Displaying publications 21 - 40 of 438 in total

Abstract:
Sort:
  1. Ng SL, Seng CE, Lim PE
    Chemosphere, 2010 Jan;78(5):510-6.
    PMID: 20035966 DOI: 10.1016/j.chemosphere.2009.11.041
    A kinetic model consisting of first-order desorption and biodegradation processes was developed to describe the bioregeneration of phenol- and p-nitrophenol-loaded powdered activated carbon (PAC) and pyrolyzed rice husk (PRH), respectively. Different dosages of PAC and PRH were loaded with phenol or p-nitrophenol by contacting with the respective phenolic compound at various concentrations. The kinetic model was used to fit the phenol or p-nitrophenol concentration data in the bulk solution during the bioregeneration process to determine the rate constants of desorption, k(d), and biodegradation, k. The results showed that the kinetic model fitted relatively well (R(2)>0.9) to the experimental data for the phenol- and p-nitrophenol-loaded PAC as well as p-nitrophenol-loaded PRH. Comparison of the values of k(d) and k shows that k is much greater than k(d). This indicates clearly that the desorption process is the rate-determining step in bioregeneration and k(d) can be used to characterize the rate of bioregeneration. The trend of the variation of the k(d) values with the dosages of PAC or PRH used suggests that higher rate of bioregeneration can be achieved under non-excess adsorbent dosage condition.
  2. Yap CY, Mohamed N
    Chemosphere, 2008 Oct;73(5):685-91.
    PMID: 18718637 DOI: 10.1016/j.chemosphere.2008.07.014
    An electrogenerative flow-through reactor with an activated reticulated vitreous carbon cathode was developed. The influence of palladium-tin activation of the cathode towards gold deposition was studied by cyclic voltammetry. The reactor proved to be efficient in recovering more than 99% of gold within 4 h of operation. The performance of the reactor was evaluated with initial gold concentrations of 10, 100 and 500 mg L-1 and various electrolyte flow rates. Gold recovery was found to be strongly dependent on electrolyte flow rate and initial gold concentration in the cyanide solution under the experimental conditions used.
  3. Ting TM, Jamaludin N
    Chemosphere, 2008 Aug;73(1):76-80.
    PMID: 18571692 DOI: 10.1016/j.chemosphere.2008.05.007
    Dyeing wastewater was known to have strong color and refractory organic pollutants. In this study irradiation alone was used for dyes wastewater treatment. This paper studies the effect of the concentrations of pollutants to its removal at various dosages using electron beam technology. Irradiation was effective in removing the highly colored and refractory organic compounds. The color removal for initial concentrations of 255 CU, 520 CU, 990 CU and 1900 CU treated using irradiation at 0.5 kGy were 61%, 48%, 28% and 16%, respectively. However, at the dose of 108 kGy and higher, the color removal between 87% and 96% were recorded with no apparent trend. COD removal also reported similar trend but at relatively lower removal percentage. The COD removal at 0.5 kGy for initial COD concentrations of 57 mg/l and 515 mg/l were 10% and 0%, respectively. At irradiation dose of 108 kGy, the removal for initial COD concentrations of 57 mg/l and 515 mg/l were 37% and 13%, respectively. This showed that concentrations of pollutants and dose of irradiation applied to remove color and COD were dependent to each other.
  4. Yap CY, Mohamed N
    Chemosphere, 2007 Apr;67(8):1502-10.
    PMID: 17296217
    Traditional methods for the recovery of gold from electronic scrap by hydrometallurgy were cyanidation followed by adsorption on activated carbon or cementation onto zinc dust and by electrowinning. In our studies, a static batch electrochemical reactor operating in an electrogenerative mode was used in gold recovery from cyanide solutions. A spontaneous chemical reaction will take place in the reactor and generate an external flow of current. In this present work, a static batch cell with an improved design using three-dimensional cathodes namely porous graphite and reticulated vitreous carbon (RVC) and two-dimensional cathode materials, copper and stainless steel plates were coupled with a zinc anode. The electrogenerative system was demonstrated and the performance of the system using various cathode materials for gold recovery was evaluated. The system resulted in more than 90% gold being recovered within 3h of operation. Activated RVC serves as a superior cathode material having the highest recovery rate with more than 99% of gold being recovered in 1h of operation. The morphology of gold deposits on various cathode materials was also investigated.
  5. Leong KH, Tan LL, Mustafa AM
    Chemosphere, 2007 Jan;66(6):1153-9.
    PMID: 17027062
    In Malaysia, rivers are the main source of public water supplies. This study was conducted from 2002 to 2003 to determine the levels of selected organochlorine and organophosphate pesticides in the Selangor River in Malaysia. Surface water samples have been collected seasonally from nine sites along the river. A liquid-liquid extraction followed by gas chromatography-mass spectrometry technique was used to determine the trace levels of these pesticide residues. The organochlorine pesticides detected were lindane, heptachlor, endosulfan, dieldrin, endosulfan sulfate, o,p'-DDT, p,p'-DDT, o,p'-DDE and p,p'-DDE whereas for organophosphate pesticides, they were chlorpyrifos and diazinon. At the river upstream where a dam is located for public water supply, incidents of pesticide levels exceeding the European Economic Community Directive of water quality standards have occurred. Furthermore, the wetland ecosystems located at the downstream of the river which houses the fireflies community is being threatened by occasional pesticide levels above EPA limits for freshwater aquatic organisms. The occurrence of these residual pesticides in the Selangor River can be attributed to the intense agriculture and urban activity.
  6. Shuhaimi-Othman M, Nadzifah Y, Nur-Amalina R, Umirah NS
    Chemosphere, 2013 Mar;90(11):2631-6.
    PMID: 23246727 DOI: 10.1016/j.chemosphere.2012.11.030
    Freshwater quality criteria for copper (Cu), cadmium (Cd), aluminum (Al), and manganese (Mn) were developed with particular reference to aquatic biota in Malaysia, and based on USEPA's guidelines. Acute toxicity tests were performed on eight different freshwater domestic species in Malaysia, which were Macrobrachiumlanchesteri (prawn), two fish -Poeciliareticulata and Rasborasumatrana, Melanoidestuberculata (snail), Stenocyprismajor (ostracod), Chironomusjavanus (midge larvae), Naiselinguis (annelid), and Duttaphrynusmelanostictus (tadpole), to determine 96-h LC50 values for Cu, Cd, Al, and Mn. The final acute values (FAVs) for Cu, Cd, Al, and Mn were 2.5, 3.0, 977.8, and 78.3 μgL(-1), respectively. Using an estimated acute-to-chronic ratio (ACR) of 8.3, the value for final chronic value (FCV) was derived. Based on FAV and FCV, a Criterion Maximum Concentration (CMC) and a criterion Continuous Concentration (CCC) for Cu, Cd, Al, and Mn of 1.3, 1.5, 488.9, and 39.1 μgL(-1) and 0.3, 0.36, 117.8, and 9.4 μgL(-1), respectively, were derived. The results of this study provide useful data for deriving national or local water quality criteria for Cu, Cd, Al, and Mn based on aquatic biota in Malaysia. Based on LC50 values, this study indicated that R.sumatrana, M.lanchesteri, C.javanus, and N.elinguis were the most sensitive to Cu, Cd, Al, and Mn, respectively.
  7. Hayyan M, Hashim MA, Hayyan A, Al-Saadi MA, AlNashef IM, Mirghani ME, et al.
    Chemosphere, 2013 Feb;90(7):2193-5.
    PMID: 23200570 DOI: 10.1016/j.chemosphere.2012.11.004
    In continuation of investigation for environmentally benign protocol for new solvents termed deep eutectic solvents (DESs), it is herein reported results concerning the toxicity and cytotoxicity of choline chloride (ChCl) based DESs with four hydrogen bond donors including glycerine, ethylene glycol, triethylene glycol and urea. The toxicity was investigated using two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The cytotoxicity effect was tested using the Artemia salina leach. It was found that there was no toxic effect for the tested DESs on all of the studied bacteria confirming their benign effects on these bacteria. Nevertheless, it was found that the cytotoxicity of DESs was much higher than their individual components (e.g. glycerine, ChCl) indicating that their toxicological behavior is different. For our best knowledge this is the first time that toxicity and cytotoxicity of DESs were studied. The toxicity and cytotoxicity of DESs varied depending on the structure of components. Careful usage of the terms non-toxicity and biodegradability must be considered. More investigation on this matter is required.
  8. Eguchi A, Isobe T, Ramu K, Tue NM, Sudaryanto A, Devanathan G, et al.
    Chemosphere, 2013 Mar;90(9):2365-71.
    PMID: 23149186 DOI: 10.1016/j.chemosphere.2012.10.027
    In Asian developing countries, large amounts of municipal wastes are dumped into open dumping sites each day without adequate management. This practice may cause several adverse environmental consequences and increase health risks to local communities. These dumping sites are contaminated with many chemicals including brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). BFRs may be released into the environment through production processes and through the disposal of plastics and electronic wastes that contain them. The purpose of this study was to elucidate the status of BFR pollution in municipal waste dumping sites in Asian developing countries. Soil samples were collected from six open waste dumping sites and five reference sites in Cambodia, India, Indonesia, Malaysia, and Vietnam from 1999 to 2007. The results suggest that PBDEs are the dominant contaminants in the dumping sites in Asian developing countries, whereas HBCD contamination remains low. Concentrations of PBDEs and HBCDs ranged from ND to 180 μg/kg dry wt and ND to 1.4 μg/kg dry wt, respectively, in the reference sites and from 0.20 to 430 μg/kg dry wt and ND to 2.5 μg/kg dry wt, respectively, in the dumping sites. Contamination levels of PBDEs in Asian municipal dumping sites were comparable with those reported from electronic waste dismantling areas in Pearl River delta, China.
  9. Lee KM, Lim PE
    Chemosphere, 2005 Jan;58(4):407-16.
    PMID: 15620732
    The role of bioregeneration process in renewing the adsorbent surface for further adsorption of organics during simultaneous adsorption and biodegradation processes has been well recognized. The extent of bioregeneration of powdered activated carbon (PAC) as an adsorbent loaded with phenol, p-methylphenol, p-ethylphenol and p-isopropylphenol, respectively, in the simultaneous adsorption and biodegradation processes were quantitatively determined using oxygen uptake as a measure of substrate consumption. Bioregeneration phenomenon was also evaluated in the simultaneous adsorption and biodegradation processes under sequencing batch reactor (SBR) operation to treat synthetic wastewater containing 1200 mg l(-1) phenol and p-methylphenol, respectively. The SBR systems were operated with FILL, REACT, SETTLE, DRAW and IDLE periods in the ratio of 4:6:1:0.75:0.25 for a cycle time of 12 h. The results show that the percentage of desorption from loaded PAC decreased in the order phenol>p-methylphenol>p-ethylphenol>p-isopropylphenol. For the treatment of phenol and p-methylphenol in the SBR reactors, respectively, the simultaneous adsorption and biodegradation processes were able to produce a consistent effluent quality of COD < or = 100 mg l(-1) when the applied PAC dosage was 0.115 and 0.143 g PAC per cycle, respectively. When no further PAC was added, the treatment performance deteriorated to that of the case without PAC addition after 68 and 48 cycles of SBR operation, respectively, for phenol and p-methylphenol. This observation is consistent with the greater extent of bioregeneration for phenol-loaded PAC as compared to p-methylphenol-loaded PAC.
  10. Ling CM, Mohamed AR, Bhatia S
    Chemosphere, 2004 Nov;57(7):547-54.
    PMID: 15488916
    TiO2 thin film photocatalyst was successfully synthesized and immobilized on glass reactor tube using sol-gel method. The synthesized TiO2 coating was transparent, which enabled the penetration of ultra-violet (UV) light to the catalyst surface. Two photocatalytic reactors with different operating modes were tested: (a) tubular photocatalytic reactor with re-circulation mode and (b) batch photocatalytic reactor. A new proposed TiO2 synthesized film formulation of 1 titanium isopropoxide: 8 isopropanol: 3 acetyl acetone: 1.1 H2O: 0.05 acetic acid (in molar ratio) gave excellent photocatalytic activity for degradation of phenol and methylene blue dye present in the water. The half-life time, t1/2 of photocatalytic degradation of phenol was 56 min at the initial phenol concentration of 1000 microM in the batch reactor. In the tubular photocatalytic reactor, 5 re-circulation passes with residence time of 2.2 min (single pass) degraded 50% of 40-microM methylene blue dye. Initial phenol concentration, presence of hydrogen peroxide, presence of air bubbling and stirring speed as the process variables were studied in the batch reactor. Initial methylene blue concentration, pH value, light intensity and reaction temperature were studied as the process variables in the tubular reactor. The synthesized TiO2 thin film was characterized using SEM, XRD and EDX analysis. A comparative performance between the synthesized TiO2 thin film and commercial TiO2 particles (99% anatase) was evaluated under the same experimental conditions. The TiO2 film was equally active as the TiO2 powder catalyst.
  11. Wahid NB, Latif MT, Suratman S
    Chemosphere, 2013 Jun;91(11):1508-16.
    PMID: 23336924 DOI: 10.1016/j.chemosphere.2012.12.029
    This study was conducted to determine the composition and source apportionment of surfactant in atmospheric aerosols around urban and semi-urban areas in Malaysia based on ionic compositions. Colorimetric analysis was undertaken to determine the concentrations of anionic surfactants as Methylene Blue Active Substances (MBAS) and cationic surfactants as Disulphine Blue Active Substances (DBAS) using a UV spectrophotometer. Ionic compositions were determined using ion chromatography for cations (Na(+), NH4(+), K(+), Mg(2+), Ca(2+)) and anions (F(-), Cl(-), NO3(-), SO4(2-)). Principle component analysis (PCA) combined with multiple linear regression (MLR) were used to identify the source apportionment of MBAS and DBAS. Results indicated that the concentrations of surfactants at both sampling sites were dominated by MBAS rather than DBAS especially in fine mode aerosols during the southwest monsoon. Three main sources of surfactants were identified from PCA-MLR analysis for MBAS in fine mode samples particularly in Kuala Lumpur, dominated by motor vehicles, followed by soil/road dust and sea spray. Besides, for MBAS in coarse mode, biomass burning/sea spray were the dominant source followed by motor vehicles/road dust and building material.
  12. Ba-Abbad MM, Kadhum AA, Mohamad AB, Takriff MS, Sopian K
    Chemosphere, 2013 Jun;91(11):1604-11.
    PMID: 23384541 DOI: 10.1016/j.chemosphere.2012.12.055
    The optical properties of a ZnO photocatalyst were enhanced with various dopant concentrations of Fe(3+). Doped ZnO nanoparticles were synthesized via a sol-gel method without the use of capping agents or surfactants and was then characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that ZnO has a wurtzite, hexagonal structure and that the Fe(3+) ions were well incorporated into the ZnO crystal lattice. As the Fe(3+) concentration increased from 0.25 wt.% to 1 wt.%, the crystal size decreased in comparison with the undoped ZnO. The spectral absorption shifts of the visible light region (red shift) and the band gap decreases for each Fe-ZnO sample were investigated. The photocatalytic activities of the ZnO and Fe-ZnO samples were evaluated based on the degradation of 2-chlorophenol in aqueous solution under solar radiation. The samples with a small concentration of Fe(3+) ions showed enhanced photocatalytic activity with an optimal maximum performance at 0.5 wt.%. The results indicated that toxicity removal of 2-chlorophenol at same line of degradation efficiency. Small crystallite size and low band gap were attributed to high activities of Fe-ZnO samples under various concentrations of Fe(3+) ions compared to undoped ZnO.
  13. Yacob S, Hassan MA, Shirai Y, Wakisaka M, Subash S
    Chemosphere, 2005 Jun;59(11):1575-81.
    PMID: 15894045
    Anthropogenic release of greenhouse gases, especially CO2 and CH4 has been recognized as one of the main causes of global warming. Several measures under the Kyoto Protocol 1997 have been drawn up to reduce the greenhouse gases emission. One of the measures is Clean Development Mechanisms (CDM) that was created to enable developed countries to cooperate with developing countries in emission reduction activities. In Malaysia, palm oil industry particularly from palm oil mill effluent (POME) anaerobic treatment has been identified as an important source of CH4. However, there is no study to quantify the actual CH4 emission from the commercial scale wastewater treatment facility. Hence, this paper shall address the CH4 emission from the open digesting tanks in Felda Serting Hilir Palm Oil Mill. CH4 emission pattern was recorded for 52 weeks from 3600 m3 open digesting tanks. The findings indicated that the CH4 content was between 13.5% and 49.0% which was lower than the value of 65% reported earlier. The biogas flow rate ranged between 0.8l min(-1)m(-2) and 9.8l min(-1)m(-2). Total CH4 emission per open digesting tank was 518.9 kgday(-1). Relationships between CH4 emission and total carbon removal and POME discharged were also discussed. Fluctuation of biogas production was observed throughout the studies as a result of seasonal oil palm cropping, mill activities, variation of POME quality and quantity discharged from the mill. Thus only through long-term field measurement CH4 emission can be accurately estimated.
  14. Choo TP, Lee CK, Low KS, Hishamuddin O
    Chemosphere, 2006 Feb;62(6):961-7.
    PMID: 16081131
    This study describes an investigation using tropical water lilies (Nymphaea spontanea) to remove hexavalent chromium from aqueous solutions and electroplating waste. The results show that water lilies are capable of accumulating substantial amount of Cr(VI), up to 2.119 mg g(-1) from a 10 mg l(-1) solution. The roots of the plant accumulated the highest amount of Cr(VI) followed by leaves and petioles, indicating that roots play an important role in the bioremediation process. The maturity of the plant exerts a great effect on the removal and accumulation of Cr(VI). Plants of 9 weeks old accumulated the most Cr(VI) followed by those of 6 and 3 weeks old. The results also show that removal of Cr(VI) by water lilies is more efficient when the metal is present singly than in the presence of Cu(II) or in waste solution. This may be largely associated with more pronounced phytotoxicity effect on the biochemical changes in the plants and saturation of binding sites. Significant toxicity effect on the plant was evident as shown in the reduction of chlorophyll, protein and sugar contents in plants exposed to Cr(VI) in this investigation.
  15. Lee KT, Bhatia S, Mohamed AR, Chu KH
    Chemosphere, 2006 Jan;62(1):89-96.
    PMID: 15996711
    High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.
  16. Cui M, Jang M, Kang K, Kim D, Snyder SA, Khim J
    Chemosphere, 2016 Feb;144:2081-90.
    PMID: 26583290 DOI: 10.1016/j.chemosphere.2015.10.107
    A novel and economic sequential process consisting of precipitation, adsorption, and oxidation was developed to remediate actual rare-earth (RE) wastewater containing various toxic pollutants, including radioactive species. In the precipitation step, porous air stones (PAS) containing waste oyster shell (WOS), PASWOS, was prepared and used to precipitate most heavy metals with >97% removal efficiencies. The SEM-EDS analysis revealed that PAS plays a key role in preventing the surface coating of precipitants on the surface of WOS and in releasing the dissolved species of WOS successively. For the adsorption step, a polyurethane (PU) impregnated by coal mine drainage sludge (CMDS), PUCMDS, was synthesized and applied to deplete fluoride (F), arsenic (As), uranium (U), and thorium (Th) that remained after precipitation. The continuous-mode sequential process using PAS(WOS), PU(CMDS), and ozone (O3) had 99.9-100% removal efficiencies of heavy metals, 99.3-99.9% of F and As, 95.8-99.4% of U and Th, and 92.4% of COD(Cr) for 100 days. The sequential process can treat RE wastewater economically and effectively without stirred-tank reactors, pH controller, continuous injection of chemicals, and significant sludge generation, as well as the quality of the outlet met the EPA recommended limits.
  17. Nurulnadia MY, Koyama J, Uno S, Amano H
    Chemosphere, 2016 Feb;144:185-92.
    PMID: 26363319 DOI: 10.1016/j.chemosphere.2015.08.059
    We evaluated the potential for biomagnification of endocrine disrupting chemicals (EDCs) such as nonylphenol (NP), octylphenol (OP), bisphenol A (BP), and natural estrogens such as estrone (E1) and 17β-estradiol (E2) in a benthic fish, Pleuronectes yokohamae. The assimilation efficiencies (AE) of most EDCs ranged from 88 to 96% suggesting that they were efficiently incorporated and assimilated into P. yokohamae, except for NP (50%). However, the biomagnification factor (BMF) values were <1.0 suggesting that the compounds were not biomagnifying. Additionally, three of the target EDCs were not detected (BP, E1 and E2). Glucuronidation activity towards BP (11.44 ± 2.5 nmol/mg protein/min) and E2 (12.41 ± 3.2 nmol/mg protein/min) was high in the intestine suggesting that EDCs were glucuronidated prior to excretion into bile. Thus, we conclude that biomagnification of dietary EDCs is reduced in P. yokohamae because of effective glucuronidation.
  18. Looi LJ, Aris AZ, Haris H, Yusoff FM, Hashim Z
    Chemosphere, 2016 Jun;152:265-73.
    PMID: 26974481 DOI: 10.1016/j.chemosphere.2016.02.126
    The present study examined the concentrations of mercury (Hg), methylmercury (MeHg), and selenium (Se) in the multiple tissues of the Plotosus canius and Periophthalmodon schlosseri collected from the Strait of Malacca. The mean value in mg kg(-1) of Hg (P. canius: 0.34 ± 0.19; P. schlosseri: 0.32 ± 0.18) and MeHg in muscle (P. canius: 0.14 ± 0.11; P. schlosseri: 0.17 ± 0.11) were below the Codex general standard for contaminants and toxins in food and feed (CODEX STAN 193-1995), the Malaysian Food Regulation 1985 and the Japan Food Sanitation Law. For P. canius, the liver contained the highest concentrations of Hg (0.48 ± 0.07 mg kg(-1)) and MeHg (0.21 ± 0.00 mg kg(-1)), whereas for P. schlosseri, the gill contained the highest concentrations of Hg (0.36 ± 0.06 mg kg(-1)) and MeHg (0.21 ± 0.05 mg kg(-1)). The highest concentration of (80)Se (mg kg(-1)) was observed in the liver of P. canius (20.34 ± 5.68) and in the gastrointestinal tract (3.18 ± 0.42) of P. schlosseri. The selenium:mercury (Se:Hg) molar ratios were above 1 and the positive selenium health benefit value (HBVSe) suggesting the possible protective effects of Se against Hg toxicity. The estimate weekly intakes (EWIs) in μg kg(-1) body weight (bw) week(-1) of Hg (P. canius: 0.27; P. schlosseri: 0.15) and MeHg (P. canius: 0.11; P. schlosseri: 0.08) were found to be lower than the provisional tolerable weekly intake established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Based on the calculated EWIs, P. canius, and P. schlosseri were found to be unlikely to cause mercury toxicity in human consumption.
  19. Wong KT, Yoon Y, Snyder SA, Jang M
    Chemosphere, 2016 Jun;152:71-80.
    PMID: 26963238 DOI: 10.1016/j.chemosphere.2016.02.090
    Triethoxyphenylsilane (TEPS)-functionalized magnetic palm-based powdered activated carbon (MPPAC-TEPS) was prepared and characterized using various spectroscopic methods, and then tested for the removal of bisphenol A, carbamazepine, ibuprofen and clofibric acid. Magnetite film on MPPAC-TEPS was homogeneously coated on the outer surface of palm-based powdered activated carbon (PPAC) through a hydrothermal co-precipitation technique. Followed by silanization of phenyl-functionalized organosilane on MPPAC's magnetic film. As results, micro/mesopore surface area and volume increased without significant pore clogging and iron (Fe) dissolution under the acidic conditions was greatly decreased. The unique structural and chemical features of MPPAC-TEPS were found to be the main reasons for the enhanced adsorption rates and removal capacities of POPs. The presence of electrolytes and different pH values greatly affected the sorption efficiencies. The dominant sorption mechanism of POPs by MPPAC-TEPS was determined to be π-π interaction (physisorption), based on thermodynamic (ΔG°) and differential scanning calorimetry (DSC). Thermal regeneration at a low temperature (350 °C) was an effective method to desorb the retained POPs and enabled to reactivate MPPAC-TEPS with sustained sorption rates and capacities, whereas PPAC was largely exhausted. As a new type of sorbent for POPs, MPPAC-TEPS has operational advantages, such as magnetic separation and stable regeneration.
  20. Khandaker MU, Mohd Nasir NL, Asaduzzaman K, Olatunji MA, Amin YM, Kassim HA, et al.
    Chemosphere, 2016 Jul;154:528-536.
    PMID: 27085312 DOI: 10.1016/j.chemosphere.2016.03.121
    Malaysia, a rapidly growing industrial country, is susceptible to pollution via large-scale industrial engagements and associated human activities. One particular concern is the potential impact upon the quality of locally resourced vegetables, foodstuffs that contain important nutrients necessary for good health, forming an essential part of the Malaysian diet. As a part of this, it is of importance for there to be accurate knowledge of radioactive material uptake in these vegetables, not least in respect of any public health detriment. Herein, using HPGe γ-ray spectrometry, quantification has been performed of naturally occurring radionuclides in common edible vegetables and their associated soils. From samples analyses, the soil activity concentration ranges (in units of Bq/kg) for (226)Ra, (232)Th and (40)K were respectively 1.33-30.90, 0.48-26.80, 7.99-136.5 while in vegetable samples the ranges were 0.64-3.80, 0.21-6.91, 85.53-463.8. Using the corresponding activities, the transfer factors (TFs) from soil-to-vegetables were estimated, the transfers being greatest for (40)K, an expected outcome given the essentiality of this element in support of vigorous growth. The TFs of (226)Ra and (232)Th were found to be in accord with available literature data, the values indicating the mobility of these radionuclides to be low in the studied soils. Committed effective dose and the associated life-time cancer risk was estimated, being found to be below the permissible limit proposed by UNSCEAR. Results for the studied media show that the prevalent activities and mobilities pose no significant threat to human health, the edible vegetables being safe for consumption.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links