Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Mori IC, Arias-Barreiro CR, Koutsaftis A, Ogo A, Kawano T, Yoshizuka K, et al.
    Chemosphere, 2015 Feb;120:299-304.
    PMID: 25151133 DOI: 10.1016/j.chemosphere.2014.07.011
    The aquatic ecotoxicity of chemicals involved in the manufacturing process of thin film transistor liquid crystal displays was assessed with a battery of four selected acute toxicity bioassays. We focused on tetramethylammonium hydroxide (TMAH, CAS No. 75-59-2), a widely utilized etchant. The toxicity of TMAH was low when tested in the 72 h-algal growth inhibition test (Pseudokirchneriellia subcapitata, EC50=360 mg L(-1)) and the Microtox® test (Vibrio fischeri, IC50=6.4 g L(-1)). In contrast, the 24h-microcrustacean immobilization and the 96 h-fish mortality tests showed relatively higher toxicity (Daphnia magna, EC50=32 mg L(-1) and Oryzias latipes, LC50=154 mg L(-1)). Isobologram and mixture toxicity index analyses revealed apparent synergism of the mixture of TMAH and potassium iodide when examined with the D. magna immobilization test. The synergistic action was unique to iodide over other halide salts i.e. fluoride, chloride and bromide. Quaternary ammonium ions with longer alkyl chains such as tetraethylammonium and tetrabutylammonium were more toxic than TMAH in the D. magna immobilization test.
  2. Inayat-Hussain SH, Chan KM, Rajab NF, Din LB, Chow SC, Kizilors A, et al.
    Toxicol Lett, 2010 Mar 1;193(1):108-14.
    PMID: 20026395 DOI: 10.1016/j.toxlet.2009.12.010
    Goniothalamin (GTN) isolated from Goniothalamus sp. has been demonstrated to induce apoptosis in a variety of cancer cell lines including Jurkat T leukemia cells. However, the mechanism of GTN-induced apoptosis upstream of mitochondria is still poorly defined. In this study, GTN caused a decrease in GSH with an elevation of reactive oxygen species as early as 30 min and DNA damage as assessed by Comet assay. Analysis using topoisomerase II processing of supercoiled pBR 322 DNA showed that GTN caused DNA damage via a topoisomerase II-independent pathway suggesting that cellular oxidative stress may contribute to genotoxicity. A 12-fold increase of caspase-2 activity was observed in GTN-treated Jurkat cells after 4h treatment and this was confirmed using Western blotting. Although the caspase-2 inhibitor Z-VDVAD-FMK inhibited the proteolytic activity of caspase-2, apoptosis ensued confirming that caspase-2 activity was not crucial for GTN-induced apoptosis. However, GTN-induced apoptosis was completely abrogated by N-acetylcysteine further confirming the role of oxidative stress. Since cytochrome c release was observed as early as 1h without any appreciable change in Bcl-2 protein expression, we further investigated whether overexpression of Bcl-2 confers resistance in GTN-induced cytotoxicity. Using a panel of Jurkat Bcl-2 transfectants, GTN cytotoxicity was not abrogated in these cells. In conclusion, GTN induces DNA damage and oxidative stress resulting in apoptosis which is independent of both caspase-2 and Bcl-2.
  3. Perkins AN, Inayat-Hussain SH, Deziel NC, Johnson CH, Ferguson SS, Garcia-Milian R, et al.
    Environ Res, 2019 02;169:163-172.
    PMID: 30458352 DOI: 10.1016/j.envres.2018.10.018
    Currently, there are >11,000 synthetic turf athletic fields in the United States and >13,000 in Europe. Concerns have been raised about exposure to carcinogenic chemicals resulting from contact with synthetic turf fields, particularly the infill material ("crumb rubber"), which is commonly fabricated from recycled tires. However, exposure data are scant, and the limited existing exposure studies have focused on a small subset of crumb rubber components. Our objective was to evaluate the carcinogenic potential of a broad range of chemical components of crumb rubber infill using computational toxicology and regulatory agency classifications from the United States Environmental Protection Agency (US EPA) and European Chemicals Agency (ECHA) to inform future exposure studies and risk analyses. Through a literature review, we identified 306 chemical constituents of crumb rubber infill from 20 publications. Utilizing ADMET Predictor™, a computational program to predict carcinogenicity and genotoxicity, 197 of the identified 306 chemicals met our a priori carcinogenicity criteria. Of these, 52 chemicals were also classified as known, presumed or suspected carcinogens by the US EPA and ECHA. Of the remaining 109 chemicals which were not predicted to be carcinogenic by our computational toxicology analysis, only 6 chemicals were classified as presumed or suspected human carcinogens by US EPA or ECHA. Importantly, the majority of crumb rubber constituents were not listed in the US EPA (n = 207) and ECHA (n = 262) databases, likely due to an absence of evaluation or insufficient information for a reliable carcinogenicity classification. By employing a cancer hazard scoring system to the chemicals which were predicted and classified by the computational analysis and government databases, several high priority carcinogens were identified, including benzene, benzidine, benzo(a)pyrene, trichloroethylene and vinyl chloride. Our findings demonstrate that computational toxicology assessment in conjunction with government classifications can be used to prioritize hazardous chemicals for future exposure monitoring studies for users of synthetic turf fields. This approach could be extended to other compounds or toxicity endpoints.
  4. Orlikova B, Schumacher M, Juncker T, Yan CC, Inayat-Hussain SH, Hajjouli S, et al.
    Food Chem Toxicol, 2013 Sep;59:572-8.
    PMID: 23845509 DOI: 10.1016/j.fct.2013.06.051
    (R)-(+)-Goniothalamin (GTN), a styryl-lactone isolated from the medicinal plant Goniothalamus macrophyllus, exhibits pharmacological activities including cytotoxic and anti-inflammatory effects. In this study, GTN modulated TNF-α induced NF-κB activation. GTN concentrations up to 20 μM showed low cytotoxic effects in K562 chronic myelogenous leukemia and in Jurkat T cells. Importantly, at these concentrations, no cytotoxicity was observed in healthy peripheral blood mononuclear cells. Our results confirmed that GTN inhibited tumor necrosis factor-α (TNF-α)-induced NF-κB activation in Jurkat and K562 leukemia cells at concentrations as low as 5 μM as shown by reporter gene assays and western blots. Moreover, GTN down-regulated translocation of the p50/p65 heterodimer to the nucleus, prevented binding of NF-κB to its DNA response element and reduced TNF-α-activated interleukin-8 (IL-8) expression. In conclusion, GTN inhibits TNF-α-induced NF-κB activation at non-apoptogenic concentrations in different leukemia cell models without presenting toxicity towards healthy blood cells underlining the anti-leukemic potential of this natural compound.
  5. Chan KM, Hamzah R, Rahaman AA, Jong VY, Khong HY, Rajab NF, et al.
    Food Chem Toxicol, 2012 Aug;50(8):2916-22.
    PMID: 22613213 DOI: 10.1016/j.fct.2012.04.048
    Inophyllin A (INO-A), a pyranoxanthone isolated from the roots of Calophyllum inophyllum represents a new xanthone with potential chemotherapeutic activity. In this study, the molecular mechanism of INO-A-induced cell death was investigated in Jurkat T lymphoblastic leukemia cells. Assessment of phosphatidylserine exposure confirmed apoptosis as the primary mode of cell death in INO-A-treated Jurkat cells. INO-A treatment for only 30 min resulted in a significant increase of tail moment which suggests that DNA damage is an early apoptotic signal. Further flow cytometric assessment of the superoxide anion level confirmed that INO-A induced DNA damage was mediated with a concomitant generation of reactive oxygen species (ROS). Investigation on the thiols revealed an early decrease of free thiols in 30 min after 50 μM INO-A treatment. Using tetramethylrhodamine ethyl ester, a potentiometric dye, the loss of mitochondrial membrane potential (MPP) was observed in INO-A-treated cells as early as 30 min. The INO-A-induced apoptosis progressed with the simultaneous activation of caspases-2 and -9 which then led to the processing of caspase-3. Taken together, these data demonstrate that INO-A induced early oxidative stress, DNA damage and loss of MMP which subsequently led to the activation of an intrinsic pathway of apoptosis in Jurkat cells.
  6. Inayat-Hussain SH, Wong LT, Chan KM, Rajab NF, Din LB, Harun R, et al.
    Toxicol Lett, 2009 Dec 15;191(2-3):118-22.
    PMID: 19698770 DOI: 10.1016/j.toxlet.2009.08.012
    Goniothalamin, a styryllactone, has been shown to induce cytotoxicity via apoptosis in several tumor cell lines. In this study, we have examined the potential role of several genes, which were stably transfected into T-cell lines and which regulate apoptosis in different ways, on goniothalamin-induced cell death. Overexpression of full-length receptor for activated protein C-kinase 1 (RACK-1) and pc3n3, which up-regulates endogenous RACK-1, in both Jurkat and W7.2 T cells resulted in inhibition of goniothalamin-induced cell death as assessed by MTT and clonogenic assays. However, overexpression of rFau (antisense sequence to Finkel-Biskis-Reilly murine sarcoma virus-associated ubiquitously expressed gene) in W7.2 cells did not confer resistance to goniothalamin-induced cell death. Etoposide, a clinically used cytotoxic agent, was equipotent in causing cytotoxicity in all the stable transfectants. Assessment of DNA damage by Comet assay revealed goniothalamin-induced DNA strand breaks as early as 1 h in vector control but this effect was inhibited in RACK-1 and pc3n3 stably transfected W7.2 cells. This data demonstrate that RACK-1 plays a crucial role in regulating cell death signalling pathways induced by goniothalamin.
  7. Inayat-Hussain SH, Fukumura M, Muiz Aziz A, Jin CM, Jin LW, Garcia-Milian R, et al.
    Environ Int, 2018 08;117:348-358.
    PMID: 29793188 DOI: 10.1016/j.envint.2018.05.010
    BACKGROUND: Recent trends have witnessed the global growth of unconventional oil and gas (UOG) production. Epidemiologic studies have suggested associations between proximity to UOG operations with increased adverse birth outcomes and cancer, though specific potential etiologic agents have not yet been identified. To perform effective risk assessment of chemicals used in UOG production, the first step of hazard identification followed by prioritization specifically for reproductive toxicity, carcinogenicity and mutagenicity is crucial in an evidence-based risk assessment approach. To date, there is no single hazard classification list based on the United Nations Globally Harmonized System (GHS), with countries applying the GHS standards to generate their own chemical hazard classification lists. A current challenge for chemical prioritization, particularly for a multi-national industry, is inconsistent hazard classification which may result in misjudgment of the potential public health risks. We present a novel approach for hazard identification followed by prioritization of reproductive toxicants found in UOG operations using publicly available regulatory databases.

    METHODS: GHS classification for reproductive toxicity of 157 UOG-related chemicals identified as potential reproductive or developmental toxicants in a previous publication was assessed using eleven governmental regulatory agency databases. If there was discordance in classifications across agencies, the most stringent classification was assigned. Chemicals in the category of known or presumed human reproductive toxicants were further evaluated for carcinogenicity and germ cell mutagenicity based on government classifications. A scoring system was utilized to assign numerical values for reproductive health, cancer and germ cell mutation hazard endpoints. Using a Cytoscape analysis, both qualitative and quantitative results were presented visually to readily identify high priority UOG chemicals with evidence of multiple adverse effects.

    RESULTS: We observed substantial inconsistencies in classification among the 11 databases. By adopting the most stringent classification within and across countries, 43 chemicals were classified as known or presumed human reproductive toxicants (GHS Category 1), while 31 chemicals were classified as suspected human reproductive toxicants (GHS Category 2). The 43 reproductive toxicants were further subjected to analysis for carcinogenic and mutagenic properties. Calculated hazard scores and Cytoscape visualization yielded several high priority chemicals including potassium dichromate, cadmium, benzene and ethylene oxide.

    CONCLUSIONS: Our findings reveal diverging GHS classification outcomes for UOG chemicals across regulatory agencies. Adoption of the most stringent classification with application of hazard scores provides a useful approach to prioritize reproductive toxicants in UOG and other industries for exposure assessments and selection of safer alternatives.

  8. Roslie H, Chan KM, Rajab NF, Velu SS, Kadir SA, Bunyamin I, et al.
    J Toxicol Sci, 2012 Feb;37(1):13-21.
    PMID: 22293408
    A series of 22 stilbene derivatives based on resveratrol were synthesized incorporating acetoxy-, benzyloxy-, carboxy-, chloro-, hydroxy- and methoxy functional groups. We examined the cytotoxicity of these 22 stilbenes in human K562 chronic myelogenous leukemia cells. Only four compounds were cytotoxic namely 4'-hydroxy-3-methoxystilbene (15), 3'-acetoxy-4-chlorostilbene (19), 4'-hydroxy-3,5-dimethoxystilbene or pterostilbene (3) and 3,5-dibenzyloxy-4'-hydroxystilbene (28) with IC(50)s of 78 µM, 38 µM, 67 µM and 19.5 µM respectively. Further apoptosis assessment on the most potent compound, 28, confirmed that the cells underwent apoptosis based on phosphatidylserine externalization and loss of mitochondrial membrane potential. Importantly, we observed a concentration-dependent activation of caspase-9 as early as 2 hr with resultant caspase-3 cleavage in 28-induced apoptosis. Additionally, a structure-activity relationship (SAR) study proposed a possible mechanism of action for compound 28. Taken together, our data suggests that the pro-apoptotic effects of 28 involve the intrinsic mitochondrial pathway characterized by an early activation of caspase-9.
  9. Inayat-Hussain SH, Lubis SH, Sakian NI, Ghazali AR, Ali NS, El Sersi M, et al.
    Toxicol Appl Pharmacol, 2007 Mar;219(2-3):210-6.
    PMID: 17140616
    A cross-sectional study was conducted to investigate the effects of acute and chronic pesticide exposure on the plasma beta-glucuronidase enzyme activity among five patients of acute pesticide poisoning in Tengku Ampuan Rahimah Hospital, Klang, 230 farmers in the MADA area, Kedah and 49 fishermen in Setiu, Terengganu. The duration of pesticide exposure among the patients was unknown, but the plasma samples from patients were collected on day one in the hospital. The duration of pesticide exposure among the farmers was between 1 and 45 years. The beta-glucuronidase activity was compared with plasma cholinesterase activity in the same individual. The plasma cholinesterase activity was measured using Cholinesterase (PTC) Reagent set kit (Teco Diagnostics, UK) based on colorimetric method, while the plasma beta-glucuronidase activity was measured fluorometrically based on beta-glucuronidase assay. The plasma cholinesterase activity was significantly reduced (p<0.05) among the patients (1386.786+/-791.291 U/L/min) but the inhibition in plasma cholinesterase activity among the farmers (7346.5+/-1860.786 U/L/min) was not significant (p>0.05). The plasma beta-glucuronidase activity among the farmers was significantly elevated (p<0.05) (0.737+/-0.425 microM/h) but not significant among the patients (p>0.05). The plasma cholinesterase activity was positively correlated with the plasma beta-glucuronidase activity among the farmers (r=0.205, p<0.01) but not among the patients (r=0.79, p>0.05). Thus, plasma beta-glucuronidase enzyme activity can be measured as a biomarker for the chronic exposure of pesticide. However, further studies need to be performed to confirm whether plasma beta-glucuronidase can be a sensitive biomarker for anticholinesterase pesticide poisoning.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links