Displaying publications 21 - 40 of 178 in total

Abstract:
Sort:
  1. Kazemi Shariat Panahi H, Dehhaghi M, Dehhaghi S, Guillemin GJ, Lam SS, Aghbashlo M, et al.
    Bioresour Technol, 2022 Jan;344(Pt A):126212.
    PMID: 34715341 DOI: 10.1016/j.biortech.2021.126212
    Appropriate bioprocessing of lignocellulosic materials into ethanol could address the world's insatiable appetite for energy while mitigating greenhouse gases. Bioethanol is an ideal gasoline extender and is widely used in many countries in blended form with gasoline at specific ratios to improve fuel characteristics and engine performance. Although the bioethanol production industry has long been operational, finding a suitable microbial agent for the efficient conversion of lignocelluloses is still an active field of study. Among available microbial candidates, engineered bacteria may be promising ethanol producers while may show other desired traits such as thermophilic nature and high ethanol tolerance. This review provides the current knowledge on the introduction, overexpression, and deletion of the genes that have been performed in bacterial hosts to achieve higher ethanol yield, production rate and titer, and tolerance. The constraints and possible solutions and economic feasibility of the processes utilizing such engineered strains are also discussed.
  2. Hosseinzadeh-Bandbafha H, Li C, Chen X, Peng W, Aghbashlo M, Lam SS, et al.
    J Hazard Mater, 2022 02 15;424(Pt C):127636.
    PMID: 34740507 DOI: 10.1016/j.jhazmat.2021.127636
    Waste cooking oil (WCO) is a hazardous waste generated at staggering values globally. WCO disposal into various ecosystems, including soil and water, could result in severe environmental consequences. On the other hand, mismanagement of this hazardous waste could also be translated into the loss of resources given its energy content. Hence, finding cost-effective and eco-friendly alternative pathways for simultaneous management and valorization of WCO, such as conversion into biodiesel, has been widely sought. Due to its low toxicity, high biodegradability, renewability, and the possibility of direct use in diesel engines, biodiesel is a promising alternative to mineral diesel. However, the conventional homogeneous or heterogeneous catalysts used in the biodiesel production process, i.e., transesterification, are generally toxic and derived from non-renewable resources. Therefore, to boost the sustainability features of the process, the development of catalysts derived from renewable waste-oriented resources is of significant importance. In light of the above, the present work aims to review and critically discuss the hazardous WCO application for bioenergy production. Moreover, various waste-oriented catalysts used to valorize this waste are presented and discussed.
  3. Mohammadi P, Taghavi E, Foong SY, Rajaei A, Amiri H, de Tender C, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124841.
    PMID: 37182628 DOI: 10.1016/j.ijbiomac.2023.124841
    Depending on its physicochemical properties and antibacterial activities, chitosan can have a wide range of applications in food, pharmaceutical, medicine, cosmetics, agriculture, and aquaculture. In this experimental study, chitosan was extracted from shrimp waste through conventional extraction, microwave-assisted extraction, and conventional extraction under microwave process conditions. The effects of the heating source on the physicochemical properties and antibacterial activity were investigated. The results showed that the heating process parameters affected the physicochemical properties considerably. The conventional procedure yielded high molecular weight chitosan with a 12.7 % yield, while the microwave extraction procedure yielded a porous medium molecular weight chitosan at 11.8 %. The conventional extraction under microwave process conditions led to medium molecular weight chitosan with the lowest yield (10.8 %) and crystallinity index (79 %). Antibacterial assessment findings revealed that the chitosan extracted using the conventional method had the best antibacterial activity in the agar disk diffusion assay against Listeria monocytogenes (9.48 mm), Escherichia coli. (8.79 mm), and Salmonella Typhimurium (8.57 mm). While the chitosan obtained by microwave-assisted extraction possessed the highest activity against E. coli. (8.37 mm), and Staphylococcus aureus (8.05 mm), with comparable antibacterial activity against S. Typhimurium (7.34 mm) and L. monocytogenes (6.52 mm). Moreover, the minimal inhibitory concentration and minimal bactericidal concentration assays demonstrated that among the chitosan samples investigated, the conventionally-extracted chitosan, followed by the chitosan extracted by microwave, had the best antibacterial activity against the target bacteria.
  4. Aghbashlo M, Amiri H, Moosavi Basri SM, Rastegari H, Lam SS, Pan J, et al.
    Trends Biotechnol, 2023 Jun;41(6):785-797.
    PMID: 36535818 DOI: 10.1016/j.tibtech.2022.11.009
    Chitosan, an amino polysaccharide mostly derived from crustaceans, has been recently highlighted for its biological activities that depend on its molecular weight (MW), degree of deacetylation (DD), and acetylation pattern (AP). More importantly, for some advanced biomaterials, the homogeneity of the chitosan structure is an important factor in determining its biological activity. Here we review emerging enzymes and cell factories, respectively, for in vitro and in vivo preparation of chitosan oligosaccharides (COSs), focusing on advances in the analysis of the AP and structural modification of chitosan to tune its functions. By 'mapping' current knowledge on chitosan's in vitro and in vivo activity with its MW and AP, this work could pave the way for future studies in the field.
  5. Pang B, Lam SS, Shen XJ, Cao XF, Liu SJ, Yuan TQ, et al.
    ChemSusChem, 2020 Sep 07;13(17):4446-4454.
    PMID: 32118355 DOI: 10.1002/cssc.202000299
    The valorization of lignin to replace phenol is significant in the production of phenolic resins. However, a great challenge is to produce lignin-based resin (LR) with a suitable viscosity and high substitution rate of lignin to phenol. In this study, LRs were produced using hardwood technical lignin derived from the pulping industry. Structural analysis of the LRs indicated that the unsubstituted para and ortho carbon atoms of the aromatic ring influenced the curing temperature and activation energy of the resins. The curing kinetics and thermal decomposition study implied that urea and methylene groups in cured LRs were significant factors that affected the thermal stability negatively. The prepared LRs showed desirable features if used as adhesives to make plywood. This is the first approach in which a substitution rate of up to 65 % is achieved for low-reactive-site hardwood lignin, which provides a solution to the challenge of the simultaneous realization of the high addition of lignin and the adaptive viscosity of resins.
  6. Wan Mahari WA, Azwar E, Li Y, Wang Y, Peng W, Ma NL, et al.
    Sci Total Environ, 2020 Nov 10;742:140681.
    PMID: 33167298 DOI: 10.1016/j.scitotenv.2020.140681
    The deforestation and burning of the Amazon and other rainforests is having a cascade of effects on global climate, biodiversity, human health and local and regional socioeconomics. This challenging situation demands a sustainable exploitation of the region's resources in accordance with the United Nations (UNs) Sustainable Development Goals (SDGs) in order to meet Good Environmental Status and reduce poverty. The management of forests sustainability spans across at least eight of the 17 UN SDGs mainly to combat desertification, halt biodiversity loss, and reverse land degradation. Significant changes are needed if we are to sustain the world's rainforests and thereby the global climate and biodiversity. These measures and mitigations are of global responsibility requiring both developed and developing nations such as the United States, EU, and China to change their policies and stand regarding their high demand for meat and hardwood. When possible, non-profit tree-planting internet browsers should be implemented by governments and institutions. So far, there is a lack of active use of the UN SDGs and the countries must therefore need to fully adopt the UN SDGs in order to help the situation. One way to enforce this could be through imposing economic penalties to governments and national institutions that do not adhere to for example publishing open access of data and other important information relevant for the mission of the UN SDGs.
  7. Peng W, Ma NL, Zhang D, Zhou Q, Yue X, Khoo SC, et al.
    Environ Res, 2020 12;191:110046.
    PMID: 32841638 DOI: 10.1016/j.envres.2020.110046
    Locusts differ from ordinary grasshoppers in their ability to swarm over long distances and are among the oldest migratory pests. The ecology and biology of locusts make them among the most devastating pests worldwide and hence the calls for actions to prevent the next outbreaks. The most destructive of all locust species is the desert locust (Schistocerca gregaria). Here, we review the current locust epidemic 2020 outbreak and its causes and prevention including the green technologies that may provide a reference for future directions of locust control and food security. Massive locust outbreaks threaten the terrestrial environments and crop production in around 100 countries of which Ethiopia, Somalia and Kenya are the most affected. Six large locust outbreaks are reported for the period from 1912 to 1989 all being closely related to long-term droughts and warm winters coupled with occurrence of high precipitation in spring and summer. The outbreaks in East Africa, India and Pakistan are the most pronounced with locusts migrating more than 150 km/day during which the locusts consume food equivalent to their own body weight on a daily basis. The plague heavily affects the agricultural sectors, which is the foundation of national economies and social stability. Global warming is likely the main cause of locust plague outbreak in recent decades driving egg spawning of up to 2-400,000 eggs per square meter. Biological control techniques such as microorganisms, insects and birds help to reduce the outbreaks while reducing ecosystem and agricultural impacts. In addition, green technologies such as light and sound stimulation seem to work, however, these are challenging and need further technological development incorporating remote sensing and modelling before they are applicable on large-scales. According to the Food and Agriculture Organization (FAO) of the United Nations, the 2020 locust outbreak is the worst in 70 years probably triggered by climate change, hurricanes and heavy rain and has affected a total of 70,000 ha in Somalia and Ethiopia. There is a need for shifting towards soybean, rape, and watermelon which seems to help to prevent locust outbreaks and obtain food security. Furthermore, locusts have a very high protein content and is an excellent protein source for meat production and as an alternative human protein source, which should be used to mitigate food security. In addition, forestation of arable land improves local climate conditions towards less precipitation and lower temperatures while simultaneously attracting a larger number of birds thereby increasing the locust predation rates.
  8. Xia C, Lam SS, Sonne C
    Science, 2021 03 19;371(6535):1214.
    PMID: 33737479 DOI: 10.1126/science.abh3100
  9. Xia C, Lam SS, Sonne C
    Science, 2020 Oct 30;370(6516):539.
    PMID: 33122375 DOI: 10.1126/science.abf0461
  10. Foong SY, Ma NL, Lam SS, Peng W, Low F, Lee BHK, et al.
    J Hazard Mater, 2020 Dec 05;400:123006.
    PMID: 32947729 DOI: 10.1016/j.jhazmat.2020.123006
    Pollution with pesticides is a widespread global problem and biomonitoring of the environment and human populations is necessary to assess potential harmful biological effects. One of the pesticides that are showing up in vegetables and fruit is chlorpyrifos (CPS). CPS is a nerve-poisoning organophosphorus insecticide, which is in up to 1/3 of all conventionally produced citrus fruits. Our review shows that CPS is a hazardous material that poses risks to human health and also pollutes the environment. There is numerous risk assessment of CPS reported, however, the assessment is easily affected by factors such as climate change, exposure period and CPS concentration. Therefore, rigorous update of the hazardous level of CPS is needed to determine the threshold level safe for humans and animals. There is a need for remediation using for example photoreactive nanoparticle methods and microbial degeneration possessing high degradation efficiency (73-97%). In addition, stringent biomonitoring of food, environment and human exposure should occur to avoid exposure to chemicals via citrus fruits and vegetables. This is necessary to assess health risks and socioeconomic impacts which also require collaboration between private and public sectors to facilitate the growth, sale and manufacturing of biopesticides.
  11. Lam SS, Foong SY, Lee BHK, Low F, Alstrup AKO, Ok YS, et al.
    Sci Total Environ, 2021 Jul 01;776:146003.
    PMID: 33647650 DOI: 10.1016/j.scitotenv.2021.146003
    Global warming is reducing the Arctic sea-ice and causing energetic stress to marine key predatory species such as polar bears and narwhals contributing to the ongoing pollution already threatening the biodiversity and indigenous people of the vulnerable region. Now, the opening of the Arctic gateway and in particular the increase in shipping activities causes further stress to marine mammals in the region. These shipping activities are foreseen to happen in the Northwest and Northeast Passage, Northern Sea Route and Transpolar Sea Route in the Arctic Ocean, which could be yet another step towards a crucial tipping point destabilizing global climate, including weathering systems and sea-level rise. This calls for international governance through the establishment of Arctic International National Parks and more Marine Protected Areas through the Arctic Council and UN's Law of the Sea to ensure sustainable use of the Arctic Ocean and adjacent waters.
  12. Ge S, Ma NL, Jiang S, Ok YS, Lam SS, Li C, et al.
    ACS Appl Mater Interfaces, 2020 Jul 08;12(27):30824-30832.
    PMID: 32544314 DOI: 10.1021/acsami.0c07448
    We used an innovative approach involving hot pressing, low energy consumption, and no adhesive to transform bamboo biomass into a natural sustainable fiber-based biocomposite for structural and furniture applications. Analyses showed strong internal bonding through mechanical "nail-like" nano substances, hydrogen, and ester and ether bonds. The biocomposite encompasses a 10-fold increase in internal bonding strength with improved water resistance, fire safety, and environmentally friendly properties as compared to existing furniture materials using hazardous formaldehyde-based adhesives. As compared to natural bamboo material, this new biocomposite has improved fire and water resistance, while there is no need for toxic adhesives (mostly made from formaldehyde-based resin), which eases the concern of harmful formaldehyde-based VOC emission and ensures better indoor air quality. This surpasses existing structural and furniture materials made by synthetic adhesives. Interestingly, our approach can 100% convert discarded bamboo biomass into this biocomposite, which represents a potentially cost reduction alternative with high revenue. The underlying fragment riveting and cell collapse binding are obviously a new technology approach that offers an economically and sustainable high-performance biocomposite that provides solutions to structural and furniture materials bound with synthetic adhesives.
  13. Lam SS, Chew KW, Show PL, Ma NL, Ok YS, Peng W, et al.
    Environ Res, 2020 11;190:109966.
    PMID: 32829186 DOI: 10.1016/j.envres.2020.109966
    Two of the world most endangered marine and terrestrial species are at the brink of extinction. The vaquita (Phocoena sinus) is the smallest existing cetacean and the population has declined to barely 22 individuals now remaining in Mexico's Gulf of California. With the ongoing decline, it is likely to go extinct within few years. The primary threat to this species has been mortality as a result of by-catch from gillnet fishing as well as environmental toxic chemicals and disturbance. This has called for the need to establish a National Park within the Gulf of California to expand essential habitat and provide the critical ecosystem protection for vaquita to thrive and multiply, given that proper conservation enforcement and management of the park are accomplished. In the terrestrial environment, the cheetah (Acinonyx jubatus) is reduced to a low number worldwide with the Iran subpopulation currently listed as Critically Endangered and the Indian subpopulation already extinct. There is a need for conservation efforts due to habitat loss, but also an indication of the conspicuous threat of illegal trade and trafficking from Africa and Arab countries in the Middle East. Funds have also been set up to provide refuges for the cheetah by working directly with farmers and landowners, which is a critical movement in adaptive management. These are the potential options for the preservation and possibly the expansion of the overall vaquita and cheetah populations.
  14. Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, et al.
    J Hazard Mater, 2021 02 05;403:123658.
    PMID: 33264867 DOI: 10.1016/j.jhazmat.2020.123658
    There is a global need to use plants to restore the ecological environment. There is no systematic review of phytoremediation mechanisms and the parameters for environmental pollution. Here, we review this situation and describe the purification rate of different plants for different pollutants, as well as methods to improve the purification rate of plants. This is needed to promote the use of plants to restore the ecosystems and the environment. We found that plants mainly use their own metabolism including the interaction with microorganisms to repair their ecological environment. In the process of remediation, the purification factors of plants are affected by many conditions such as light intensity, stomatal conductance, temperature and microbial species. In addition the efficiency of phytoremediation is depending on the plants species-specific metabolism including air absorption and photosynthesis, diversity of soil microorganisms and heavy metal uptake. Although the use of nanomaterials and compost promote the restoration of plants to the environment, a high dose may have negative impacts on the plants. In order to improve the practicability of the phytoremediation on environmental restoration, further research is needed to study the effects of different kinds of catalysts on the efficiency of phytoremediation. Thus, the present review provides a recent update for development and applications of phytoremediation in different environments including air, water, and soil.
  15. Lam SS, Waugh C, Peng W, Sonne C
    Science, 2020 02 14;367(6479):750.
    PMID: 32054755 DOI: 10.1126/science.aba8372
  16. Peng W, Lam SS, Sonne C
    Science, 2020 01 17;367(6475):257-258.
    PMID: 31949072 DOI: 10.1126/science.aba5642
  17. Lam SS, Ma NL, Peng W, Sonne C
    Science, 2020 May 29;368(6494):958.
    PMID: 32467384 DOI: 10.1126/science.abc2202
  18. Xia C, Lam SS, Zhong H, Fabbri E, Sonne C
    Science, 2022 Nov 25;378(6622):842.
    PMID: 36423283 DOI: 10.1126/science.ade9069
  19. Li Z, Yang Y, Chen X, He Y, Bolan N, Rinklebe J, et al.
    Chemosphere, 2023 Feb;313:137637.
    PMID: 36572363 DOI: 10.1016/j.chemosphere.2022.137637
    Microplastics are among the major contaminations in terrestrial and marine environments worldwide. These persistent organic contaminants composed of tiny particles are of concern due to their potential hazards to ecosystem and human health. Microplastics accumulates in the ocean and in terrestrial ecosystems, exerting effects on living organisms including microbiomes, fish and plants. While the accumulation and fate of microplastics in marine ecosystems is thoroughly studied, the distribution and biological effects in terrestrial soil call for more research. Here, we review the sources of microplastics and its effects on soil physical and chemical properties, including water holding capacity, bulk density, pH value as well as the potential effects to microorganisms and animals. In addition, we discuss the effects of microplastics in combination with other toxic environmental contaminants including heavy metals and antibiotics on plant growth and physiology, as well as human health and possible degradation and remediation methods. This reflect is an urgent need for monitoring projects that assess the toxicity of microplastics in soil and plants in various soil environments. The prospect of these future research activities should prioritize microplastics in agro-ecosystems, focusing on microbial degradation for remediation purposes of microplastics in the environment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links