Displaying publications 21 - 40 of 81 in total

Abstract:
Sort:
  1. Gorain B, Choudhury H, Pandey M, Kesharwani P, Abeer MM, Tekade RK, et al.
    Biomed Pharmacother, 2018 Aug;104:496-508.
    PMID: 29800914 DOI: 10.1016/j.biopha.2018.05.066
    Myocardial infarction (cardiac tissue death) is among the most prevalent causes of death among the cardiac patients due to the inability of self-repair in cardiac tissues. Myocardial tissue engineering is regarded as one of the most realistic strategies for repairing damaged cardiac tissue. However, hindrance in transduction of electric signals across the cardiomyocytes due to insulating properties of polymeric materials worsens the clinical viability of myocardial tissue engineering. Aligned and conductive scaffolds based on Carbon nanotubes (CNT) have gained remarkable recognition due to their exceptional attributes which provide synthetic but viable microenvironment for regeneration of engineered cardiomyocytes. This review presents an overview and critical analysis of pharmaceutical implications and therapeutic feasibility of CNT based scaffolds in improving the cardiac tissue regeneration and functionality. The expository analysis of the available evidence revealed that inclusion of single- or multi-walled CNT into fibrous, polymeric, and elastomeric scaffolds results in significant improvement in electrical stimulation and signal transduction through cardiomyocytes. Moreover, incorporation of CNT in engineering scaffolds showed a greater potential of augmenting cardiomyocyte proliferation, differentiation, and maturation and has improved synchronous beating of cardiomyocytes. Despite promising ability of CNT in promoting functionality of cardiomyocytes, their presence in scaffolds resulted in substantial improvement in mechanical properties and structural integrity. Conclusively, this review provides new insight into the remarkable potential of CNT aligned scaffolds in improving the functionality of engineered cardiac tissue and signifies their feasibility in cardiac tissue regenerative medicines and stem cell therapy.
  2. Butt AM, Amin MC, Katas H, Abdul Murad NA, Jamal R, Kesharwani P
    Mol Pharm, 2016 12 05;13(12):4179-4190.
    PMID: 27934479
    This study investigated the potential of chitosan-coated mixed micellar nanocarriers (polyplexes) for codelivery of siRNA and doxorubicin (DOX). DOX-loaded mixed micelles (serving as cores) were prepared by thin film hydration method and coated with chitosan (CS, serving as outer shell), and complexed with multidrug resistance (MDR) inhibiting siRNA. Selective targeting was achieved by folic acid conjugation. The polyplexes showed pH-responsive enhanced DOX release in acidic tumor pH, resulting in higher intracellular accumulation, which was further augmented by downregulation of mdr-1 gene after treatment with siRNA-complexed polyplexes. In vitro cytotoxicity assay demonstrated an enhanced cytotoxicity in native 4T1 and multidrug-resistant 4T1-mdr cell lines, compared to free DOX. Furthermore, in vivo, polyplexes codelivery resulted in highest DOX accumulation and significantly reduced the tumor volume in mice with 4T1 and 4T1-mdr tumors as compared to the free DOX groups, leading to improved survival times in mice. In conclusion, codelivery of siRNA and DOX via polyplexes has excellent potential as targeted drug nanocarriers for treatment of MDR cancers.
  3. Amjad MW, Amin MC, Katas H, Butt AM, Kesharwani P, Iyer AK
    Mol Pharm, 2015 Dec 7;12(12):4247-58.
    PMID: 26567518 DOI: 10.1021/acs.molpharmaceut.5b00827
    Multidrug resistance poses a great challenge to cancer treatment. In order to improve the targeting and codelivery of small interfering RNA (siRNA) and doxorubicin, and to overcome multidrug resistance, we conjugated a cholic acid-polyethylenimine polymer with folic acid, forming CA-PEI-FA micelles. CA-PEI-FA exhibited a low critical micelle concentration (80 μM), small average particle size (150 nm), and positive zeta potential (+ 12 mV). They showed high entrapment efficiency for doxorubicin (61.2 ± 1.7%, w/w), forming D-CA-PEI-FA, and for siRNA, forming D-CA-PEI-FA-S. X-ray photoelectron spectroscopic analysis revealed the presence of external FA on D-CA-PEI-FA micelles. About 25% doxorubicin was released within 24 h at pH 7.4, while more than 30% release was observed at pH 5. The presence of FA enhanced micelle antitumor activity. The D-CA-PEI-FA and D-CA-PEI-FA-S micelles inhibited tumor growth in vivo. No significant differences between their in vitro cytotoxic activities or their in vivo antitumor effects were observed, indicating that the siRNA coloading did not significantly increase the antitumor activity. Histological analysis revealed that tumor tissues from mice treated with D-CA-PEI-FA or D-CA-PEI-FA-S showed the lowest cancer cell density and the highest levels of apoptosis and necrosis. Similarly, the livers of these mice exhibited the lowest level of dihydropyrimidine dehydrogenase among all treated groups. The lowest serum vascular endothelial growth factor level (VEGF) (24.4 pg/mL) was observed in mice treated with D-CA-PEI-FA-S micelles using siRNA targeting VEGF. These findings indicated that the developed CA-PEI-FA nanoconjugate has the potential to achieve targeted codelivery of drugs and siRNA.
  4. Singh S, Hassan D, Aldawsari HM, Molugulu N, Shukla R, Kesharwani P
    Drug Discov Today, 2020 01;25(1):223-229.
    PMID: 31738877 DOI: 10.1016/j.drudis.2019.11.003
    Immune checkpoint inhibitors (ICIs) are revolutionizing the treatment of many cancers and have demonstrated their potential as 'cancer terminators'. However, ICI treatment also has constraints, such as its immune-related adverse events (irAEs) and therapeutic resistance. These drawbacks are gradually being overcome through better knowledge of the immune system, history of disease, duration of treatment, combinational drug regimes, adequate biomarkers, and effective patient response monitoring. In this review, we discuss the present ICI therapy landscape and its therapeutic outcomes for various diseases. We also highlight biomarkers related to the ICI response.
  5. Tambuwala MM, Kesharwani P, Shukla R, Thompson PD, McCarron PA
    Pathol Res Pract, 2018 Nov;214(11):1909-1911.
    PMID: 30170869 DOI: 10.1016/j.prp.2018.08.020
    Fibrosis is known to be the hallmarks of chronic inflammation of the bowel. Epithelial damage due to inflammation compromises the barrier function of the gastrointestinal tract. This barrier dysfunction leads to further spread of inflammation resulting in a chronic state of inflammation. This chronic inflammation leads to development of fibrosis, which has very limited therapeutic options and usually requires surgical removal of the affected tissue. Our previous work has shown that Caffeic acid phenethyl ester (CAPE) is a naturally occurring anti-inflammatory agent, found in propolis, has been found to be protective in experimental colitis via enhancement of epithelial barrier function. However, the impact of CAPE on resolution of fibrosis in the long-term is unknown. The aim of this follow up study was to investigate the effect of CAPE on colon fibrosis in a chronic model of Dextran sulphate sodium induced colitis in mice. Dextran sulphate sodium (DSS) 2.5% w/v was administered in drinking water to induce colitis in C57/BL6 mice for 5 days on the 6th day DSS was stopped and test group mice were treated with intraperitoneal administration of CAPE (30 mg kg-1 day-1) for a further 7 days. Disease activity index (DAI) score, colon length and tissue histology and level of tissue fibrosis was observed. CAPE-treated mice had significantly lower levels of DAI, tissue inflammation scores and fibrosis as compared with control group. Our results show that CAPE is effective in resolving colon fibrosis in chronic inflammation. Thus, we can conclude CAPE could be a potential therapeutic agent for further clinical investigations for treatment of fibrosis in inflammatory bowel diseases in humans.
  6. Varma LT, Singh N, Gorain B, Choudhury H, Tambuwala MM, Kesharwani P, et al.
    Curr Drug Deliv, 2020;17(4):279-291.
    PMID: 32039683 DOI: 10.2174/1567201817666200210122340
    The collection of different bulk materials forms the nanoparticles, where the properties of the nanoparticle are solely different from the individual components before being ensembled. Selfassembled nanoparticles are basically a group of complex functional units that are formed by gathering the individual bulk components of the system. It includes micelles, polymeric nanoparticle, carbon nanotubes, liposomes and niosomes, etc. This self-assembly has progressively heightened interest to control the final complex structure of the nanoparticle and its associated properties. The main challenge of formulating self-assembled nanoparticle is to improve the delivery system, bioavailability, enhance circulation time, confer molecular targeting, controlled release, protection of the incorporated drug from external environment and also serve as nanocarriers for macromolecules. Ultimately, these self-assembled nanoparticles facilitate to overcome the physiological barriers in vivo. Self-assembly is an equilibrium process where both individual and assembled components are subsisting in equilibrium. It is a bottom up approach in which molecules are assembled spontaneously, non-covalently into a stable and welldefined structure. There are different approaches that have been adopted in fabrication of self-assembled nanoparticles by the researchers. The current review is enriched with strategies for nanoparticle selfassembly, associated properties, and its application in therapy.
  7. Choudhury H, Gorain B, Pandey M, Kumbhar SA, Tekade RK, Iyer AK, et al.
    Int J Pharm, 2017 Aug 30;529(1-2):506-522.
    PMID: 28711640 DOI: 10.1016/j.ijpharm.2017.07.018
    Docetaxel (DTX) is one of the important antitumor drugs, being used in several common chemotherapies to control leading cancer types. Severe toxicities of the DTX are prominent due to sudden parenteral exposure of desired loading dose to maintain the therapeutic concentration. Field of nanotechnology is leading to resist sudden systemic exposure of DTX with more specific delivery to the site of cancer. Further nanometric size range of the formulation aid for prolonged circulation, thereby extensive exposure results better efficacy. In this article, we extensively reviewed the therapeutic benefit of incorporating d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS, or simply TPGS) in the nanoparticle (NP) formulation of DTX for improved delivery, tumor control and tolerability. TPGS is well accepted nonionic-ampiphilic polymer which has been identified in the role of emulsifier, stabilizer, penetration enhancer, solubilizer and in protection in micelle. Simultaneously, P-glycoprotein inhibitory activity of TPGS in the multidrug resistant (MDR) cancer cells along with its apoptotic potential are the added advantage of TPGS to be incorporated in nano-chemotherapeutics. Thus, it could be concluded that TPGS based nanoparticulate application is an advanced approach to improve therapeutic efficacy of chemotherapeutic agents by better internalization and sustained retention of the NPs.
  8. Jain A, Sharma G, Ghoshal G, Kesharwani P, Singh B, Shivhare US, et al.
    Int J Pharm, 2018 Jul 30;546(1-2):97-105.
    PMID: 29715533 DOI: 10.1016/j.ijpharm.2018.04.061
    The work entails a novel strategy of formulating the lycopene loaded whey protein isolate nanoparticles (LYC-WPI-NPs) solely using the rational blend of biomacromolecule without using equipment-intensive techniques. The LYC-WPI-NPs were fabricated as a substantial drug delivery platform, with maximum entrapment, spatial and controlled release manners, exceptional plasma concentration, and perspective for discrepancy delivery of therapeutics. Prepared nano-formulations were measured in ultra-fine size (100-350 nm) with sphere-shaped. The percent lycopene entrapment of prepared LYC-WPI-NPs was estimated in the range to 50 and 65%. In vitro percent cumulative release study demonstrated deaden and extended release i.e. approximately 75% following 16th h. The in vitro percent cell survival (cytotoxicity study) of prepared nanoparticles was evaluated against MCF-7 breast cancer cells by MTT based colorimetric assay. Sub-cellular localization of lycopene when delivered by LYC-WPI-NPs was assessed by HPLC (high performance liquid chromatography). The WPI-NPs enhance the oral bioavailability of lycopene by controlling its release from nano-formulation and facilitating its absorption through lymphatic pathways. Prophylactic anticancer efficacy of LYC-WPI-NPs was evaluated thereafter on experimentally induced breast cancer animal model. Conclusively, it may quite reasonable that lycopene loaded protein nanoparticles are competent to improve the biopharmaceutical attributes of lycopene and demonstrated prophylactic anticancer activity, decrease tumor proliferation and increase the survival rate of treated animals, thus signifying their feasible usefulness in cancer therapeutic and intervention.
  9. Kumar Dubey S, Pradhan R, Hejmady S, Singhvi G, Choudhury H, Gorain B, et al.
    Int J Pharm, 2021 May 01;600:120499.
    PMID: 33753164 DOI: 10.1016/j.ijpharm.2021.120499
    Age-related macular degeneration (AMD), a degenerative eye disease, is the major cause of irreversible loss of vision among individuals aged 50 and older. Both genetic and environmental factors are responsible for the progressive damage to central vision. It is a multifactorial retinal disease with features such as drusen, hypopigmentation and/or hyperpigmentation of the retinal pigment epithelium, and even choroidal neovascularization in certain patients. AMD is of two major forms: exudative (wet) and atrophic (dry) with changes affecting the macula leading to impaired vision. Although the retina remains an accessible portion for delivering drugs, there are no current options to cure or treat AMD. The existing expensive therapeutics are unable to treat the underlying pathology but display several side effects. However, recent innovations in nanotherapeutics provide an optimal alternative of drug delivery to treat the neovascular condition. These new-age technologies in the nanometer scale would enhance bioactivity and improve the bioavailability of drugs at the site of action to treat AMD. The nanomedicine also provides sustained release of the drug with prolonged retention after penetrating across the ocular tissues. In this review, the insights into the cellular and molecular mechanisms associated with the pathophysiology of AMD are provided. It also serves to review the current progress in nanoparticle-based drug delivery systems that offer feasible treatments in AMD.
  10. Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, et al.
    Int J Pharm, 2021 Sep 05;606:120848.
    PMID: 34216762 DOI: 10.1016/j.ijpharm.2021.120848
    Photothermal therapy (PTT) is a minimally invasive procedure for treating cancer. The two significant prerequisites of PTT are the photothermal therapeutic agent (PTA) and near-infrared radiation (NIR). The PTA absorbs NIR, causing hyperthermia in the malignant cells. This increased temperature at the tumor microenvironment finally results in tumor cell damage. Nanoparticles play a crucial role in PTT, aiding in the passive and active targeting of the PTA to the tumor microenvironment. Through enhanced permeation and retention effect and surface-engineering, specific targeting could be achieved. This novel delivery tool provides the advantages of changing the shape, size, and surface attributes of the carriers containing PTAs, which might facilitate tumor regression significantly. Further, inclusion of surface engineering of nanoparticles is facilitated through ligating ligands specific to overexpressed receptors on the cancer cell surface. Thus, transforming nanoparticles grants the ability to combine different treatment strategies with PTT to enhance cancer treatment. This review emphasizes properties of PTAs, conjugated biomolecules of PTAs, and the combinatorial techniques for a better therapeutic effect of PTT using the nanoparticle platform.
  11. Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, et al.
    Int J Pharm, 2021 Jan 05;592:120043.
    PMID: 33152476 DOI: 10.1016/j.ijpharm.2020.120043
    Cancer is a community health hazard which progress at a fatal rate in various countries across the globe. An agent used for chemotherapy should exhibit ideal properties to be an effective anticancer medicine. The chemotherapeutic medicines used for treatment of various cancers are, gemcitabine, paclitaxel, etoposide, methotrexate, cisplatin, doxorubicin and 5-fluorouracil. However, many of these agents present nonspecific systemic toxicity that prevents their treatment efficiency. Of all, gemcitabine has shown to be an active agent against colon, pancreatic, colon, ovarian, breast, head and neck and lung cancers in amalgamation with various anticancer agents. Gemcitabine is considered a gold-standard and the first FDA approved agent used as a monotherapy in management of advanced pancreatic cancers. However due to its poor pharmacokinetics, there is need of newer drug delivery system for efficient action. Nanotechnology has shown to be an emerging trend in field of medicine in providing novel modalities for cancer treatment. Various nanocarriers have the potential to deliver the drug at the desired site to obtain information about diagnosis and treatment of cancer. This review highlights on various nanocarriers like polymeric nanoparticles, solid lipid nanoparticles, mesoporous silica nanoparticles, magnetic nanoparticles, micelles, liposomes, dendrimers, gold nanoparticles and combination approaches for delivery of gemcitabine for cancer therapy. The co-encapsulation and concurrent delivery of Gem with other anticancer agents can enhance drug action at the cancer site with reduced side effects.
  12. Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, et al.
    Int J Pharm, 2020 Aug 30;586:119596.
    PMID: 32622805 DOI: 10.1016/j.ijpharm.2020.119596
    Major goal of dental treatment is to eradicate the existing diseases of the oral cavity and implement preventive measures to control the spread of the diseases. Various interventions are being used to cure the dental diseases. Due to the nanostructures, high surface volume and biocompatibility, Gold nanoparticles (GNPs) have been experimented in the treatment of gum diseases, dental caries, tissue engineering, dental implantology and diagnosis of cancers. GNPs possess antifungal and antibacterial activity, hence are incorporated in various biomaterials to potentiate the effect. They also enhance the mechanical properties of materials leading to improved outcomes. They are available in different sizes and concentrations to exhibits its beneficial outcomes. These properties of GNPs make these materials as choice of fillers in biomaterials. This review aims to discuss the effect of incorporation of GNPs in several biomaterials used for dental and medical applications.
  13. Dubey SK, Parab S, Dabholkar N, Agrawal M, Singhvi G, Alexander A, et al.
    Drug Discov Today, 2021 04;26(4):931-950.
    PMID: 33444788 DOI: 10.1016/j.drudis.2021.01.001
    Peptides and proteins have emerged as potential therapeutic agents and, in the search for the best treatment regimen, the oral route has been extensively evaluated because of its non-invasive and safe nature. The physicochemical properties of peptides and proteins along with the hurdles in the gastrointestinal tract (GIT), such as degrading enzymes and permeation barriers, are challenges to their delivery. To address these challenges, several conventional and novel approaches, such as nanocarriers, site-specific and stimuli specific delivery, are being used. In this review, we discuss the challenges to the oral delivery of peptides and the approaches used to tackle these challenges.
  14. Singh S, Numan A, Somaily HH, Gorain B, Ranjan S, Rilla K, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Oct;129:112384.
    PMID: 34579903 DOI: 10.1016/j.msec.2021.112384
    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become a threat to global health because of limited treatments. MRSA infections are difficult to treat due to increasingly developing resistance in combination with protective biofilms of Staphylococcus aureus (S. aureus). Nanotechnology-based research revealed that effective MRSA treatments could be achieved through targeted nanoparticles (NPs) that withstand biological films and drug resistance. Thus, the principal aim towards improving MRSA treatment is to advance drug delivery tools, which successfully address the delivery-related problems. These potential delivery tools would also carry drugs to the desired sites of therapeutic action to overcome the adverse effects. This review focused on different types of nano-engineered carriers system for antimicrobial agents with improved therapeutic efficacy of entrapped drugs. The structural characteristics that play an essential role in the effectiveness of delivery systems have also been addressed with a description of recent scientific advances in antimicrobial treatment, emphasizing challenges in MRSA treatments. Consequently, existing gaps in the literature are highlighted, and reported contradictions are identified, allowing for the development of roadmaps for future research.
  15. Hejmady S, Pradhan R, Alexander A, Agrawal M, Singhvi G, Gorain B, et al.
    Drug Discov Today, 2020 12;25(12):2227-2244.
    PMID: 33011342 DOI: 10.1016/j.drudis.2020.09.031
    A tumor serves as a major avenue in drug development owing to its complexity. Conventional therapies against tumors possess limitations such as suboptimal therapeutic efficacy and extreme side effects. These display poor pharmacokinetics and lack specific targeting, with non-specific distribution resulting in systemic toxicity. Therefore, nanocarriers targeted against cancers are increasingly being explored. Nanomedicine aids in maintaining a balance between efficacy and toxicity by specifically accumulating in tumors. Nanotherapeutics possess advantages such as increased solubility of chemotherapeutics, encapsulation of multiple drugs and improved biodistribution, and can ensure tumor-directed drug delivery and release via the approaches of passive targeting and active targeting. This review aims to offer a general overview of the current advances in tumor-targeting nanocarriers for clinical and diagnostic use.
  16. Luong D, Kesharwani P, Deshmukh R, Mohd Amin MCI, Gupta U, Greish K, et al.
    Acta Biomater, 2016 10 01;43:14-29.
    PMID: 27422195 DOI: 10.1016/j.actbio.2016.07.015
    Poly(amidoamine) dendrimers (PAMAM) are well-defined, highly branched, nanoscale macromolecules with numerous active amine groups on the surface. PAMAM dendrimer can enhance the solubility of hydrophobic drugs, and with numerous reactive groups on the surface PAMAM dendrimer can be engineered with various functional groups for specific targeting ability. However, in physiological conditions, these amine groups are toxic to cells and limit the application of PAMAM. In the recent years, polyethylene glycol (PEG) conjugation has been the most widely used approach to reduce the toxicity of the active group on dendrimer surface. PEG molecules are known to be inert, non-immunogenic, and non-antigenic with a significant water solubility. PEGylated PAMAM-mediated delivery could not only overcome the limitations of dendrimer such as drug leakage, immunogenicity, hemolytic toxicity, systemic cytotoxicity but they also have the ability to enhance the solubilization of hydrophobic drugs and facilitates the potential for DNA transfection, siRNA delivery and tumor targeting. This review focuses on the recent developments on the application and influence of PEGylation on various biopharmaceutical properties of PAMAM dendrimers.

    STATEMENT OF SIGNIFICANCE: It is well established that dendrimers have demonstrated promising potentials for drug delivery. However, the inherent toxicity poses challenges for its clinical translation. In this regard, PEGylation has helped mitigate some of the toxicity concerns of dendrimers and have paved the way forward for testing its translational potentials. The review is a collection of articles demonstrating the utility of PEGylation of the most studied PAMAM dendrimers. To our knowledge, this is a first such attempt to draw reader's attention, specifically, towards PEGylated PAMAM dendrimers.

  17. Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, et al.
    J Pharm Sci, 2017 07;106(7):1736-1751.
    PMID: 28412398 DOI: 10.1016/j.xphs.2017.03.042
    Being an emerging transdermal delivery tool, nanoemulgel, has proved to show surprising upshots for the lipophilic drugs over other formulations. This lipophilic nature of majority of the newer drugs developed in this modern era resulting in poor oral bioavailability, erratic absorption, and pharmacokinetic variations. Therefore, this novel transdermal delivery system has been proved to be advantageous over other oral and topical drug delivery to avoid such disturbances. These nanoemulgels are basically oil-in-water nanoemulsions gelled with the use of some gelling agent in it. This gel phase in the formulation is nongreasy, which favors user compliance and stabilizes the formulation through reduction in surface as well as interfacial tension. Simultaneously, it can be targeted more specifically to the site of action and can avoid first-pass metabolism and relieve the user from gastric/systemic incompatibilities. This brief review is focused on nanoemulgel as a better topical drug delivery system including its components screening, formulation method, and recent pharmacokinetic and pharmacodynamic advancement in research studies carried out by the scientists all over the world. Therefore, at the end of this survey it could be inferred that nanoemulgel can be a better and effective drug delivery tool for the topical system.
  18. Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U
    Drug Discov Today, 2017 02;22(2):314-326.
    PMID: 27671487 DOI: 10.1016/j.drudis.2016.09.013
    Dendrimers are novel nanoarchitectures with unique properties including a globular 3D shape, a monodispersed unimicellar nature and a nanometric size range. The availability of multiple peripheral functional groups and tunable surface engineering enable the facile modification of the dendrimer surface with different therapeutic drugs, diagnostic agents and targeting ligands. Drug encapsulation, and solubilizing and passive targeting also equally contribute to the therapeutic use of dendrimers. In this review, we highlight recent advances in the delivery of anticancer drugs using dendrimers, as well as other biomedical and diagnostic applications. Taken together, the immense potential and utility of dendrimers are envisaged to have a significant positive impact on the growing arena of drug delivery and targeting.
  19. Md S, Haque S, Madheswaran T, Zeeshan F, Meka VS, Radhakrishnan AK, et al.
    Drug Discov Today, 2017 Aug;22(8):1274-1283.
    PMID: 28456749 DOI: 10.1016/j.drudis.2017.04.010
    Topical photodynamic therapy (PDT) is a non-invasive technique used in the treatment of malignant and non-malignant skin diseases. It offers great promise because of its simplicity, enhanced patient compliance, localisation of the photosensitizer, as well as the use of light and oxygen to achieve photocytotoxicity. Despite progress in photosensitizer-mediated topical PDT, its clinical application is limited by poor penetration of photosensitizers through the skin. Therefore, much effort has been made to develop nanocarriers that can tackle the challenges of conventional photosensitizer-mediated PDT for topical delivery. This review discusses recent data on the use of different types of lipid-based nanocarriers in delivering photosensitizer for topical PDT.
  20. Kumar H, Mishra G, Sharma AK, Gothwal A, Kesharwani P, Gupta U
    Pharm Nanotechnol, 2017;5(3):203-214.
    PMID: 28521670 DOI: 10.2174/2211738505666170515113936
    BACKGROUND: The convoluted pathophysiology of brain disorders along with penetration issue of drugs to brain represents major hurdle that requires some novel therapies. The blood-brain barrier (BBB) denotes a rigid barrier for delivery of therapeutics in vivo; to overcome this barrier, intranasal delivery is an excellent strategy to deliver the drug directly to brain via olfactory and trigeminal nerve pathways that originate as olfactory neuro-epithelium in the nasal cavity and terminate in brain.

    METHOD: Kind of therapeutics like low molecular weight drugs can be delivered to the CNS via this route. In this review, we have outlined the anatomy and physiological aspect of nasal mucosa, certain hurdles, various strategies including importance of muco-adhesive polymers to increase the drug delivery and possible clinical prospects that partly contribute in intranasal drug delivery.

    RESULTS: Exhaustive literature survey related to intranasal drug delivery system revealed the new strategy that circumvents the BBB, based on non-invasive concept for treating various CNS disorders. Numerous advantages like prompt effects, self-medication through wide-ranging devices, and the frequent as well protracted dosing are associated with this novel route.

    CONCLUSION: Recently few reports have proven that nasal to brain drug delivery system bypasses the BBB. This novel route is associated with targeting efficiency and less exposure of therapeutic substances to non-target site. Nevertheless, this route desires much more research into the safe transferring of therapeutics to the brain. Role of muco-adhesive polymer and surface modification with specific ligands are area of interest of researcher to explore more about this.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links