Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Yamamoto T, Tsuda Y, Mori GM, Cruz MV, Shinmura Y, Wee AK, et al.
    Appl Plant Sci, 2016 Sep;4(9).
    PMID: 27672519 DOI: 10.3732/apps.1600042
    PREMISE OF THE STUDY: Twenty-seven nuclear microsatellite markers were developed for the mangrove fern, Acrostichum aureum (Pteridaceae), to investigate the genetic structure and demographic history of the only pantropical mangrove plant.

    METHODS AND RESULTS: Fifty-six A. aureum individuals from three populations were sampled and genotyped to characterize the 27 loci. The number of alleles and expected heterozygosity ranged from one to 15 and 0.000 to 0.893, respectively. Across the 26 polymorphic loci, the Malaysian population showed much higher levels of polymorphism compared to the other two populations in Guam and Brazil. Cross-amplification tests in the other two species from the genus determined that seven and six loci were amplifiable in A. danaeifolium and A. speciosum, respectively.

    CONCLUSIONS: The 26 polymorphic microsatellite markers will be useful for future studies investigating the genetic structure and demographic history of of A. aureum, which has the widest distributional range of all mangrove plants.

  2. Zaw MT, Emran NA, Ibrahim MY, Suleiman M, Awang Mohd TA, Yusuff AS, et al.
    J Microbiol Immunol Infect, 2019 Aug;52(4):563-570.
    PMID: 29428381 DOI: 10.1016/j.jmii.2018.01.003
    BACKGROUND: Cholera is an important health problem in Sabah, a Malaysian state in northern Borneo; however, Vibrio cholerae in Sabah have never been characterized. Since 2002, serogroup O1 strains having the traits of both classical and El Tor biotype, designated as atypical El Tor biotype, have been increasingly reported as the cause of cholera worldwide. These variants are believed to produce clinically more severe disease like classical strains.

    PURPOSE: The purpose of this study is to investigate the genetic diversity of V.cholerae in Sabah and whether V.cholerae in Sabah belong to atypical El Tor biotype.

    METHODS: ERIC-PCR, a DNA fingerprinting method for bacterial pathogens based on the enterobacterial repetitive intergenic consensus sequence, was used to study the genetic diversity of 65 clinical V.cholerae O1 isolates from 3 districts (Kudat, Beluran, Sandakan) in Sabah and one environmental isolate from coastal sea water in Kudat district. In addition, we studied the biotype-specific genetic traits in these isolates to establish their biotype.

    RESULTS: Different fingerprint patterns were seen in isolates from these three districts but one of the patterns was seen in more than one district. Clinical isolates and environmental isolate have different patterns. In addition, Sabah isolates harbor genetic traits specific to both classical biotype (ctxB-1, rstRCla) and El Tor biotype (rstRET, rstC, tcpAET, rtxC, VC2346).

    CONCLUSION: This study revealed that V.cholerae in Sabah were genetically diverse and were atypical El Tor strains. Fingerprint patterns of these isolates will be useful in tracing the origin of this pathogen in the future.

  3. Cabrera-Fuentes HA, Aragones J, Bernhagen J, Boening A, Boisvert WA, Bøtker HE, et al.
    Basic Res Cardiol, 2016 11;111(6):69.
    PMID: 27743118
    In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome.
  4. Merckx VS, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, Peijnenburg KT, et al.
    Nature, 2015 Aug 20;524(7565):347-50.
    PMID: 26266979 DOI: 10.1038/nature14949
    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links