Displaying publications 21 - 40 of 42 in total

Abstract:
Sort:
  1. Charostad J, Rezaei Zadeh Rukerd M, Mahmoudvand S, Bashash D, Hashemi SMA, Nakhaie M, et al.
    Travel Med Infect Dis, 2023;55:102638.
    PMID: 37652253 DOI: 10.1016/j.tmaid.2023.102638
    Avian influenza viruses (AIVs) are globally challenging due to widespread circulation and high mortality rates. Highly pathogenic avian influenza (HPAI) strains like H5N1 have caused significant outbreaks in birds. Since 2003 to 14 July 2023, the World Health Organization (WHO) has documented 878 cases of HPAI H5N1 infection in humans and 458 (52.16%) fatalities in 23 countries. Recent outbreaks in wild birds, domestic birds, sea lions, minks, and etc., and the occurrence of genetic variations among HPAI H5N1 strains raise concerns about potential transmission and public health risks. This paper aims to provide a comprehensive overview of the current understanding and new insights into HPAI H5N1. It begins with an introduction to the significance of studying this virus and highlighting the need for updated knowledge. The origin and evaluation of HPAI H5N1 are examined, shedding light on its emergence, and spread across different geographic regions. The genome organization and structural biology of the H5N1 virus are explored, providing insights into its molecular composition and key structural features. This manuscript also delves into the phylogeny, evolution, mutational trends, reservoirs, and transmission routes of HPAI H5N1. The immune response against HPAI H5N1 and its implications for vaccine development are analyzed, along with an exploration of the pathogenesis and clinical manifestations of HPAI H5N1 in human cases. Furthermore, diagnostic tools and preventive and therapeutic strategies are discussed, highlighting the current approaches and potential future directions for better management of the potential pandemic.
  2. Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, Razavi M, Firoozinia M, Zandi K, et al.
    ScientificWorldJournal, 2014;2014:768323.
    PMID: 24526922 DOI: 10.1155/2014/768323
    Seaweed is one of the largest producers of biomass in marine environment and is a rich arsenal of active metabolites and functional ingredients with valuable beneficial health effects. Being a staple part of Asian cuisine, investigations on the crude extracts of Phaeophyceae or brown algae revealed marked antitumor activity, eliciting a variety of research to determine the active ingredients involved in this potential. The sulfated polysaccharide of fucoidan and carotenoid of fucoxanthin were found to be the most important active metabolites of brown algae as potential chemotherapeutic or chemopreventive agents. This review strives to provide detailed account of all current knowledge on the anticancer and antitumor activity of fucoidan and fucoxanthin as the two major metabolites isolated from brown algae.
  3. Shamsian S, Nabipour I, Mohebbi G, Baghban N, Zare M, Zandi K, et al.
    Microb Pathog, 2024 Jan;186:106486.
    PMID: 38056601 DOI: 10.1016/j.micpath.2023.106486
    In this study, we investigated the potential in vitro anti-HSV-1 activities of the Cassiopea andromeda jellyfish tentacle extract (TE) and its fractions, as well as computational work on the thymidine kinase (TK) inhibitory activity of the identified secondary metabolites. The LD50, secondary metabolite identification, preparative and analytical chromatography, and in silico TK assessment were performed using the Spearman-Karber, GC-MS, silica gel column chromatography, RP-HPLC, LC-MS, and docking methods, respectively. The antiviral activity of TE and the two purified compounds Ca2 and Ca7 against HSV-1 in Vero cells was evaluated by MTT and RT-PCR assays. The LD50 (IV, mouse) values of TE, Ca2, and Ca7 were 104.0 ± 4, 5120 ± 14, and 197.0 ± 7 (μg/kg), respectively. They exhibited extremely effective antiviral activity against HSV-1. The CC50 and MNTD of TE, Ca2, and Ca7 were (125, 62.5), (25, 12.5), and (50, 3.125) μg/ml, respectively. GC-MS analysis of the tentacle extract revealed seven structurally distinct chemical compositions. Four of the seven compounds had a steroid structure. According to the docking results, all compounds showed binding affinity to the active sites of both thymidine kinase chains. Among them, the steroid compound Pregn-5-ene-3,11-dione, 17,20:20,21 bis [methylenebis(oxy)]-, cyclic 3-(1,2-ethane diyl acetal) (Ca2) exhibited the highest affinity for both enzyme chains, surpassing that of standard acyclovir. In silico data confirmed the experimental results. We conclude that the oxosteroid Ca2 may act as a potent agent against HSV-1.
  4. Seyedi SS, Shukri M, Hassandarvish P, Oo A, Shankar EM, Abubakar S, et al.
    Sci Rep, 2016 Apr 13;6:24027.
    PMID: 27071308 DOI: 10.1038/srep24027
    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya infection in humans. Despite the widespread distribution of CHIKV, no antiviral medication or vaccine is available against this virus. Therefore, it is crucial to find an effective compound to combat CHIKV. We aimed to predict the possible interactions between non-structural protein 3 (nsP) of CHIKV as one of the most important viral elements in CHIKV intracellular replication and 3 potential flavonoids using a computational approach. The 3-dimensional structure of nsP3 was retrieved from the Protein Data Bank, prepared and, using AutoDock Vina, docked with baicalin, naringenin and quercetagetin as ligands. The first-rated ligand with the strongest binding affinity towards the targeted protein was determined based on the minimum binding energy. Further analysis was conducted to identify both the active site of the protein that reacts with the tested ligands and all of the existing intermolecular bonds. Compared to the other ligands, baicalin was identified as the most potential inhibitor of viral activity by showing the best binding affinity (-9.8 kcal/mol). Baicalin can be considered a good candidate for further evaluation as a potentially efficient antiviral against CHIKV.
  5. Marlina S, Radzi SF, Lani R, Sieng KC, Rahim NF, Hassan H, et al.
    Parasit Vectors, 2014;7:597.
    PMID: 25515627 DOI: 10.1186/s13071-014-0597-0
    West Nile virus (WNV) infection is an emerging zoonotic disease caused by an RNA virus of the genus Flavivirus. WNV is preserved in the environment through cyclic transmission, with mosquitoes, particularly Culex species, serving as a vector, birds as an amplifying host and humans and other mammals as dead-end hosts. To date, no studies have been carried out to determine the prevalence of the WNV antibody in Malaysia. The aim of this study was to screen for the seroprevalence of the WNV in Malaysia's Orang Asli population.
  6. Mehrali M, Moghaddam E, Seyed Shirazi SF, Baradaran S, Mehrali M, Latibari ST, et al.
    PLoS One, 2014;9(9):e106802.
    PMID: 25229540 DOI: 10.1371/journal.pone.0106802
    Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.
  7. Mehrali M, Moghaddam E, Shirazi SF, Baradaran S, Mehrali M, Latibari ST, et al.
    ACS Appl Mater Interfaces, 2014 Mar 26;6(6):3947-62.
    PMID: 24588873 DOI: 10.1021/am500845x
    Calcium silicate (CaSiO3, CS) ceramics are promising bioactive materials for bone tissue engineering, particularly for bone repair. However, the low toughness of CS limits its application in load-bearing conditions. Recent findings indicating the promising biocompatibility of graphene imply that graphene can be used as an additive to improve the mechanical properties of composites. Here, we report a simple method for the synthesis of calcium silicate/reduced graphene oxide (CS/rGO) composites using a hydrothermal approach followed by hot isostatic pressing (HIP). Adding rGO to pure CS increased the hardness of the material by ∼40%, the elastic modulus by ∼52%, and the fracture toughness by ∼123%. Different toughening mechanisms were observed including crack bridging, crack branching, crack deflection, and rGO pull-out, thus increasing the resistance to crack propagation and leading to a considerable improvement in the fracture toughness of the composites. The formation of bone-like apatite on a range of CS/rGO composites with rGO weight percentages ranging from 0 to 1.5 has been investigated in simulated body fluid (SBF). The presence of a bone-like apatite layer on the composite surface after soaking in SBF was demonstrated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The biocompatibility of the CS/rGO composites was characterized using methyl thiazole tetrazolium (MTT) assays in vitro. The cell adhesion results showed that human osteoblast cells (hFOB) can adhere to and develop on the CS/rGO composites. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of cells on the CS/rGO composites were improved compared with the pure CS ceramics. These results suggest that calcium silicate/reduced graphene oxide composites are promising materials for biomedical applications.
  8. Muhd Radzi SF, Rückert C, Sam SS, Teoh BT, Jee PF, Phoon WH, et al.
    Sci Rep, 2015;5:14007.
    PMID: 26360297 DOI: 10.1038/srep14007
    Langat virus (LGTV), one of the members of the tick-borne encephalitis virus (TBEV) complex, was firstly isolated from Ixodes granulatus ticks in Malaysia. However, the prevalence of LGTV in ticks in the region remains unknown. Surveillance for LGTV is therefore important and thus a tool for specific detection of LGTV is needed. In the present study, we developed a real-time quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) for rapid detection of LGTV. Our findings showed that the developed qRT-PCR could detect LGTV at a titre as low as 0.1 FFU/ml. The detection limit of the qRT-PCR assay at 95% probability was 0.28 FFU/ml as determined by probit analysis (p ≤ 0.05). Besides, the designed primers and probe did not amplify ORF of the E genes for some closely related and more pathogenic viruses including TBEV, Louping ill virus, Omsk hemorrhagic fever virus (OHFV), Alkhurma virus (ALKV), Kyasanur Forest Disease virus (KFDV) and Powassan virus (POWV) which showed the acceptable specificity of the developed assay. The sensitivity of the developed method also has been confirmed by determining the LGTV in infected tick cell line as well as LGTV- spiked tick tissues.
  9. Al-Obaidi MMJ, Bahadoran A, Har LS, Mui WS, Rajarajeswaran J, Zandi K, et al.
    Virus Res, 2017 04 02;233:17-28.
    PMID: 28279803 DOI: 10.1016/j.virusres.2017.02.012
    Japanese encephalitis (JE) is a neurotropic flavivirus that causes inflammation in central nervous system (CNS), neuronal death and also compromises the structural and functional integrity of the blood-brain barrier (BBB). The aim of this study was to evaluate the BBB disruption and apoptotic process in Japanese encephalitis virus (JEV)-infected transfected human brain microvascular endothelial cells (THBMECs). THBMECs were overlaid by JEV with different MOIs (0.5, 1.0, 5.0 and 10.0) and monitored by electrical cell-substrate impedance sensing (ECIS) in a real-time manner in order to observe the barrier function of THBMECs. Additionally, the level of 43 apoptotic proteins was quantified in the virally infected cells with different MOIs at 24h post infection. Infection of THBMEC with JEV induced an acute reduction in transendothelial electrical resistance (TEER) after viral infection. Also, significant up-regulation of Bax, BID, Fas and Fasl and down-regulation of IGFBP-2, BID, p27 and p53 were observed in JEV infected THBMECs with 0.5 and 10 MOIs compared to uninfected cells. Hence, the permeability of THBMECs is compromised during the JEV infection. In addition high viral load of the virus has the potential to subvert the host cell apoptosis to optimize the course of viral infection through deactivation of pro-apoptotic proteins.
  10. Ehteshami M, Tao S, Zandi K, Hsiao HM, Jiang Y, Hammond E, et al.
    PMID: 28137799 DOI: 10.1128/AAC.02395-16
    Chikungunya virus (CHIKV) represents a reemerging global threat to human health. Recent outbreaks across Asia, Europe, Africa, and the Caribbean have prompted renewed scientific interest in this mosquito-borne alphavirus. There are currently no vaccines against CHIKV, and treatment has been limited to nonspecific antiviral agents, with suboptimal outcomes. Herein, we have identified β-d-N4-hydroxycytidine (NHC) as a novel inhibitor of CHIKV. NHC behaves as a pyrimidine ribonucleoside and selectively inhibits CHIKV replication in cell culture.
  11. Lani R, Hassandarvish P, Shu MH, Phoon WH, Chu JJ, Higgs S, et al.
    Antiviral Res, 2016 Sep;133:50-61.
    PMID: 27460167 DOI: 10.1016/j.antiviral.2016.07.009
    This study focuses on the antiviral activity of selected flavonoids against the Chikungunya virus (CHIKV), a mosquito-transmitted virus that can cause incapacitating arthritis in infected individuals. Based on the results of screening on Vero cells, the tested compounds were evaluated further with various assays, including cytotoxicity assay, virus yield assay by quantitative reverse transcription polymerase chain reaction (qRT-PCR), virus RNA replication assay with a CHIKV replicon cell line, Western blotting, and quantitative immunofluorescence assay. Baicalein, fisetin, and quercetagetin displayed potent inhibition of CHIKV infection, with 50% inhibitory concentrations [IC50] of 1.891 μg/ml (6.997 μM), 8.444 μg/ml (29.5 μM), and 13.85 μg/ml (43.52 μM), respectively, and with minimal cytotoxicity. The time-of-addition studies and various antiviral assays demonstrated that baicalein and quercetagetin mainly inhibited CHIKV binding to the Vero cells and displayed potent activity against extracellular CHIKV particles. The qRT-PCR, immunofluorescence assay, and Western blot analyses indicated that each of these flavonoids affects CHIKV RNA production and viral protein expression. These data provide the first evidence of the intracellular anti-CHIKV activity of baicalein, fisetin, and quercetagetin.
  12. Saeidi A, Zandi K, Cheok YY, Saeidi H, Wong WF, Lee CYQ, et al.
    Front Immunol, 2018;9:2569.
    PMID: 30473697 DOI: 10.3389/fimmu.2018.02569
    T-cell exhaustion is a phenomenon of dysfunction or physical elimination of antigen-specific T cells reported in human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) infections as well as cancer. Exhaustion appears to be often restricted to CD8+ T cells responses in the literature, although CD4+ T cells have also been reported to be functionally exhausted in certain chronic infections. Although our understanding of the molecular mechanisms associated with the transcriptional regulation of T-cell exhaustion is advancing, it is imperative to also explore the central mechanisms that control the altered expression patterns. Targeting metabolic dysfunctions with mitochondrion-targeted antioxidants are also expected to improve the antiviral functions of exhausted virus-specific CD8+ T cells. In addition, it is crucial to consider the contributions of mitochondrial biogenesis on T-cell exhaustion and how mitochondrial metabolism of T cells could be targeted whilst treating chronic viral infections. Here, we review the current understanding of cardinal features of T-cell exhaustion in chronic infections, and have attempted to focus on recent discoveries, potential strategies to reverse exhaustion and reinvigorate optimal protective immune responses in the host.
  13. Moghaddam E, Teoh BT, Sam SS, Lani R, Hassandarvish P, Chik Z, et al.
    Sci Rep, 2014 Jun 26;4:5452.
    PMID: 24965553 DOI: 10.1038/srep05452
    Baicalin, a flavonoid derived from Scutellaria baicalensis, is the main metabolite of baicalein released following administration in different animal models and human. We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2 (NGC strain) replication. Our in vitro antiviral experiments showed that baicalin inhibited virus replication at IC50 = 13.5 ± 0.08 μg/ml with SI = 21.5 following virus internalization by Vero cells. Baicalin exhibited virucidal activity against DENV-2 extracellular particles at IC50 = 8.74 ± 0.08 μg/ml and showed anti-adsorption effect with IC50 = 18.07 ± 0.2 μg/ml. Our findings showed that baicalin as the main metabolite of baicalein exerting in vitro anti-DENV activity. Further investigations on baicalein and baicalin to deduce its antiviral therapeutic effects are warranted.
  14. Zandi K, Lim TH, Rahim NA, Shu MH, Teoh BT, Sam SS, et al.
    BMC Complement Altern Med, 2013 Apr 29;13:91.
    PMID: 23627436 DOI: 10.1186/1472-6882-13-91
    BACKGROUND: Scutellaria baicalensis (S. baicalensis) is one of the traditional Chinese medicinal herbs that have been shown to possess many health benefits. In the present study, we evaluated the in vitro antiviral activity of aqueous extract of the roots of S. baicalensis against all the four dengue virus (DENV) serotypes.

    METHODS: Aqueous extract of S. baicalensis was prepared by microwave energy steam evaporation method (MEGHE™), and the anti-dengue virus replication activity was evaluated using the foci forming unit reduction assay (FFURA) in Vero cells. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to determine the actual dengue virus RNA copy number. The presence of baicalein, a flavonoid known to inhibit dengue virus replication was determined by mass spectrometry.

    RESULTS: The IC(50) values for the S. baicalensis extract on Vero cells following DENV adsorption ranged from 86.59 to 95.19 μg/mL for the different DENV serotypes. The IC(50) values decreased to 56.02 to 77.41 μg/mL when cells were treated with the extract at the time of virus adsorption for the different DENV serotypes. The extract showed potent direct virucidal activity against extracellular infectious virus particles with IC(50) that ranged from 74.33 to 95.83 μg/mL for all DENV serotypes. Weak prophylactic effects with IC(50) values that ranged from 269.9 to 369.8 μg/mL were noticed when the cells were pre-treated 2 hours prior to virus inoculation. The concentration of baicalein in the S. baicalensis extract was ~1% (1.03 μg/gm dried extract).

    CONCLUSIONS: Our study demonstrates the in vitro anti-dengue virus replication property of S. baicalensis against all the four DENV serotypes investigated. The extract reduced DENV infectivity and replication in Vero cells. The extract was rich in baicalein, and could be considered for potential development of anti-DENV therapeutics.

  15. Ghane Kisomi M, Wong LP, Tay ST, Bulgiba A, Zandi K, Kho KL, et al.
    PLoS One, 2016;11(6):e0157987.
    PMID: 27341678 DOI: 10.1371/journal.pone.0157987
    BACKGROUND: Farmworkers are at high-risk for tick bites, which potentially transmit various tick-borne diseases. Previous studies show that personal prevention against tick bites is key, and certain factors namely, knowledge, experience of tick bites, and health beliefs influence compliance with tick bites preventive behaviour. This study aimed to assess these factors and their associations with tick bite preventive practices among Malaysian farmworkers.

    METHODS: A total of eight cattle, goat and sheep farms in six states in Peninsular Malaysia participated in a cross-sectional survey between August and October 2013.

    RESULTS: A total of 151 (72.2%) out of 209 farmworkers answered the questionnaire. More than half of the farmworkers (n = 91) reported an experience of tick bites. Farms with monthly acaricide treatment had significantly (P<0.05) a low report of tick bites. Tick bite exposure rates did not differ significantly among field workers and administrative workers. The mean total knowledge score of ticks for the overall farmworkers was 13.6 (SD±3.2) from 20. The mean total tick bite preventive practices score for all farmworkers was 8.3 (SD±3.1) from 15. Fixed effect model showed the effects of four factors on tick bite prevention: (1) farms, (2) job categories (administrative workers vs. field workers), (3) perceived severity of tick bites, and (4) perceived barriers to tick bite prevention.

    CONCLUSIONS: A high proportion of farmworkers, including administrative workers, reported an experience of tick bites. The effectiveness of monthly acaricide treatment was declared by low reports of tick bites on these farms. Tick bite preventive practices were insufficient, particularly in certain farms and for administrative workers. Our findings emphasise the need to have education programmes for all farmworkers and targeting farms with low prevention practices. Education and health programmes should increase the perception of the risk of tick bites and remove perceived barriers of tick bite prevention.

  16. Mohd Shukri M, Ling Kho K, Ghane Kisomi M, Lani R, Marlina S, Muhd Radzi SF, et al.
    BMC Public Health, 2015;15:704.
    PMID: 26205588 DOI: 10.1186/s12889-015-1901-4
    Tick-borne encephalitis virus (TBEV) and Crimean-Congo haemorrhagic fever virus (CCHFV) are important tick-borne viruses. Despite their wide geographical distribution and ease of acquisition, the prevalence of both viruses in Malaysia is still unknown. This study was conducted to determine the seroprevalence for TBEV and CCHFV among Malaysian farm workers as a high-risk group within the population.
  17. Lani R, Hassandarvish P, Chiam CW, Moghaddam E, Chu JJ, Rausalu K, et al.
    Sci Rep, 2015;5:11421.
    PMID: 26078201 DOI: 10.1038/srep11421
    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection.
  18. Teoh BT, Chin KL, Samsudin NI, Loong SK, Sam SS, Tan KK, et al.
    BMC Infect Dis, 2020 Dec 11;20(1):947.
    PMID: 33308203 DOI: 10.1186/s12879-020-05585-4
    BACKGROUND: Early detection of Zika virus (ZIKV) infection during the viremia and viruria facilitates proper patient management and mosquito control measurement to prevent disease spread. Therefore, a cost-effective nucleic acid detection method for the diagnosis of ZIKV infection, especially in resource-deficient settings, is highly required.

    METHODS: In the present study, a single-tube reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of both the Asian and African-lineage ZIKV. The detection limit, strain coverage and cross-reactivity of the ZIKV RT-LAMP assay was evaluated. The sensitivity and specificity of the RT-LAMP were also evaluated using a total of 24 simulated clinical samples. The ZIKV quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was used as the reference assay.

    RESULTS: The detection limit of the RT-LAMP assay was 3.73 ZIKV RNA copies (probit analysis, P ≤ 0.05). The RT-LAMP assay detected the ZIKV genomes of both the Asian and African lineages without cross-reacting with other arthropod-borne viruses. The sensitivity and specificity of the RT-LAMP assay were 90% (95% CI = 59.6-98.2) and 100% (95% CI = 78.5-100.0), respectively. The RT-LAMP assay detected ZIKV genome in 9 of 24 (37.5%) of the simulated clinical samples compared to 10 of 24 (41.7%) by qRT-PCR assay with a high level of concordance (κ = 0.913, P 

  19. Zandi K, Musall K, Oo A, Cao D, Liang B, Hassandarvish P, et al.
    Microorganisms, 2021 Apr 22;9(5).
    PMID: 33921971 DOI: 10.3390/microorganisms9050893
    Coronavirus Disease 2019 (COVID-19) is a deadly emerging infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Because SARS-CoV-2 is easily transmitted through the air and has a relatively long incubation time, COVID-19 has rapidly developed into a global pandemic. As there are no antiviral agents for the prevention and treatment of this severe pathogen except for remdesivir, development of antiviral therapies to treat infected individuals remains highly urgent. Here, we showed that baicalein and baicalin exhibited significant antiviral activity against SARS-CoV-2, the causative agent of COVID-19 through in vitro studies. Our data through cell-based and biochemical studies showed that both compounds act as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibitors directly and inhibit the activity of the SARS-CoV-2 RdRp, but baicalein was more potent. We also showed specific binding of baicalein to the SARS-CoV-2 RdRp, making it a potential candidate for further studies towards therapeutic development for COVID-19 as a selective non-nucleoside polymerase inhibitor.
  20. Barathan M, Gopal K, Mohamed R, Ellegård R, Saeidi A, Vadivelu J, et al.
    Apoptosis, 2015 Apr;20(4):466-80.
    PMID: 25577277 DOI: 10.1007/s10495-014-1084-y
    Persistent hepatitis C virus (HCV) infection appears to trigger the onset of immune exhaustion to potentially assist viral persistence in the host, eventually leading to hepatocellular carcinoma. The role of HCV on the spontaneous expression of markers suggestive of immune exhaustion and spontaneous apoptosis in immune cells of chronic HCV (CHC) disease largely remain elusive. We investigated the peripheral blood mononuclear cells of CHC patients to determine the spontaneous recruitment of cellular reactive oxygen species (cROS), immunoregulatory and exhaustion markers relative to healthy controls. Using a commercial QuantiGenePlex(®) 2.0 assay, we determined the spontaneous expression profile of 80 different pro- and anti-apoptotic genes in persistent HCV disease. Onset of spontaneous apoptosis significantly correlated with the up-regulation of cROS, indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2/prostaglandin H synthase (COX-2/PGHS), Foxp3, Dtx1, Blimp1, Lag3 and Cd160. Besides, spontaneous differential surface protein expression suggestive of T cell inhibition viz., TRAIL, TIM-3, PD-1 and BTLA on CD4+ and CD8+ T cells, and CTLA-4 on CD4+ T cells was also evident. Increased up-regulation of Tnf, Tp73, Casp14, Tnfrsf11b, Bik and Birc8 was observed, whereas FasLG, Fas, Ripk2, Casp3, Dapk1, Tnfrsf21, and Cflar were moderately up-regulated in HCV-infected subjects. Our observation suggests the spontaneous onset of apoptosis signaling and T cell exhaustion in chronic HCV disease.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links