Displaying publications 21 - 40 of 133 in total

Abstract:
Sort:
  1. Ali A, Logeswaran R
    Comput Biol Med, 2007 Aug;37(8):1141-7.
    PMID: 17126314
    The 3D ultrasound systems produce much better reproductions than 2D ultrasound, but their prohibitively high cost deprives many less affluent organization this benefit. This paper proposes using the conventional 2D ultrasound equipment readily available in most hospitals, along with a single conventional digital camera, to construct 3D ultrasound images. The proposed system applies computer vision to extract position information of the ultrasound probe while the scanning takes place. The probe, calibrated in order to calculate the offset of the ultrasound scan from the position of the marker attached to it, is used to scan a number of geometrical objects. Using the proposed system, the 3D volumes of the objects were successfully reconstructed. The system was tested in clinical situations where human body parts were scanned. The results presented, and confirmed by medical staff, are very encouraging for cost-effective implementation of computer-aided 3D ultrasound using a simple setup with 2D ultrasound equipment and a conventional digital camera.
  2. Najafabadi FS, Zahedi E, Mohd Ali MA
    Comput Biol Med, 2006 Mar;36(3):241-52.
    PMID: 16446158
    In this paper, an algorithm based on independent component analysis (ICA) for extracting the fetal heart rate (FHR) from maternal abdominal electrodes is presented. Three abdominal ECG channels are used to extract the FHR in three steps: first preprocessing procedures such as DC cancellation and low-pass filtering are applied to remove noise. Then the algorithm for multiple unknown source extraction (AMUSE) algorithm is fed to extract the sources from the observation signals include fetal ECG (FECG). Finally, FHR is extracted from FECG. The method is shown to be capable of completely revealing FECG R-peaks from observation leads even with a SNR=-200dB using semi-synthetic data.
  3. Logeswaran R, Eswaran C
    Comput Biol Med, 2007 Aug;37(8):1084-91.
    PMID: 17112496
    Stones in the biliary tract are routinely identified using MRCP (magnetic resonance cholangiopancreatography). The noisy nature of the images, as well as varying intensity, size and location of the stones, defeat most automatic detection algorithms, making computer-aided diagnosis difficult. This paper proposes a multi-stage segment-based scheme for semi-automated detection of choledocholithiasis and cholelithiasis in the MRCP images, producing good performance in tests, differentiating them from "normal" MRCP images. With the high success rate of over 90%, refinement of the scheme could be applicable in the clinical environment as a tool in aiding diagnosis, with possible applications in telemedicine.
  4. Chan BT, Lim E, Chee KH, Abu Osman NA
    Comput Biol Med, 2013 May;43(4):377-85.
    PMID: 23428371 DOI: 10.1016/j.compbiomed.2013.01.013
    The heart is a sophisticated functional organ that plays a crucial role in the blood circulatory system. Hemodynamics within the heart chamber can be indicative of exert cardiac health. Due to the limitations of current cardiac imaging modalities, computational fluid dynamics (CFD) have been widely used for the purposes of cardiac function assessment and heart disease diagnosis, as they provide detailed insights into the cardiac flow field. An understanding of ventricular hemodynamics and pathological severities can be gained through studies that employ the CFD method. In this research the hemodynamics of two common myocardial diseases, dilated cardiomyopathy (DCM) and myocardial infarction (MI) were investigated, during both the filling phase and the whole cardiac cycle, through a prescribed geometry and fluid structure interaction (FSI) approach. The results of the research indicated that early stage disease identification and the improvement of cardiac assisting devices and therapeutic procedures can be facilitated through the use of the CFD method.
  5. Al-Qdah M, Ramli AR, Mahmud R
    Comput Biol Med, 2005 Dec;35(10):905-14.
    PMID: 16310014
    This paper uses wavelets in the detection comparison of breast cancer among the three main races in Malaysia: Chinese, Malays, and Indians followed by a system that evaluates the radiologist's findings over a period of time to gauge the radiologist's skills in confirming breast cancer cases. The db4 wavelet has been utilized to detect microcalcifications in mammogram-digitized images obtained from Malaysian women sample. The wavelet filter's detection evaluation was done by visual inspection by an expert radiologist to confirm the detection results of those pixels that corresponded to microcalcifications. Detection was counted if the wavelet-detected pixels corresponded to the radiologist's identified microcalcification pixels. After the radiologist's detection confirmation a new client-server radiologist recording and evaluation system is designed to evaluate the findings of the radiologist over some period of cancer detection working time. It is a system that records the findings of the Malaysian radiologist for the presence of breast cancer in Malaysian patients and provides a way of registering the progress of detecting breast cancer of the radiologist by tracking certain metric values such as the sensitivity, specificity, and receiver operator curve (ROC). The initial findings suggest that no single race mammograms are easier for wavelets' detections of microcalcifications and for the radiologist confirmation even though for this study the Chinese race samples detection average were a few percentages less than the other two races, namely the Malay and Indian races.
  6. Shyam Sunder R, Eswaran C, Sriraam N
    Comput Biol Med, 2006 Sep;36(9):958-73.
    PMID: 16026779
    In this paper, 3-D discrete Hartley transform is applied for the compression of two medical modalities, namely, magnetic resonance images and X-ray angiograms and the performance results are compared with those of 3-D discrete cosine and Fourier transforms using the parameters such as PSNR and bit rate. It is shown that the 3-D discrete Hartley transform is better than the other two transforms for magnetic resonance brain images whereas for the X-ray angiograms, the 3-D discrete cosine transform is found to be superior.
  7. Algamal ZY, Lee MH
    Comput Biol Med, 2015 Dec 1;67:136-45.
    PMID: 26520484 DOI: 10.1016/j.compbiomed.2015.10.008
    Cancer classification and gene selection in high-dimensional data have been popular research topics in genetics and molecular biology. Recently, adaptive regularized logistic regression using the elastic net regularization, which is called the adaptive elastic net, has been successfully applied in high-dimensional cancer classification to tackle both estimating the gene coefficients and performing gene selection simultaneously. The adaptive elastic net originally used elastic net estimates as the initial weight, however, using this weight may not be preferable for certain reasons: First, the elastic net estimator is biased in selecting genes. Second, it does not perform well when the pairwise correlations between variables are not high. Adjusted adaptive regularized logistic regression (AAElastic) is proposed to address these issues and encourage grouping effects simultaneously. The real data results indicate that AAElastic is significantly consistent in selecting genes compared to the other three competitor regularization methods. Additionally, the classification performance of AAElastic is comparable to the adaptive elastic net and better than other regularization methods. Thus, we can conclude that AAElastic is a reliable adaptive regularized logistic regression method in the field of high-dimensional cancer classification.
  8. Mookiah MR, Acharya UR, Fujita H, Tan JH, Chua CK, Bhandary SV, et al.
    Comput Biol Med, 2015 Nov 1;66:295-315.
    PMID: 26453760 DOI: 10.1016/j.compbiomed.2015.09.012
    Diabetic Macular Edema (DME) is caused by accumulation of extracellular fluid from hyperpermeable capillaries within the macula. DME is one of the leading causes of blindness among Diabetes Mellitus (DM) patients. Early detection followed by laser photocoagulation can save the visual loss. This review discusses various imaging modalities viz. biomicroscopy, Fluorescein Angiography (FA), Optical Coherence Tomography (OCT) and colour fundus photographs used for diagnosis of DME. Various automated DME grading systems using retinal fundus images, associated retinal image processing techniques for fovea, exudate detection and segmentation are presented. We have also compared various imaging modalities and automated screening methods used for DME grading. The reviewed literature indicates that FA and OCT identify DME related changes accurately. FA is an invasive method, which uses fluorescein dye, and OCT is an expensive imaging method compared to fundus photographs. Moreover, using fundus images DME can be identified and automated. DME grading algorithms can be implemented for telescreening. Hence, fundus imaging based DME grading is more suitable and affordable method compared to biomicroscopy, FA, and OCT modalities.
  9. Habibi N, Norouzi A, Mohd Hashim SZ, Shamsir MS, Samian R
    Comput Biol Med, 2015 Nov 1;66:330-6.
    PMID: 26476414 DOI: 10.1016/j.compbiomed.2015.09.015
    Recombinant protein overexpression, an important biotechnological process, is ruled by complex biological rules which are mostly unknown, is in need of an intelligent algorithm so as to avoid resource-intensive lab-based trial and error experiments in order to determine the expression level of the recombinant protein. The purpose of this study is to propose a predictive model to estimate the level of recombinant protein overexpression for the first time in the literature using a machine learning approach based on the sequence, expression vector, and expression host. The expression host was confined to Escherichia coli which is the most popular bacterial host to overexpress recombinant proteins. To provide a handle to the problem, the overexpression level was categorized as low, medium and high. A set of features which were likely to affect the overexpression level was generated based on the known facts (e.g. gene length) and knowledge gathered from related literature. Then, a representative sub-set of features generated in the previous objective was determined using feature selection techniques. Finally a predictive model was developed using random forest classifier which was able to adequately classify the multi-class imbalanced small dataset constructed. The result showed that the predictive model provided a promising accuracy of 80% on average, in estimating the overexpression level of a recombinant protein.
  10. Acharya UR, Mookiah MR, Koh JE, Tan JH, Noronha K, Bhandary SV, et al.
    Comput Biol Med, 2016 06 01;73:131-40.
    PMID: 27107676 DOI: 10.1016/j.compbiomed.2016.04.009
    Age-related Macular Degeneration (AMD) affects the central vision of aged people. It can be diagnosed due to the presence of drusen, Geographic Atrophy (GA) and Choroidal Neovascularization (CNV) in the fundus images. It is labor intensive and time-consuming for the ophthalmologists to screen these images. An automated digital fundus photography based screening system can overcome these drawbacks. Such a safe, non-contact and cost-effective platform can be used as a screening system for dry AMD. In this paper, we are proposing a novel algorithm using Radon Transform (RT), Discrete Wavelet Transform (DWT) coupled with Locality Sensitive Discriminant Analysis (LSDA) for automated diagnosis of AMD. First the image is subjected to RT followed by DWT. The extracted features are subjected to dimension reduction using LSDA and ranked using t-test. The performance of various supervised classifiers namely Decision Tree (DT), Support Vector Machine (SVM), Probabilistic Neural Network (PNN) and k-Nearest Neighbor (k-NN) are compared to automatically discriminate to normal and AMD classes using ranked LSDA components. The proposed approach is evaluated using private and public datasets such as ARIA and STARE. The highest classification accuracy of 99.49%, 96.89% and 100% are reported for private, ARIA and STARE datasets. Also, AMD index is devised using two LSDA components to distinguish two classes accurately. Hence, this proposed system can be extended for mass AMD screening.
  11. Sudarshan VK, Acharya UR, Ng EY, Tan RS, Chou SM, Ghista DN
    Comput Biol Med, 2016 Apr 1;71:231-40.
    PMID: 26898671 DOI: 10.1016/j.compbiomed.2016.01.028
    Cross-sectional view echocardiography is an efficient non-invasive diagnostic tool for characterizing Myocardial Infarction (MI) and stages of expansion leading to heart failure. An automated computer-aided technique of cross-sectional echocardiography feature assessment can aid clinicians in early and more reliable detection of MI patients before subsequent catastrophic post-MI medical conditions. Therefore, this paper proposes a novel Myocardial Infarction Index (MII) to discriminate infarcted and normal myocardium using features extracted from apical cross-sectional views of echocardiograms. The cross-sectional view of normal and MI echocardiography images are represented as textons using Maximum Responses (MR8) filter banks. Fractal Dimension (FD), Higher-Order Statistics (HOS), Hu's moments, Gabor Transform features, Fuzzy Entropy (FEnt), Energy, Local binary Pattern (LBP), Renyi's Entropy (REnt), Shannon's Entropy (ShEnt), and Kapur's Entropy (KEnt) features are extracted from textons. These features are ranked using t-test and fuzzy Max-Relevancy and Min-Redundancy (mRMR) ranking methods. Then, combinations of highly ranked features are used in the formulation and development of an integrated MII. This calculated novel MII is used to accurately and quickly detect infarcted myocardium by using one numerical value. Also, the highly ranked features are subjected to classification using different classifiers for the characterization of normal and MI LV ultrasound images using a minimum number of features. Our current technique is able to characterize MI with an average accuracy of 94.37%, sensitivity of 91.25% and specificity of 97.50% with 8 apical four chambers view features extracted from only single frame per patient making this a more reliable and accurate classification.
  12. Sudarshan VK, Acharya UR, Ng EY, Tan RS, Chou SM, Ghista DN
    Comput Biol Med, 2016 Apr 1;71:241-51.
    PMID: 26897481 DOI: 10.1016/j.compbiomed.2016.01.029
    Early expansion of infarcted zone after Acute Myocardial Infarction (AMI) has serious short and long-term consequences and contributes to increased mortality. Thus, identification of moderate and severe phases of AMI before leading to other catastrophic post-MI medical condition is most important for aggressive treatment and management. Advanced image processing techniques together with robust classifier using two-dimensional (2D) echocardiograms may aid for automated classification of the extent of infarcted myocardium. Therefore, this paper proposes novel algorithms namely Curvelet Transform (CT) and Local Configuration Pattern (LCP) for an automated detection of normal, moderately infarcted and severely infarcted myocardium using 2D echocardiograms. The methodology extracts the LCP features from CT coefficients of echocardiograms. The obtained features are subjected to Marginal Fisher Analysis (MFA) dimensionality reduction technique followed by fuzzy entropy based ranking method. Different classifiers are used to differentiate ranked features into three classes normal, moderate and severely infarcted based on the extent of damage to myocardium. The developed algorithm has achieved an accuracy of 98.99%, sensitivity of 98.48% and specificity of 100% for Support Vector Machine (SVM) classifier using only six features. Furthermore, we have developed an integrated index called Myocardial Infarction Risk Index (MIRI) to detect the normal, moderately and severely infarcted myocardium using a single number. The proposed system may aid the clinicians in faster identification and quantification of the extent of infarcted myocardium using 2D echocardiogram. This system may also aid in identifying the person at risk of developing heart failure based on the extent of infarcted myocardium.
  13. Ahmad M, Jung LT, Bhuiyan MA
    Comput Biol Med, 2016 Feb 1;69:144-51.
    PMID: 26773936 DOI: 10.1016/j.compbiomed.2015.12.017
    A coding measure scheme numerically translates the DNA sequence to a time domain signal for protein coding regions identification. A number of coding measure schemes based on numerology, geometry, fixed mapping, statistical characteristics and chemical attributes of nucleotides have been proposed in recent decades. Such coding measure schemes lack the biologically meaningful aspects of nucleotide data and hence do not significantly discriminate coding regions from non-coding regions. This paper presents a novel fuzzy semantic similarity measure (FSSM) coding scheme centering on FSSM codons׳ clustering and genetic code context of nucleotides. Certain natural characteristics of nucleotides i.e. appearance as a unique combination of triplets, preserving special structure and occurrence, and ability to own and share density distributions in codons have been exploited in FSSM. The nucleotides׳ fuzzy behaviors, semantic similarities and defuzzification based on the center of gravity of nucleotides revealed a strong correlation between nucleotides in codons. The proposed FSSM coding scheme attains a significant enhancement in coding regions identification i.e. 36-133% as compared to other existing coding measure schemes tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms.
  14. Sudarshan VK, Mookiah MR, Acharya UR, Chandran V, Molinari F, Fujita H, et al.
    Comput Biol Med, 2016 Feb 1;69:97-111.
    PMID: 26761591 DOI: 10.1016/j.compbiomed.2015.12.006
    Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images.
  15. Mookiah MR, Acharya UR, Fujita H, Koh JE, Tan JH, Noronha K, et al.
    Comput Biol Med, 2015 Aug;63:208-18.
    PMID: 26093788 DOI: 10.1016/j.compbiomed.2015.05.019
    Age-related Macular Degeneration (AMD) is an irreversible and chronic medical condition characterized by drusen, Choroidal Neovascularization (CNV) and Geographic Atrophy (GA). AMD is one of the major causes of visual loss among elderly people. It is caused by the degeneration of cells in the macula which is responsible for central vision. AMD can be dry or wet type, however dry AMD is most common. It is classified into early, intermediate and late AMD. The early detection and treatment may help one to stop the progression of the disease. Automated AMD diagnosis may reduce the screening time of the clinicians. In this work, we have introduced LCP to characterize normal and AMD classes using fundus images. Linear Configuration Coefficients (CC) and Pattern Occurrence (PO) features are extracted from fundus images. These extracted features are ranked using p-value of the t-test and fed to various supervised classifiers viz. Decision Tree (DT), Nearest Neighbour (k-NN), Naive Bayes (NB), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to classify normal and AMD classes. The performance of the system is evaluated using both private (Kasturba Medical Hospital, Manipal, India) and public domain datasets viz. Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) using ten-fold cross validation. The proposed approach yielded best performance with a highest average accuracy of 97.78%, sensitivity of 98.00% and specificity of 97.50% for STARE dataset using 22 significant features. Hence, this system can be used as an aiding tool to the clinicians during mass eye screening programs to diagnose AMD.
  16. Vidya KS, Ng EY, Acharya UR, Chou SM, Tan RS, Ghista DN
    Comput Biol Med, 2015 Jul;62:86-93.
    PMID: 25912990 DOI: 10.1016/j.compbiomed.2015.03.033
    Myocardial Infarction (MI) or acute MI (AMI) is one of the leading causes of death worldwide. Precise and timely identification of MI and extent of muscle damage helps in early treatment and reduction in the time taken for further tests. MI diagnosis using 2D echocardiography is prone to inter-/intra-observer variability in the assessment. Therefore, a computerised scheme based on image processing and artificial intelligent techniques can reduce the workload of clinicians and improve the diagnosis accuracy. A Computer-Aided Diagnosis (CAD) of infarcted and normal ultrasound images will be useful for clinicians. In this study, the performance of CAD approach using Discrete Wavelet Transform (DWT), second order statistics calculated from Gray-Level Co-Occurrence Matrix (GLCM) and Higher-Order Spectra (HOS) texture descriptors are compared. The proposed system is validated using 400 MI and 400 normal ultrasound images, obtained from 80 patients with MI and 80 normal subjects. The extracted features are ranked based on t-value and fed to the Support Vector Machine (SVM) classifier to obtain the best performance using minimum number of features. The features extracted from DWT coefficients obtained an accuracy of 99.5%, sensitivity of 99.75% and specificity of 99.25%; GLCM have achieved an accuracy of 85.75%, sensitivity of 90.25% and specificity of 81.25%; and HOS obtained an accuracy of 93.0%, sensitivity of 94.75% and specificity of 91.25%. Among the three techniques presented DWT yielded the highest classification accuracy. Thus, the proposed CAD approach may be used as a complementary tool to assist cardiologists in making a more accurate diagnosis for the presence of MI.
  17. Pszczolkowski S, Law ZK, Gallagher RG, Meng D, Swienton DJ, Morgan PS, et al.
    Comput Biol Med, 2019 03;106:126-139.
    PMID: 30711800 DOI: 10.1016/j.compbiomed.2019.01.022
    BACKGROUND: Spontaneous intracerebral haemorrhage (SICH) is a common condition with high morbidity and mortality. Segmentation of haematoma and perihaematoma oedema on medical images provides quantitative outcome measures for clinical trials and may provide important markers of prognosis in people with SICH.

    METHODS: We take advantage of improved contrast seen on magnetic resonance (MR) images of patients with acute and early subacute SICH and introduce an automated algorithm for haematoma and oedema segmentation from these images. To our knowledge, there is no previously proposed segmentation technique for SICH that utilises MR images directly. The method is based on shape and intensity analysis for haematoma segmentation and voxel-wise dynamic thresholding of hyper-intensities for oedema segmentation.

    RESULTS: Using Dice scores to measure segmentation overlaps between labellings yielded by the proposed algorithm and five different expert raters on 18 patients, we observe that our technique achieves overlap scores that are very similar to those obtained by pairwise expert rater comparison. A further comparison between the proposed method and a state-of-the-art Deep Learning segmentation on a separate set of 32 manually annotated subjects confirms the proposed method can achieve comparable results with very mild computational burden and in a completely training-free and unsupervised way.

    CONCLUSION: Our technique can be a computationally light and effective way to automatically delineate haematoma and oedema extent directly from MR images. Thus, with increasing use of MR images clinically after intracerebral haemorrhage this technique has the potential to inform clinical practice in the future.

  18. Oh SL, Ng EYK, Tan RS, Acharya UR
    Comput Biol Med, 2019 Feb;105:92-101.
    PMID: 30599317 DOI: 10.1016/j.compbiomed.2018.12.012
    Abnormality of the cardiac conduction system can induce arrhythmia - abnormal heart rhythm - that can frequently lead to other cardiac diseases and complications, and are sometimes life-threatening. These conduction system perturbations can manifest as morphological changes on the surface electrocardiographic (ECG) signal. Assessment of these morphological changes can be challenging and time-consuming, as ECG signal features are often low in amplitude and subtle. The main aim of this study is to develop an automated computer aided diagnostic (CAD) system that can expedite the process of arrhythmia diagnosis, as an aid to clinicians to provide appropriate and timely intervention to patients. We propose an autoencoder of ECG signals that can diagnose normal sinus beats, atrial premature beats (APB), premature ventricular contractions (PVC), left bundle branch block (LBBB) and right bundle branch block (RBBB). Apart from the first, the rest are morphological beat-to-beat elements that characterize and constitute complex arrhythmia. The novelty of this work lies in how we modified the U-net model to perform beat-wise analysis on heterogeneously segmented ECGs of variable lengths derived from the MIT-BIH arrhythmia database. The proposed system has demonstrated self-learning ability in generating class activations maps, and these generated maps faithfully reflect the cardiac conditions in each ECG cardiac cycle. It has attained a high classification accuracy of 97.32% in diagnosing cardiac conditions, and 99.3% for R peak detection using a ten-fold cross validation strategy. Our developed model can help physicians to screen ECG accurately, potentially resulting in timely intervention of patients with arrhythmia.
  19. Daud KM, Mohamad MS, Zakaria Z, Hassan R, Shah ZA, Deris S, et al.
    Comput Biol Med, 2019 10;113:103390.
    PMID: 31450056 DOI: 10.1016/j.compbiomed.2019.103390
    Metabolic engineering is defined as improving the cellular activities of an organism by manipulating the metabolic, signal or regulatory network. In silico reaction knockout simulation is one of the techniques applied to analyse the effects of genetic perturbations on metabolite production. Many methods consider growth coupling as the objective function, whereby it searches for mutants that maximise the growth and production rate. However, the final goal is to increase the production rate. Furthermore, they produce one single solution, though in reality, cells do not focus on one objective and they need to consider various different competing objectives. In this work, a method, termed ndsDSAFBA (non-dominated sorting Differential Search Algorithm and Flux Balance Analysis), has been developed to find the reaction knockouts involved in maximising the production rate and growth rate of the mutant, by incorporating Pareto dominance concepts. The proposed ndsDSAFBA method was validated using three genome-scale metabolic models. We obtained a set of non-dominated solutions, with each solution representing a different mutant strain. The results obtained were compared with the single objective optimisation (SOO) and multi-objective optimisation (MOO) methods. The results demonstrate that ndsDSAFBA is better than the other methods in terms of production rate and growth rate.
  20. Maheshwari S, Kanhangad V, Pachori RB, Bhandary SV, Acharya UR
    Comput Biol Med, 2019 Feb;105:72-80.
    PMID: 30590290 DOI: 10.1016/j.compbiomed.2018.11.028
    BACKGROUND AND OBJECTIVE: Glaucoma is a ocular disorder which causes irreversible damage to the retinal nerve fibers. The diagnosis of glaucoma is important as it may help to slow down the progression. The available clinical methods and imaging techniques are manual and require skilled supervision. For the purpose of mass screening, an automated system is needed for glaucoma diagnosis which is fast, accurate, and helps in reducing the burden on experts.

    METHODS: In this work, we present a bit-plane slicing (BPS) and local binary pattern (LBP) based novel approach for glaucoma diagnosis. Firstly, our approach separates the red (R), green (G), and blue (B) channels from the input color fundus image and splits the channels into bit planes. Secondly, we extract LBP based statistical features from each of the bit planes of the individual channels. Thirdly, these features from the individual channels are fed separately to three different support vector machines (SVMs) for classification. Finally, the decisions from the individual SVMs are fused at the decision level to classify the input fundus image into normal or glaucoma class.

    RESULTS: Our experimental results suggest that the proposed approach is effective in discriminating normal and glaucoma cases with an accuracy of 99.30% using 10-fold cross validation.

    CONCLUSIONS: The developed system is ready to be tested on large and diverse databases and can assist the ophthalmologists in their daily screening to confirm their diagnosis, thereby increasing accuracy of diagnosis.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links