SETTING: Asian regional cohort incorporating 16 pediatric HIV services across 6 countries.
METHODS: Data from PHIVA (aged 10-19 years) who received combination antiretroviral therapy 2007-2016 were used to analyze LTFU through (1) an International epidemiology Databases to Evaluate AIDS (IeDEA) method that determined LTFU as >90 days late for an estimated next scheduled appointment without returning to care and (2) the absence of patient-level data for >365 days before the last data transfer from clinic sites. Descriptive analyses and competing-risk survival and regression analyses were used to evaluate LTFU epidemiology and associated factors when analyzed using each method.
RESULTS: Of 3509 included PHIVA, 275 (7.8%) met IeDEA and 149 (4.3%) met 365-day absence LTFU criteria. Cumulative incidence of LTFU was 19.9% and 11.8% using IeDEA and 365-day absence criteria, respectively. Risk factors for LTFU across both criteria included the following: age at combination antiretroviral therapy initiation <5 years compared with age ≥5 years, rural clinic settings compared with urban clinic settings, and high viral loads compared with undetectable viral loads. Age 10-14 years compared with age 15-19 years was another risk factor identified using 365-day absence criteria but not IeDEA LTFU criteria.
CONCLUSIONS: Between 12% and 20% of PHIVA were determined LTFU with treatment fatigue and rural treatment settings consistent risk factors. Better tracking of adolescents is required to provide a definitive understanding of LTFU and optimize evidence-based models of care.
METHODS: Children enrolled in the TREAT Asia Pediatric HIV Observational Database were included if they started antiretroviral therapy (ART) on or after January 1st, 2008. Factors associated with severe recurrent bacterial pneumonia were assessed using competing-risk regression.
RESULTS: A total of 3,944 children were included in the analysis; 136 cases of severe recurrent bacterial pneumonia were reported at a rate of 6.5 [95% confidence interval (CI): 5.5-7.7] events per 1,000 patient-years. Clinical factors associated with severe recurrent bacterial pneumonia were younger age [adjusted subdistribution hazard ratio (aHR): 4.4 for <5 years versus ≥10 years, 95% CI: 2.2-8.4, P < 0.001], lower weight-for-age z-score (aHR: 1.5 for -2.0, 95% CI: 1.1-2.3, P = 0.024), pre-ART diagnosis of severe recurrent bacterial pneumonia (aHR: 4.0 versus no pre-ART diagnosis, 95% CI: 2.7-5.8, P < 0.001), past diagnosis of symptomatic lymphoid interstitial pneumonitis or chronic HIV-associated lung disease, including bronchiectasis (aHR: 4.8 versus no past diagnosis, 95% CI: 2.8-8.4, P < 0.001), low CD4% (aHR: 3.5 for <10% versus ≥25%, 95% CI: 1.9-6.4, P < 0.001) and detectable HIV viral load (aHR: 2.6 versus undetectable, 95% CI: 1.2-5.9, P = 0.018).
CONCLUSIONS: Children <10-years-old and those with low weight-for-age, a history of respiratory illness, low CD4% or poorly controlled HIV are likely to gain the greatest benefit from targeted prevention and treatment programs to reduce the burden of bacterial pneumonia in children living with HIV.
METHODS: CLHIV were considered to have lipid or glucose abnormalities if they had total cholesterol ≥200 mg/dL, high-density lipoprotein (HDL) ≤35 mg/dL, low-density lipoprotein (LDL) ≥100 mg/dL, triglycerides (TG) ≥110 mg/dL, or fasting glucose >110 mg/dL. Factors associated with lipid and glucose abnormalities were assessed by logistic regression.
RESULTS: Of 951 CLHIV, 52% were male with a median age of 8.0 (interquartile range [IQR] 5.0-12.0) years at ART start and 15.0 (IQR 12.0-18.0) years at their last clinic visit. 89% acquired HIV perinatally, and 30% had ever used protease inhibitors (PIs). Overall, 225 (24%) had hypercholesterolemia, 105 (27%) low HDL, 213 (58%) high LDL, 369 (54%) hypertriglyceridemia, and 130 (17%) hyperglycemia. Hypercholesterolemia was more likely among females (versus males, aOR 1.93, 95% CI 1.40-2.67). Current PIs use was associated with hypercholesterolemia (current use: aOR 1.54, 95% CI 1.09-2.20); low HDL (current use: aOR 3.16, 95% CI 1.94-5.15; prior use: aOR 10.55, 95% CI 2.53-43.95); hypertriglyceridemia (current use: aOR 3.90, 95% CI 2.65-5.74; prior use: aOR 2.89, 95% CI 1.31-6.39); high LDL (current use: aOR 1.74, 95% CI 1.09-2.76); and hyperglycemia (prior use: aOR 2.43, 95% CI 1.42-4.18).
CONCLUSION: More than half and one-fifth of CLHIV have dyslipidemia and hyperglycemia, respectively. Routine paediatric HIV care should include metabolic monitoring. The association between PIs use and dyslipidemia emphasizes the importance of rapidly transitioning to integrase inhibitor-containing regimens.