobiloxanthone A (PA) was isolated from this plant and the apoptosis mechanism was investigated. PA induced cytotoxicity was observed using MTT assay. High content screening (HCS) was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential (MMP) and cytochrome c release. Reactive oxygen species formation was investigated on treated cells by using fluorescent analysis. Human apoptosis proteome profiler assays were performed to investigate the mechanism of cell death. In addition mRNA levels of Bax and Bcl2 were also checked using RT-PCR. Caspase 3/7, 8 and 9 were measured for their induction while treatment. The involvement of NF-κB was analyzed using HCS assay. The results showed that PA possesses the characteristics of selectively inducing cell death of tumor cells as no inhibition was observed in non-tumorigenic cells even at 30 μg/ml. Treatment of MCF7 cells with PA induced apoptosis with cell death-transducing signals, that regulate the MMP by down-regulation of Bcl2 and up-regulation of Bax, triggering the cytochrome c release from mitochondria to cytosol. The release of cytochrome c triggered the activation of caspases-9, then activates downstream executioner caspase-3/7 and consequently cleaved specific substrates leading to apoptotic changes. This form of apoptosis was found closely associated with the extrinsic pathway caspase (caspase-8) and inhibition of translocation of NF-κB from cytoplasm to nucleus. The results demonstrated that PA induced apoptosis of MCF7 cells through NF-κB and Bcl2/Bax signaling pathways with the involvement of caspases.
  18. Ibrahim MY, Hashim NM, Dhiyaaldeen SM, Al-Obaidi MM, El-Ferjani RM, Adam H, et al.
    Sci Rep, 2016 05 27;6:26819.
    PMID: 27229938 DOI: 10.1038/srep26819
    Manganese is a crucial element for health. In this study, the gastroprotective efficacy of Mn (II) complex (MDLA) against acidified ethanol (HCl/Ethanol)-induced gastric ulceration in rats was evaluated. The animals were distributed into 5 groups. Groups 1 and 2 received carboxymethylcellulose (CMC), group 3 was pretreated with omeprazole, and groups 4 and 5 were given 10 and 20 mg/kg of MDLA, respectively. After one hour, CMC and HCl/Ethanol were given to groups 2-5 whilst the animals in group 1 were ingested with CMC. After sacrifice, gastric lesions were evaluated by wall mucus, gross appearance, histology, antioxidant enzymes and immunohistochemistry. Group 2 displayed severe gastric damage with a significant reduction in wall mucus. Conversely, gastric lesions were reduced in groups 3-5 by 85.72%, 56.51% and 65.93%, respectively. The rats in groups 3-5 showed up-regulation of heat shock protein 70 (Hsp70) with down-regulation of Bcl-2-associated protein x (Bax). Pretreatment with omeprazole or MDLA led to an increase in the uptake of Periodic Acid Schiff (PAS) stain in the glandular part of the gastric tissue, raised levels of prostaglandin E2 (PGE2) and superoxide dismutase (SOD), and a reduction in malondialdehyde (MDA) concentrations. These results suggested the gastroprotective action of Mn (II) complex.
  19. Sidahmed HM, Hashim NM, Mohan S, Abdelwahab SI, Taha MM, Dehghan F, et al.
    Drug Des Devel Ther, 2016;10:297-313.
    PMID: 26834460 DOI: 10.2147/DDDT.S80625
    PURPOSE: β-Mangostin (BM) from Cratoxylum arborescens demonstrated various pharmacological activities such as anticancer and anti-inflammatory. In this study, we aimed to investigate its antiulcer activity against ethanol ulcer model in rats.

    MATERIALS AND METHODS: BM was isolated from C. arborescens. Gastric acid output, ulcer index, gross evaluation, mucus production, histological evaluation using hematoxylin and eosin and periodic acid-Schiff staining and immunohistochemical localization for heat shock protein 70 (HSP70) and Bax proteins were investigated. Possible involvement of reduced glutathione, lipid peroxidation, prostaglandin E2, antioxidant enzymes, superoxide dismutase and catalase enzymes, radical scavenging, nonprotein sulfhydryl compounds, and anti-Helicobacter pylori were investigated.

    RESULTS: BM showed antisecretory activity against the pylorus ligature model. The pretreatment with BM protect gastric mucosa from ethanol damaging effect as seen by the improved gross and histological appearance. BM significantly reduced the ulcer area formation, the submucosal edema, and the leukocytes infiltration compared to the ulcer control. The compound showed intense periodic acid-Schiff staining to the gastric mucus layer and marked amount of alcian blue binding to free gastric mucus. BM significantly increased the gastric homogenate content of prostaglandin E2 glutathione, superoxide dismutase, catalase, and nonprotein sulfhydryl compounds. The compound inhibited the lipid peroxidation revealed by the reduced gastric content of malondialdehyde. Moreover, BM upregulate HSP70 expression and downregulate Bax expression. Furthermore, the compound showed interesting anti-H. pylori activity.

    CONCLUSION: Thus, it could be concluded that BM possesses gastroprotective activity, which could be attributed to the antisecretory, mucus production, antioxidant, HSP70, antiapoptotic, and anti-H. pylori mechanisms.

  20. Ibrahim MY, Hashim NM, Dhiyaaldeen SM, Al-Obaidi MMJ, El-Ferjani RM, Adam H, et al.
    Sci Rep, 2020 04 17;10(1):6792.
    PMID: 32303687 DOI: 10.1038/s41598-020-63217-y
    This paper has been retracted.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links