Displaying publications 21 - 40 of 88 in total

Abstract:
Sort:
  1. Liong MT, Dunshea FR, Shah NP
    Br J Nutr, 2007 Oct;98(4):736-44.
    PMID: 17490507
    The aim of this study was to evaluate the effect of a synbiotic containing Lactobacillus acidophilus ATCC 4962, fructooligosaccharide, inulin and mannitol on plasma lipid profiles and erythrocyte membrane properties in hypercholesterolaemic pigs on high- and low-fat diets. Twenty-four white male Landrace pigs were randomly allocated to four treatment groups for 8 weeks (n 6). Treatment factors were the supplementation of synbiotic (with and without) and dietary fat (5 and 15 %). The supplementation of synbiotic reduced plasma total cholesterol (P = 0.001), TAG (P = 0.002) and LDL-cholesterol (P = 0.045) for both dietary fats. A higher concentration of esterified-cholesterol in HDL of pigs supplemented with synbiotic than the control regardless of dietary fat (P = 0.036) indicated that cholesterol was reduced in the form of cholesteryl esters. Reduced concentration of cholesteryl esters (P < 0.001) and increased concentration of TAG (P = 0.042) in LDL of pigs on synbiotic suggested that LDL-cholesterol was reduced via the hydrolysis of smaller and denser LDL particles. The erythrocytes of pigs without any synbiotic showed more prevalence of spur cells than those given the synbiotic, as supported by the higher cholesterol: phospholipid ratio in erythrocytes (P = 0.001). Also, membrane fluidity and rigidity were improved as supported by the decreased fluorescence anisotropies in the Hb-free erythrocyte membrane of pigs given synbiotic (P < 0.001). The administration of the synbiotic reduced plasma TAG, total cholesterol and LDL-cholesterol in hypercholesterolaemic pigs, possibly in the form of cholesteryl esters, via the interrelated pathways of lipid transporters (VLDL, LDL and HDL). The synbiotic also reduced deformation of erythrocytes via improved membrane fluidity and permeability.
  2. Altadill T, Espadaler-Mazo J, Liong MT
    Microorganisms, 2021 Mar 04;9(3).
    PMID: 33806508 DOI: 10.3390/microorganisms9030528
    We previously reported on the effects of Lactoplantibacillus plantarum DR7 on reducing Upper Respiratory Tract Infections (URTI) symptoms' score and frequency in 109 adults upon a 12-week consumption at 109 colony-forming units (CFU)/day, but several limitations were detected in the publication. Thus, the present study re-analyzed some data with the aim to address some of these weaknesses, and presents new data on duration of URTI and consumption of URTI-associated medication, as compared to the placebo. Our re-analyses found probiotic administration significantly reduced the proportion of patient days of URTI and of fever (all p < 0.05). Recent history of URTI was a prevalent co-factor in affecting duration of URTI symptoms and fever, while other demographic and clinical factors had no influence. Exploratory analyses suggested probiotic had an earlier benefit in patients without a recent history of URTI compared to those with a recent history of URTI. Therefore, recent history of infections could have a modulatory effect on probiotic efficacy. Average number of months with reported use of URTI-related medication was 3.4-times lower in the probiotic group as compared to placebo (p = 0.016) during the intervention. Taken together, our present new data further support previous findings that DR7 probiotic had a beneficial effect on URTI.
  3. Liu YW, Liong MT, Tsai YC
    J Microbiol, 2018 Sep;56(9):601-613.
    PMID: 30141154 DOI: 10.1007/s12275-018-8079-2
    Lactobacillus plantarum is a non-gas-producing lactic acid bacterium that is generally regarded as safe (GRAS) with Qualified Presumption of Safety (QPS) status. Although traditionally used for dairy, meat and vegetable fermentation, L. plantarum is gaining increasing significance as a probiotic. With the newly acclaimed gut-heart-brain axis, strains of L. plantarum have proven to be a valuable species for the development of probiotics, with various beneficial effects on gut health, metabolic disorders and brain health. In this review, the classification and taxonomy, and the relation of these with safety aspects are introduced. Characteristics of L. plantarum to fulfill the criteria as a probiotic are discussed. Emphasis are also given to the beneficial functions of L. plantarum in gut disorders such as inflammatory bowel diseases, metabolic syndromes, dyslipidemia, hypercholesteromia, obesity, and diabetes, and brain health aspects involving psychological disorders.
  4. Yap PG, Choi SB, Liong MT
    Appl Biochem Biotechnol, 2020 May;191(1):226-244.
    PMID: 32125649 DOI: 10.1007/s12010-020-03265-2
    This study aimed to evaluate the effect of probiotic administration on obese and ageing models. Sprague Dawley rats were subjected to high-fat diet (HFD) and injected with D-galactose to induce premature ageing. Upon 12 weeks of treatment, the faecal samples were collected and subjected to gas chromatography-mass spectrophotometry (GC-MS) analysis for metabolite detection. The sparse partial least squares discriminant analysis (sPLS-DA) showed a distinct clustering pattern of metabolite profile in the aged and obese rats administered with probiotics Lactobacillus plantarum DR7 and L. reuteri 8513d, particularly with a significantly higher concentration of allantoin. Molecular docking simulation showed that allantoin promoted the phosphorylation (activation) of adenosine monophosphate-activated kinase (AMPK) by lowering the substrate free energy of binding (FEB) and induced the formation of an additional hydrogen bond between Val184 and the substrate AMP. Allantoin also suppressed cholesterol biosynthesis by either inducing enzyme inhibition, occupying or blocking the putative binding site to result in non-spontaneous substrate binding, as in the cases of 3-hydroxy-methylglutaryl-coA reductase (HMGCR), mevalonate kinase (MVK) and lanosterol demethylase (LDM) where positive FEBs were reported. These results demonstrated the potential of allantoin to alleviate age-related hypercholesterolaemia by upregulating AMPK and downregulating cholesterol biosynthesis via the mevalonate pathway and Bloch pathway.
  5. Fung WY, Liong MT, Yuen KH
    J Pharm Pharmacol, 2016 Feb;68(2):159-69.
    PMID: 26730452 DOI: 10.1111/jphp.12502
    OBJECTIVES: This study aimed to prepare Coenzyme Q10 (CoQ10) microparticles using electrospraying technology, and evaluate the in-vitro properties and in-vivo oral bioavailability.
    KEY FINDINGS: Electrospraying was successfully used to prepare CoQ10 to enhance its solubility and dissolution properties. In-vitro evaluation of the electrosprayed microparticles showed bioavailability-enhancing properties such as reduced crystallinity and particle size. The formulation was evaluated using dissolution study and in-vivo oral bioavailability using rat model. The dissolution study revealed enhanced dissolution properties of electrosprayed microparticles compared with physical mixture and raw material. The absorption profiles showed increasing mean plasma levels CoQ10 in the following order: raw material < physical mixture < electrosprayed microparticles.
    CONCLUSION: Based on the findings in this study, electrospraying is a highly prospective technology to produce functional nano- and micro-structures as delivery vehicles for drugs with poor oral bioavailability due to rate-limiting solubility.
  6. Choi SB, Lew LC, Hor KC, Liong MT
    Appl Biochem Biotechnol, 2014 May;173(1):129-42.
    PMID: 24648139 DOI: 10.1007/s12010-014-0822-5
    This study aimed at optimizing the production of hyaluronic acid by Lactobacillus acidophilus FTDC 1231 using response surface methodology and evaluating the effects of divalent metal ions along the production pathway using molecular docking. Among different divalent metal ions that were screened, only iron (II) sulphate and copper (II) sulphate significantly (P 
  7. Lew LC, Choi SB, Tan PL, Liong MT
    J Appl Microbiol, 2014 Mar;116(3):644-53.
    PMID: 24267975 DOI: 10.1111/jam.12399
    The study aimed to evaluate the effects of Mn(2+) and Mg(2+) on lactic acid production using response surface methodology and to further study their effects on interactions between the enzymes and substrates along the hexose monophosphate pathway using a molecular modelling approach.
  8. Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT
    Ultrason Sonochem, 2012 Jul;19(4):890-900.
    PMID: 22305107 DOI: 10.1016/j.ultsonch.2012.01.003
    This study aimed to evaluate the effects of ultrasound on Lactobacillus fermentum BT 8633 in parent and subsequent passages based on their growth and isoflavone bioconversion activities in biotin-supplemented soymilk. The treated cells were also assessed for impact of ultrasound on probiotic properties. The growth of ultrasonicated parent cells increased (P<0.05) by 3.23-9.14% compared to that of the control during fermentation in biotin-soymilk. This was also associated with enhanced intracellular and extracellular (8.4-17.0% and 16.7-49.2%, respectively; P<0.05) β-glucosidase specific activity, leading to increased bioconversion of isoflavones glucosides to aglycones during fermentation in biotin-soymilk compared to that of the control (P<0.05). Such traits may be credited to the reversible permeabilized membrane of ultrasonicated parent cells that have facilitated the transport of molecules across the membrane. The growing characteristics of first, second and third passage of treated cells in biotin-soymilk were similar (P>0.05) to that of the control, where their growth, enzyme and isoflavone bioconversion activities (P>0.05) were comparable. This may be attributed to the temporary permeabilization in the membrane of treated cells. Ultrasound affected probiotic properties of parent L. fermentum, by reducing tolerance ability towards acid (pH 2) and bile; lowering inhibitory activities against selected pathogens and reducing adhesion ability compared to that of the control (P<0.05). The first, second and third passage of treated cells did not exhibit such traits, with the exception of their bile tolerance ability which was inherited to the first passage (P<0.05). Our results suggested that ultrasound could be used to increase bioactivity of biotin-soymilk via fermentation by probiotic L. fermentum FTDC 8633 for the development of functional food.
  9. Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT
    J Microbiol Biotechnol, 2012 Jul;22(7):947-59.
    PMID: 22580314
    This study was aimed at an evaluation of the potential inheritance of electroporation effects on Lactobacillus fermentum BT 8219 through to three subsequent subcultures, based on their growth, isoflavone bioconversion activities, and probiotic properties, in biotin-supplemented soymilk. Electroporation was seen to cause cell death immediately after treatment, followed by higher growth than the control during fermentation in biotin-soymilk (P<0.05). This was associated with enhanced intracellular and extracellular beta-glucosidase specific activity, leading to increased bioconversion of isoflavone glucosides to aglycones (P<0.05). The growing characteristics, enzyme, and isoflavone bioconversion activities of the first, second, and third subcultures of treated cells in biotin-soymilk were similar to the control (P>0.05). Electroporation affected the probiotic properties of parent L. fermentum BT 8219, by reducing its tolerance towards acid (pH 2) and bile, lowering its inhibitory activities against selected pathogens, and reducing its ability for adhesion, when compared with the control (P<0.05). The first, second, and third subcultures of the treated cells showed comparable traits with that of the control (P>0.05), with the exception of their bile tolerance ability, which was inherited to the treated cells of the first and second subcultures (P<0.05). Our results suggest that electroporation could be used to increase the bioactivity of biotin-soymilk via fermentation with probiotic L. fermentum BT 8219, with a view towards the development of functional foods.
  10. Lye HS, Karim AA, Rusul G, Liong MT
    J Dairy Sci, 2011 Oct;94(10):4820-30.
    PMID: 21943733 DOI: 10.3168/jds.2011-4426
    The objective of the present study was to evaluate the effect of electroporation on the membrane properties of lactobacilli and their ability to remove cholesterol in vitro. The growth of lactobacilli cells treated at 7.5 kV/cm for 4 ms was increased by 0.89 to 1.96 log(10) cfu/mL upon fermentation at 37 °C for 20 h, the increase being attributed to the reversible and transient formation of pores and defragmentation of clumped cells. In addition, an increase of cholesterol assimilation as high as 127.2% was observed for most cells electroporated at a field strength of 7.5 kV/cm for 3.5 ms compared with a lower field strength of 2.5 kV/cm. Electroporation also increased the incorporation of cholesterol into the cellular membrane, as shown by an increased cholesterol:phospholipids ratio (50.0-59.6%) upon treatment at 7.5 kV/cm compared with treatment at 2.5 kV/cm. Saturation of cholesterol was observed in different regions of the membrane bilayer such as upper phospholipids, apolar tail, and polar heads, as indicated by fluorescence anisotropy using 3 fluorescent probes. Electroporation could be a useful technique to increase the ability of lactobacilli to remove cholesterol for possible use as cholesterol-lowering adjuncts in the future.
  11. Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT
    Int J Food Sci Nutr, 2012 Aug;63(5):580-96.
    PMID: 22149599 DOI: 10.3109/09637486.2011.641940
    This study aimed at utilizing electroporation to further enhance the growth of lactobacilli and their isoflavone bioconversion activities in biotin-supplemented soymilk. Strains of lactobacilli were treated with different pulsed electric field strength (2.5, 5.0 and 7.5 kV/cm) for 3, 3.5 and 4 ms prior to inoculation and fermentation in biotin-soymilk at 37°C for 24 h. Electroporation triggered structural changes within the cellular membrane of lactobacilli that caused lipid peroxidation (p 9 log CFU/ml after fermentation in biotin-soymilk (p 
  12. Lye HS, Khoo BY, Karim AA, Rusul G, Liong MT
    Ultrason Sonochem, 2012 Jul;19(4):901-8.
    PMID: 22265020 DOI: 10.1016/j.ultsonch.2011.12.018
    The aim of this study was to evaluate the effect of ultrasound on the intestinal adherence ability, cell growth, and cholesterol removal ability of parent cells and subsequent passages of Lactobacillus fermentum FTDC 1311. Ultrasound significantly decreased the intestinal adherence ability of treated parent cells compared to that of the control by 11.32% (P<0.05), which may be due to the protein denaturation upon local heating. Growth of treated parent cells also decreased by 4.45% (P<0.05) immediately upon ultrasound (0-4h) and showed an increase (P<0.05) in the viability by 2.18-2.34% during the later stage of fermentation (12-20 h) compared to that of the control. In addition, an increase (P<0.05) in assimilation of cholesterol (>9.74%) was also observed for treated parent cells compared to that of the control, accompanied by increased (P<0.05) incorporation of cholesterol into the cellular membrane. This was supported by the increased ratio of membrane cholesterol:phospholipids (C:P), saturation of cholesterol in the apolar regions, upper phospholipids regions, and polar regions of membrane phospholipids of parent cells compared to that of the control (P<0.05). However, such traits were not inherited by the subsequent passages of treated cells (first, second, and third passages). Our data suggested that ultrasound treatment could be used to improve cholesterol removal ability of parent cells without inducing permanent damage/defects on treated cells of subsequent passages.
  13. Kuan CY, Yee-Fung W, Yuen KH, Liong MT
    Crit Rev Food Sci Nutr, 2012;52(1):55-71.
    PMID: 21991990 DOI: 10.1080/10408398.2010.494259
    Nanotechnology is seeing higher propensity in various industries, including food and bioactives. New nanomaterials are constantly being developed from both natural biodegradable polymers of plant and animal origins such as polysaccharides and derivatives, peptides and proteins, lipids and fats, and biocompatible synthetic biopolyester polymers such as polylactic acid (PLA), polyhydroxyalkonoates (PHA), and polycaprolactone (PCL). Applications in food industries include molecular synthesis of new functional food compounds, innovative food packaging, food safety, and security monitoring. The relevance of bioactives includes targeted delivery systems with improved bioavailability using nanostructure vehicles such as association colloids, lipid based nanoencapsulator, nanoemulsions, biopolymeric nanoparticles, nanolaminates, and nanofibers. The extensive use of nanotechnology has led to the need for parallel safety assessment and regulations to protect public health and adverse effects to the environment. This review covers the use of biopolymers in the production of nanomaterials and the propensity of nanotechnology in food and bioactives. The exposure routes of nanoparticles, safety challenges, and measures undertaken to ensure optimal benefits that outweigh detriments are also discussed.
  14. Lye HS, Alias KA, Rusul G, Liong MT
    Ultrason Sonochem, 2012 May;19(3):632-41.
    PMID: 21907608 DOI: 10.1016/j.ultsonch.2011.08.004
    This study aimed to evaluate the effect of ultrasound treatment on the cholesterol removing ability of lactobacilli. Viability of lactobacilli cells was significantly increased (P < 0.05) immediately after treatment, but higher intensity of 100 W and longer duration of 3 min was detrimental on cellular viability (P < 0.05). This was attributed to the disruption of membrane lipid bilayer, cell lysis and membrane lipid peroxidation upon ultrasound treatment at higher intensity and duration. Nevertheless, the effect of ultrasound on membrane properties was reversible, as the viability of ultrasound-treated lactobacilli was increased (P < 0.05) after fermentation at 37 °C for 20 h. The removal of cholesterol by ultrasound-treated lactobacilli via assimilation and incorporation of cholesterol into the cellular membrane also increased significantly (P < 0.05) upon treatment, as observed from the increased ratio of membrane C:P. Results from fluorescence anisotropies showed that most of the incorporated cholesterol was saturated in the regions of phospholipids tails, upper phospholipids, and polar heads of the membrane bilayer.
  15. Lew LC, Bhat R, Easa AM, Liong MT
    J Sci Food Agric, 2011 Jun;91(8):1406-15.
    PMID: 21384373 DOI: 10.1002/jsfa.4325
    Probiotics are live micro-organisms that exert beneficial effects on their host. A high survival rate during gastrointestinal transit and storage is often desirable. The main aim of this study was to develop protective carriers for probiotics via the use of enzymatically crosslinked soy protein isolate incorporated with agrowastes such as banana peel, banana pulp, cempedak rind and cocoa rind.
  16. Ooi LG, Ahmad R, Yuen KH, Liong MT
    J Dairy Sci, 2010 Nov;93(11):5048-58.
    PMID: 20965319 DOI: 10.3168/jds.2010-3311
    This randomized, double-blind, placebo-controlled, and parallel-designed study was conducted to investigate the effect of a synbiotic product containing Lactobacillus gasseri [corrected] CHO-220 and inulin on lipid profiles of hypercholesterolemic men and women. Thirty-two hypercholesterolemic men and women with initial mean plasma cholesterol levels of 5.7±0.32 mmol/L were recruited for the 12-wk study. The subjects were randomly allocated to 2 groups; namely the treatment group (synbiotic product) and the control group (placebo), and each received 4 capsules of synbiotic or placebo daily. Our results showed that the mean body weight, energy, and nutrient intake of the subjects did not differ between the 2 groups over the study period. The supplementation of synbiotic reduced plasma total cholesterol and low-density lipoprotein (LDL)-cholesterol by 7.84 and 9.27%, respectively, compared with the control over 12 wk. Lipoproteins were subsequently subfractionated and characterized. The synbiotic supplementation resulted in a lower concentration of triglycerides in the very low, intermediate, low, and high-density lipoprotein particles compared with the control over 12 wk. The concentration of triglycerides in lipoproteins is positively correlated with an increased risk of atherosclerosis. Our results showed that the synbiotic might exhibit an atheropreventive characteristic. Cholesteryl ester (CE) in the high-density lipoprotein particles of the synbiotic group was also higher compared with the control, indicating greater transport of cholesterol in the form of CE to the liver for hydrolysis. This may have led to the reduced plasma total cholesterol level of the synbiotic group. The supplementation of synbiotic also reduced the concentration of CE in the LDL particles compared with the control, leading to the formation of smaller and denser particles that are more easily removed from blood. This supported the reduced LDL-cholesterol level of the synbiotic group compared with the control. Our present study showed that the synbiotic product improved plasma total- and LDL-cholesterol levels by modifying the interconnected pathways of lipid transporters. In addition, although Lactobacillus gasseri [corrected] CHO-220 could deconjugate bile, our results showed a statistically insignificant difference in the levels of conjugated, deconjugated, primary, and secondary bile acids between the synbiotic and control groups over 12 wk, indicating safety from bile-related toxicity.
  17. Teh SS, Ahmad R, Wan-Abdullah WN, Liong MT
    J Food Sci, 2010 Apr;75(3):M155-64.
    PMID: 20492305 DOI: 10.1111/j.1750-3841.2010.01538.x
    Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. The objective of this study was to evaluate the effects of agrowastes from durian (Durio zibethinus), cempedak (Artocarpus champeden), and mangosteen (Garcinia mangostana) as immobilizers for lactobacilli grown in soymilk. Rinds from the agrowastes were separated from the skin, dried, and ground (150 microm) to form powders and used as immobilizers. Scanning electron microscopy revealed that lactobacilli cells were attached and bound to the surface of the immobilizers. Immobilized cells of Lactobacillus acidophilus FTDC 1331, L. acidophilus FTDC 2631, L. acidophilus FTDC 2333, L. acidophilus FTDC 1733, and L. bulgaricus FTCC 0411 were inoculated into soymilk, stored at room temperature (25 degrees C) and growth properties were evaluated over 168 h. Soymilk inoculated with nonimmobilized cells was used as the control. Utilization of substrates, concentrations of lactic and acetic acids, and changes in pH were evaluated in soymilk over 186 h. Immobilized lactobacilli showed significantly better growth (P < 0.05) compared to the control, accompanied by higher production of lactic and acetic acids in soymilk. Soymilk containing immobilized cells showed greater reduction of soy sugars such as stachyose, raffinose, sucrose, fructose, and glucose compared to the control (P < 0.05).
  18. Ooi LG, Bhat R, Rosma A, Yuen KH, Liong MT
    J Dairy Sci, 2010 Oct;93(10):4535-44.
    PMID: 20854987 DOI: 10.3168/jds.2010-3330
    This randomized, double-blind, placebo-controlled, and parallel-design study was conducted to investigate the effect of a synbiotic product containing Lactobacillus gasseri [corrected] CHO-220 and inulin on the irregularity in shape of red blood cells (RBC) in hypercholesterolemic subjects. The subjects (n=32) were randomly allocated to 2 groups, a treatment group (synbiotic product) and a control group (placebo), and received 4 capsules of either synbiotic or placebo daily for 12 wk. Morphological representation via scanning electron microscopy showed that the occurrence of spur RBC was improved upon supplementation of the synbiotic. In addition, the supplementation of synbiotic reduced the cholesterol:phospholipids ratio of the RBC membrane by 47.02% over 12 wk, whereas the control showed insignificant changes. Our present study also showed that supplementation of the synbiotic reduced the concentration of saturated fatty acids (SFA), increased unsaturated fatty acids (UFA), and increased the ratio of UFA:SFA over 12 wk, whereas the control showed inconspicuous changes. The alteration of RBC membrane was assessed using fluorescence anisotropy (FAn) and fluorescence probes with different affinities for varying sections of the membrane phospholipid bilayer. A noticeable decrease in FAn of three fluorescent probes was observed in the synbiotic group compared with the control over 12 wk, indicative of increased membrane fluidity and reduced cholesterol enrichment in the RBC membrane.
  19. Teh SS, Ahmad R, Wan-Abdullah WN, Liong MT
    J Agric Food Chem, 2009 Nov 11;57(21):10187-98.
    PMID: 19821558 DOI: 10.1021/jf902003a
    The objective of this study was to evaluate agricultural wastes as immobilizers for probiotics in liquid foods, such as soy milk. Probiotic strains were initially evaluated for acid and bile tolerance and the ability to produce alpha-galactosidase. Rinds of durian, mangosteen, and jackfruit were dried, ground, and sterilized prior to immobilization of selected strains ( Lactobacillus acidophilus FTDC 1331, L. acidophilus FTDC 2631, L. acidophilus FTDC 2333, L. acidophilus FTDC 1733, and Lactobacillus bulgaricus FTCC 0411). Immobilized cells were inoculated into soy milk, and growth properties were evaluated over 168 h at 37 degrees C. Soy milk containing free cells without agrowastes was used as the control. Immobilized probiotics showed increased growth, greater reduction of stachyose, sucrose, and glucose, higher production of lactic and acetic acids, and lower pH in soy milk compared to the control. The results illustrated that agrowastes could be used for the immobilization of probiotics with enhanced growth, utilization of substrates, and production of organic acids.
  20. Ewe JA, Wan-Abdullah WN, Liong MT
    Int J Food Sci Nutr, 2010 Feb;61(1):87-107.
    PMID: 19961357 DOI: 10.3109/09637480903334163
    Ten strains of Lactobacillus were evaluated for their viability in soymilk. Lactobacillus acidophilus ATCC 314, L. acidophilus FTDC 8833, L. acidophilus FTDC 8633 and L. gasseri FTDC 8131 displayed higher viability in soymilk and were thus selected to be evaluated for viability and growth characteristics in soymilk supplemented with B-vitamins. Pour plate analyses showed that the supplementation of all B-vitamins studied promoted the growth of lactobacilli to a viable count exceeding 7 log CFU/ml. alpha-Galactosidase specific activity of lactobacilli as determined spectrophotometrically showed an increase upon supplementation of B-vitamins. High-performance liquid chromatography analyses revealed that this led to increased hydrolysis of soy oligosaccharides and subsequently higher utilization of simple sugars. Production of organic acids as determined via high-performance liquid chromatography also showed an increase, accompanied by a decrease in pH of soymilk. Additionally, the supplementation of B-vitamins also promoted the synthesis of riboflavin and folic acid by lactobacilli in soymilk. Our results indicated that B-vitamin-supplemented soymilk is a good proliferation medium for strains of lactobacilli.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links