Displaying publications 21 - 40 of 118 in total

Abstract:
Sort:
  1. Sudaryanto A, Takahashi S, Iwata H, Tanabe S, Ismail A
    Environ Pollut, 2004 Aug;130(3):347-58.
    PMID: 15182968
    Concentration of butyltin compounds (BTs), including tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) and total tin (SigmaSn) were determined in green mussel (Perna viridis), 10 species of muscle fish and sediment from coastal waters of Malaysia. BTs were detected in all these samples ranging from 3.6 to 900 ng/g wet wt., 3.6 to 210 ng/g wet wt., and 18 to 1400 ng/g dry wt. for mussels, fish and sediments, respectively. The concentrations of BTs in several locations of this study were comparable with the reported values from some developed countries and highest among Asian developing nations. Considerable concentration of BTs in several locations might have ecotoxicological consequences and may cause concern to human health. The parent compound TBT was found to be highest than those of its degradation compounds, DBT and MBT, suggesting recent input of TBT to the Malaysian marine environment. Significant positive correlation (Spearman rank correlation: r2=0.82, P<0.0001) was found between BTs and SigmaSn, implying considerable anthropogenic input of butyltin compounds to total tin contamination levels. Enormous boating activities may be a major source of BTs in this country, although aquaculture activities may not be ignored.
  2. Su G, Ong HC, Ibrahim S, Fattah IMR, Mofijur M, Chong CT
    Environ Pollut, 2021 Jun 15;279:116934.
    PMID: 33744627 DOI: 10.1016/j.envpol.2021.116934
    The COVID-19 pandemic has exerted great shocks and challenges to the environment, society and economy. Simultaneously, an intractable issue appeared: a considerable number of hazardous medical wastes have been generated from the hospitals, clinics, and other health care facilities, constituting a serious threat to public health and environmental sustainability without proper management. Traditional disposal methods like incineration, landfill and autoclaving are unable to reduce environmental burden due to the issues such as toxic gas release, large land occupation, and unsustainability. While the application of clean and safe pyrolysis technology on the medical wastes treatment to produce high-grade bioproducts has the potential to alleviate the situation. Besides, medical wastes are excellent and ideal raw materials, which possess high hydrogen, carbon content and heating value. Consequently, pyrolysis of medical wastes can deal with wastes and generate valuable products like bio-oil and biochar. Consequently, this paper presents a critical and comprehensive review of the pyrolysis of medical wastes. It demonstrates the feasibility of pyrolysis, which mainly includes pyrolysis characteristics, product properties, related problems, the prospects and future challenges of pyrolysis of medical wastes.
  3. Sarlaki E, Kermani AM, Kianmehr MH, Asefpour Vakilian K, Hosseinzadeh-Bandbafha H, Ma NL, et al.
    Environ Pollut, 2021 Sep 15;285:117412.
    PMID: 34051566 DOI: 10.1016/j.envpol.2021.117412
    The use of agro-biowaste compost fertilizers in agriculture is beneficial from technical, financial, and environmental perspectives. Nevertheless, the physical, mechanical, and agronomical attributes of agro-biowaste compost fertilizers should be engineered to reduce their storage, handling, and utilization costs and environmental impacts. Pelletizing and drying are promising techniques to achieve these goals. In the present work, the effects of process parameters, including compost particle size/moisture content, pelletizing compression ratio, and drying air temperature/velocity, were investigated on the density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet. The Taguchi technique was applied to understand the effects of independent parameters on the output responses, while the optimal pellet properties were found using the iterative thresholding method. The soil and plant (sweet basil) response to the optimal biocompost pellet was experimentally evaluated. The farm application of the optimal pellet was also compared with the untreated agro-biowaste compost using the life cycle assessment approach to investigate the potential environmental impact mitigation of the pelletizing and drying processes. Generally, the compost moisture content was the most influential factor on the density and specific crushing energy of the dried pellet, while the moisture diffusion of the wet pellet during the drying process was significantly influenced by the pelletizing compression ratio. The density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet at the optimal conditions were 1242.49 kg/m3, 0.5054 MJ/t, and 8.2 × 10-8 m2/s, respectively. The optimal biocompost pellet could release 80% of its nitrogen content evenly over 98 days, while this value was 28 days for the chemical urea fertilizer. Besides, the optimal pellet could significantly improve the agronomical attributes of the sweet basil plant compared with the untreated biocompost. The applied strategy could collectively mitigate the weighted environmental impact of farm application of the agro-biowaste compost by more than 63%. This reduction could be attributed to the fact that the pelletizing-drying processes could avoid methane emissions from the untreated agro-biowaste compost during the farm application. Overall, pelletizing-drying of the agro-biowaste compost could be regarded as a promising strategy to improve the environmental and agronomical performance of farm application of organic biofertilizers.
  4. Sabrina J, Nurulhuda K, Amin AM, Sulaiman MF, Man HC
    Environ Pollut, 2022 Dec 15;315:120282.
    PMID: 36174812 DOI: 10.1016/j.envpol.2022.120282
    Studies have indicated that up to 47% of total N fertilizer applied in flooded rice fields may be lost to the atmosphere through NH3 volatilization. The volatilized NH3 represents monetary loss and contributes to increase in formation of PM2.5 in the atmosphere, eutrophication in surface water, and degrades water and soil quality. The NH3 is also a precursor to N2O formation. Thus, it is important to monitor NH3 volatilization from fertilized and flooded rice fields. Commercially available samplers offer ease of transportation and installation, and thus, may be considered as NH3 absorbents for the static chamber method. Hence, the objective of this study is to investigate the use of a commercially available NH3 sampler/absorbent (i.e., Ogawa® passive sampler) for implementation in a static chamber. In this study, forty closed static chambers were used to study two factors (i.e., trapping methods, exposure duration) arranged in a Randomized Complete Block Design. The three trapping methods are standard boric acid solution, Ogawa® passive sampler with acid-coated pads and exposed coated pads without casing. The exposure durations are 1 and 4 h. Results suggest that different levels of absorbed NH3 was obtained for each of the trapping methods. Highest level of NH3 was trapped by the standard boric acid solution, followed by the exposed acid-coated pads without casing, and finally acid-coated pads with protective casing, given the same exposure duration. The differences in absorbed NH3 under same conditions does not warrant direct comparison across the different trapping methods. Any three trapping methods can be used for conducting studies to compare multi-treatments using the static chamber method, provided the same trapping method is applied for all chambers.
  5. Romano N, Ashikin M, Teh JC, Syukri F, Karami A
    Environ Pollut, 2018 Jun;237:1106-1111.
    PMID: 29157968 DOI: 10.1016/j.envpol.2017.11.040
    Silver barb Barbodes gonionotus fry were exposed to polyvinyl chloride (PVC) fragments at increasing concentrations of 0.2, 0.5 and 1.0 mg/L for 96 h, following which whole body histological evaluation and analysis of the digestive enzymes trypsin and chymotrypsin were performed. Whole body trypsin and chymotrypsin activities increased significantly in fish exposed to 0.5 and 1.0 mg/L PVC as compared those exposed to zero or 0.2 mg/L PVC. In fish exposed to all tested concentrations, PVCs were observed in both the proximal and distal intestine, and fish exposed to 0.5-1.0 and 1.0 mg/L PVC, respectively, and these particles were associated with localized thickening of the mucosal epithelium. No tissue damage was evident in any other internal organs or gills. This lack of damage may be attributed to the absence of contaminants associated with the PVC fragments and their relatively smooth surface. The increased whole body trypsin and chymotrypsin activities may indicate an attempt to enhance digestion to compensate for epithelial thickening of the intestine and/or to digest the plastics.
  6. Rehman GU, Tahir M, Goh PS, Ismail AF, Samavati A, Zulhairun AK, et al.
    Environ Pollut, 2019 Oct;253:1066-1078.
    PMID: 31434184 DOI: 10.1016/j.envpol.2019.07.013
    In this study, the synthesis of Fe3O4@GO@g-C3N4 ternary nanocomposite for enhanced photocatalytic degradation of phenol has been investigated. The surface modification of Fe3O4 was performed through layer-by-layer electrostatic deposition meanwhile the heterojunction structure of ternary nanocomposite was obtained through sonicated assisted hydrothermal method. The photocatalysts were characterized for their crystallinity, surface morphology, chemical functionalities, and band gap energy. The Fe3O4@GO@g-C3N4 ternary nanocomposite achieved phenol degradation of ∼97%, which was significantly higher than that of Fe3O4@GO (∼75%) and Fe3O4 (∼62%). The enhanced photoactivity was due to the efficient charge carrier separation and desired band structure. The photocatalytic performance was further enhanced with the addition of hydrogen peroxide, in which phenol degradation up to 100% was achieved in 2 h irradiation time. The findings revealed that operating parameters have significant influences on the photocatalytic activities. It was found that lower phenol concentration promoted higher activity. In this study, 0.3 g of Fe3O4@GO@g-C3N4 was found to be the optimized photocatalyst for phenol degradation. At the optimized condition, the reaction rate constant was reported as 6.96 × 10-3 min-1. The ternary photocatalyst showed excellent recyclability in three consecutive cycles, which confirmed the stability of this ternary nanocomposite for degradation applications.
  7. Ratnasari A, Syafiuddin A, Zaidi NS, Hong Kueh AB, Hadibarata T, Prastyo DD, et al.
    Environ Pollut, 2022 Jan 01;292(Pt B):118474.
    PMID: 34763013 DOI: 10.1016/j.envpol.2021.118474
    The emergence and continual accumulation of industrial micropollutants such as dyes, heavy metals, organic matters, and pharmaceutical active compounds (PhACs) in the ecosystem pose an alarming hazard to human health and the general wellbeing of global flora and fauna. To offer eco-friendly solutions, living and non-living algae have lately been identified and broadly practiced as promising agents in the bioremediation of micropollutants. The approach is promoted by recent findings seeing better removal performance, higher efficiency, surface area, and binding affinity of algae in various remediation events compared to bacteria and fungi. To give a proper and significant insight into this technology, this paper comprehensively reviews its current applications, removal mechanisms, comparative efficacies, as well as future outlooks and recommendations. In conducting the review, the secondary data of micropollutants removal have been gathered from numerous sources, from which their removal performances are analyzed and presented in terms of strengths, weaknesses, opportunities, and threats (SWOT), to specifically examine their suitability for selected micropollutants remediation. Based on kinetic, isotherm, thermodynamic, and SWOT analysis, non-living algae are generally more suitable for dyes and heavy metals removal, meanwhile living algae are appropriate for removal of organic matters and PhACs. Moreover, parametric effects on micropollutants removal are evaluated, highlighting that pH is critical for biodegradation activity. For selective pollutants, living and non-living algae show recommendable prospects as agents for the efficient cleaning of industrial wastewaters while awaiting further supporting discoveries in encouraging technology assurance and extensive applications.
  8. Raksasat R, Lim JW, Kiatkittipong W, Kiatkittipong K, Ho YC, Lam MK, et al.
    Environ Pollut, 2020 Dec;267:115488.
    PMID: 32891050 DOI: 10.1016/j.envpol.2020.115488
    The increase of annual organic wastes generated worldwide has become a major problem for many countries since the mismanagement could bring about negative effects on the environment besides, being costly for an innocuous disposal. Recently, insect larvae have been investigated to valorize organic wastes. This entomoremediation approach is rising from the ability of the insect larvae to convert organic wastes into its biomass via assimilation process as catapulted by the natural demand to complete its lifecycle. Among the insect species, black soldier fly or Hermetia illucens is widely researched since the larvae can grow in various environments while being saprophagous in nature. Even though black soldier fly larvae (BSFL) can ingest various decay materials, some organic wastes such as sewage sludge or lignocellulosic wastes such as waste coconut endosperm are destitute of decent nutrients that could retard the BSFL growth. Hence, blending with nutrient-rich low-cost substrates such as palm kernel expeller, soybean curd residue, etc. is employed to fortify the nutritional contents of larval feeding substrates prior to administering to the BSFL. Alternatively, microbial fermentation can be adopted to breakdown the lignocellulosic wastes, exuding essential nutrients for growing BSFL. Upon reaching maturity, the BSFL can be harvested to serve as the protein and lipid feedstock. The larval protein can be made into insect meal for farmed animals, whilst the lipid source could be extracted and transesterified into larval biodiesel to cushion the global energy demands. Henceforth, this review presents the influence of various organic wastes introduced to feed BSFL, targeting to reduce wastes and producing biochemicals from mature larvae through entomoremediation. Modification of recalcitrant organic wastes via fermentation processes is also unveiled to ameliorate the BSFL growth. Lastly, the sustainable applications of harvested BSFL biomass are as well covered together with the immediate shortcomings that entail further researches.
  9. Rajendran S, Hoang TKA, Trudeau ML, Jalil AA, Naushad M, Awual MR
    Environ Pollut, 2022 Jan 01;292(Pt B):118375.
    PMID: 34656681 DOI: 10.1016/j.envpol.2021.118375
    Recently, hetero junction materials (p-n-p and n-p-n) have been developed for uplifting the visible light activity to destroy the harmful pollutants in wastewater. This manuscript presents a vivid description of novel n-p-n junction materials namely CeO2-PPy-ZnO. This novel n-p-n junction was applied as the photocatalyst in drifting the mobility of charge carriers and hence obtaining the better photocatalytic activity when compared with p-n and pure system. Such catalyst's syntheses were successful via the copolymerization method. The structural, morphological and optical characterization techniques were applied to identify the physio-chemical properties of the prepared materials. Additionally, the superior performance of this n-p-n nanostructured material was demonstrated in the destruction of micro organic (chlorophenol) toxic wastes under visible light. The accomplished ability of the prepared catalysts (up to 92% degradation of chlorophenol after 180 min of irradiation) and their profound degradation mechanism was explained in detail.
  10. Radzi Abas M, Ahmad-Shah A, Nor Awang M
    Environ Pollut, 1992;75(2):209-13.
    PMID: 15092035
    A study was carried out to determine the chemical composition of bulk precipitation, throughfall and stemflow in an urban forest in Kuala Lumpur, Malaysia. The mean weekly rainfall recorded during the period of study was 63.2 mm. Throughfall, stemflow and canopy interception of incident precipitation were 77.1%, 1.2% and 21.7% respectively. Bulk precipitation, througfall and stemflow were acidic, the pH recorded being 4.37, 4.71 and 4.15 respectively. In all cases the dominant ions were NO3, SO4, Cl, NH4, K, Ca and Na. Of the ions studied Ca, K, Cl, SO4, Mg and Mn showed net increases in passing through the forest canopy, while NH4, Na, NO3, Zn, H and Fe showed net retention. This study shows that the urban environment of Kuala Lumpur contributes considerable amounts of materials to the atmosphere, as reflected by the high ionic contents in bulk precipitation, throughfall and stemflow.
  11. Qu Y, Yang Y, Sonne C, Chen X, Yue X, Gu H, et al.
    Environ Pollut, 2023 Nov 01;336:122417.
    PMID: 37598935 DOI: 10.1016/j.envpol.2023.122417
    Industrialization and overpopulation have polluted aquatic environments with significant impacts on human health and wildlife. The main pollutants in urban sewage are nitrogen, phosphorus, heavy metals and organic pollutants, which need to be treated with sewage, and the use of aquatic plants to purify wastewater has high efficiency and low cost. However, the effectiveness and efficiency of phytoremediation are also affected by temperature, pH, microorganisms and other factors. The use of biochar can reduce the cost of wastewater purification, and the combination of biochar and nanotechnology can improve the efficiency of wastewater purification. Some aquatic plants can enrich pollutants in wastewater, so it can be considered to plant these aquatic plants in constructed wetlands to achieve the effect of purifying wastewater. Biochar treatment technology can purify wastewater with high efficiency and low cost, and can be further applied to constructed wetlands. In this paper, the latest research progress of various pollutants in wastewater purification by aquatic plants is reviewed, and the efficient treatment technology of wastewater by biochar is discussed. It provides theoretical basis for phytoremediation of urban sewage pollution in the future.
  12. Priya AK, Pachaiappan R, Kumar PS, Jalil AA, Vo DN, Rajendran S
    Environ Pollut, 2021 Apr 15;275:116598.
    PMID: 33581625 DOI: 10.1016/j.envpol.2021.116598
    Anthropogenic activities and population growth have resulted in a reduced availability of drinking water. To ensure consistency in the existence of drinking water, it is inevitable to establish wastewater treatment plants (WWTPs). 70% of India's rural population was found to be without WWTP, waste disposal, and good sanitation. Wastewater has emerged from kitchens, washrooms, etc., with industry activities. This scenario caused severe damage to water resources, leading to degradation of water quality and pathogenic insects. Thus, it is a need of an hour to prompt for better WWTPs for both rural and urban areas. Many parts of the world have started to face severe water shortages in recent years, and wastewater reuse methods need to be updated. Clean water supply is not enough to satisfy the needs of the planet as a whole, and the majority of freshwater in the polar regions takes the form of ice and snow. The increasing population requires clean water for drinks, hygiene, irrigation, and various other applications. Lack of water and contamination of water result from human activities. 90% of wastewater is released to water systems without treatment in developing countries. Studies show that about 730 megatons of waste are annually discharged into water from sewages and other effluents. The sustenance of water resources, applying wastewater treatment technologies, and calling down the percentage of potable water has to be strictly guided by mankind. This review compares the treatment of domestic sewage to its working conditions, energy efficiency, etc. In this review, several treatment methods with different mechanisms involved in waste treatment, industrial effluents, recovery/recycling were discussed. The feasibility of bioaugmentation should eventually be tested through data from field implementation as an important technological challenge, and this analysis identifies many promising areas to be explored in the future.
  13. Praveena SM, Shamsul Ariffin NI, Nafisyah AL
    Environ Pollut, 2022 Dec 15;315:120494.
    PMID: 36279991 DOI: 10.1016/j.envpol.2022.120494
    The World Health Organization noted that there is a growing need to determine the occurrence of microplastics in bottled water and its potential risks to human health. Thus, present study analyzes microplastics in eight major bottled water brands available in Malaysia and estimates the potential human exposure. Membrane filtration method followed by visual and polymer identifications were utilized to identify microplastics particles in these eight major bottled water brands. Microplastic concentrations in bottled water samples ranged from 8 to 22 particles/L, with an average of 11.7 ± 4.6 particles/L. Particle sizes ranging between 100 and 300 μm were dominant and accounted for approximately 31% in these bottled water brands. Fragments were the most identified microplastics in bottled water with transparent color being the most prevalent. The polyethylene terephthalate (PET) and polypropylene (PP) polymer types found in this study are consistent with prior results in that microplastics in bottled water are mainly derived from packaging materials and bottle caps. The Estimated Dietary Intake (EDI) for adults was between 0.068 and 0.19 particle/kg/day, while the EDI for children was between 0.089 and 0.25 particle/kg/day. Although consumption of bottled water was estimated to have low EDI values, the potential risks to human health should be heeded due to the presence of numerous plastic additives and residual monomers in these particles, which have the potential to increase inflammatory reactions and cytotoxicity in human body. Future studies should concentrate on understanding microplastics particles less than 1.5 μm and other associated factors (bottled material quality, consumption behaviour, bottled water storage conditions, and the frequency of bottle opening and closing) to further understand the effects of these microplastics particles on human toxicological aspects.
  14. Panda BP, Mohanta YK, Parida SP, Pradhan A, Mohanta TK, Patowary K, et al.
    Environ Pollut, 2023 Aug 01;330:121796.
    PMID: 37169242 DOI: 10.1016/j.envpol.2023.121796
    Metals are micropollutants that cannot be degraded by microorganisms and are infiltrated into various environmental media, including both freshwater and marine water. Metals from polluted water are absorbed by many aquatic species, especially fish. Fish is a staple food in the diets of many regions in the world; hence, both the type and concentration of metals accumulated and transferred from contaminated water sources to fish must be determined and assessed. In this study, the heavy metal concentration was determined and assessed in fish collected from freshwater sources via published literature and Estimated Daily Intake (EDI), Target hazard quotient (THQ), and Carcinogenic Risk (CR) analyses, aiming to examine the metal pollution in freshwater fish. The fish was used as a bioindicator, and Geographic information system (GIS) was sued to map the polluted regions. The results confirmed that Pb was detected in fish sampled at 28 locations, Cr at 24 locations, Cu and Zn at 30 locations, with values Pb detected ranging from 0.0016 mg kg-1 to 44.3 mg kg-1, Cr detected ranging from 0.07 mg kg-1 to 27 mg kg-1, Cu detected ranging from 0.031 mg kg-1 to 35.54 mg kg-1, and Zn detected ranging from 0.242 mg kg-1 to 103.2 mg kg-1. The strongest positive associations were discovered between Cu-Zn (r = 0.74, p 
  15. Othman J, Sahani M, Mahmud M, Ahmad MK
    Environ Pollut, 2014 Jun;189:194-201.
    PMID: 24682070 DOI: 10.1016/j.envpol.2014.03.010
    This study assessed the economic value of health impacts of transboundary smoke haze pollution in Kuala Lumpur and adjacent areas in the state of Selangor, Malaysia. Daily inpatient data from 2005, 2006, 2008, and 2009 for 14 haze-related illnesses were collected from four hospitals. On average, there were 19 hazy days each year during which the air pollution levels were within the Lower Moderate to Hazardous categories. No seasonal variation in inpatient cases was observed. A smoke haze occurrence was associated with an increase in inpatient cases by 2.4 per 10,000 populations each year, representing an increase of 31 percent from normal days. The average annual economic loss due to the inpatient health impact of haze was valued at MYR273,000 ($91,000 USD).
  16. Omar TFT, Aris AZ, Yusoff FM, Mustafa S
    Environ Pollut, 2019 May;248:763-773.
    PMID: 30851586 DOI: 10.1016/j.envpol.2019.02.060
    The occurrence, level, and distribution of multiclass emerging organic contaminants (EOCs) in fish and mollusks from the Klang River estuary were examined. The targeted EOCs for this assessment were phenolic endocrine disrupting compounds (bisphenol A, 4-OP, and 4-NP), organophosphorous pesticides (quinalphos, chlorpyrifos, and diazinon), estrogenic hormones (E2, E1, and EE2), and pharmaceutically active chemicals (primidone, sulfamethoxazole, dexamethasone, diclofenac, amoxicillin, progesterone, and testosterone). Results from this study showed that the prevalent contamination of the Klang River estuary by EOCs with diclofenac, bisphenol A, progesterone, and amoxicillin were predominantly detected in fish and mollusks. Among the EOCs, diclofenac and progesterone had the highest concentrations in fish and mollusk samples, respectively. The concentrations of diclofenac and progesterone in fish and mollusk samples range from 1.42 ng/g to 10.76 ng/g and from 0.73 ng/g to 9.57 ng/g, respectively. Bisphenol A should also be highlighted because of its significant presence in both fish and mollusks. The concentration of bisphenol A in both matrices range from 0.92 ng/g to 5.79 ng/g. The calculated hazard quotient (HQ) for diclofenac, bisphenol A, and progesterone without consideration to their degradation byproduct were less than one, thus suggesting that the consumption of fish and mollusks from the Klang River estuary will unlikely pose any health risk to consumers on the basis of the current assessment. Nonetheless, this preliminary result is an important finding for pollution studies in Malaysian tropical coastal ecosystems, particularly for organic micropollutant EOCs, and can serve as a baseline database for future reference.
  17. Nhu TT, Schaubroeck T, Henriksson PJG, Bosma R, Sorgeloos P, Dewulf J
    Environ Pollut, 2016 Dec;219:156-165.
    PMID: 27814531 DOI: 10.1016/j.envpol.2016.10.006
    Pangasius production in Vietnam is widely known as a success story in aquaculture, the fastest growing global food system because of its tremendous expansion by volume, value and the number of international markets to which Pangasius has been exported in recent years. While certification schemes are becoming significant features of international fish trade and marketing, an increasing number of Pangasius producers have followed at least one of the certification schemes recognised by international markets to incorporate environmental and social sustainability practices in aquaculture, typically the Pangasius Aquaculture Dialogue (PAD) scheme certified by the Aquaculture Stewardship Council (ASC). An assessment of the environmental benefit of applying certification schemes on Pangasius production, however, is still needed. This article compared the environmental impact of ASC-certified versus non-ASC certified intensive Pangasius aquaculture, using a statistically supported LCA. We focused on both resource-related (water, land and total resources) and emissions-related (global warming, acidification, freshwater and marine eutrophication) categories. The ASC certification scheme was shown to be a good approach for determining adequate environmental sustainability, especially concerning emissions-related categories, in Pangasius production. However, the non-ASC certified farms, due to the large spread, the impact (e.g., water resources and freshwater eutrophication) was possibly lower for a certain farm. However, this result was not generally prominent. Further improvements in intensive Pangasius production to inspire certification schemes are proposed, e.g., making the implementation of certification schemes more affordable, well-oriented and facilitated; reducing consumed feed amounts and of the incorporated share in fishmeal, especially domestic fishmeal, etc. However, their implementation should be vetted with key stakeholders to assess their feasibility.
  18. Nguyen TTN, Pham HV, Lasko K, Bui MT, Laffly D, Jourdan A, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113106.
    PMID: 31541826 DOI: 10.1016/j.envpol.2019.113106
    Satellite observations for regional air quality assessment rely on comprehensive spatial coverage, and daily monitoring with reliable, cloud-free data quality. We investigated spatiotemporal variation and data quality of two global satellite Aerosol Optical Depth (AOD) products derived from MODIS and VIIRS imagery. AOD is considered an essential atmospheric parameter strongly related to ground Particulate Matter (PM) in Southeast Asia (SEA). We analyze seasonal variation, urban/rural area influence, and biomass burning effects on atmospheric pollution. Validation indicated a strong relationship between AERONET ground AOD and both MODIS AOD (R2 = 0.81) and VIIRS AOD (R2 = 0.68). The monthly variation of satellite AOD and AERONET AOD reflects two seasonal trends of air quality separately for mainland countries including Myanmar, Laos, Cambodia, Thailand, Vietnam, and Taiwan, Hong Kong, and for maritime countries consisting of Indonesia, Philippines, Malaysia, Brunei, Singapore, and Timor Leste. The mainland SEA has a pattern of monthly AOD variation in which AODs peak in March/April, decreasing during wet season from May-September, and increasing to the second peak in October. However, in maritime SEA, AOD concentration peaks in October. The three countries with the highest annual satellite AODs are Singapore, Hong Kong, and Vietnam. High urban population proportions in Singapore (40.7%) and Hong Kong (21.6%) were associated with high AOD concentrations as expected. AOD values in SEA urban areas were a factor of 1.4 higher than in rural areas, with respective averages of 0.477 and 0.336. The AOD values varied proportionately to the frequency of biomass burning in which both active fires and AOD peak in March/April and September/October. Peak AOD in September/October in some countries could be related to pollutant transport of Indonesia forest fires. This study analyzed satellite aerosol product quality in relation to AERONET in SEA countries and highlighted framework of air quality assessment over a large, complicated region.
  19. Ng KH, Gan YS, Cheng CK, Liu KH, Liong ST
    Environ Pollut, 2020 Dec;267:115500.
    PMID: 33254722 DOI: 10.1016/j.envpol.2020.115500
    In predicting palm oil mill effluent (POME) degradation efficiency, previous developed quadratic model quantitatively evaluated the effects of O2 flowrate, TiO2 loadings and initial concentration of POME in labscale photocatalytic system, which however suffered from low generalization due to the overfitting behaviour. Evidently, high RMSE (131.61) and low R2 (-630.49) obtained indicates its insufficiency in describing POME degradation at unseen factor ranges, hence verified the fact of poor generalization. To overcome this issue, several models were developed via machine learning-assisted techniques, namely Gaussian Process Regression (GPR), Linear Regression (LR), Decision Tree (DT), Supported Vector Machine (SVM) and Regression Tree Ensemble (RTE), subsequently being assessed systematically. To achieve high generalization, all models were subjected to 'train-all-test-all' strategy, 5-fold and 10-fold cross validation. Specifically, GPR model was furnished with high accuracy in 'train-all-test-all' strategy, judging from its low RMSE (1.0394) and high R2 (0.9962), which however menaced by the risk of overfitting. In contrast, despite relatively poorer RMSE and R2 (1.7964 and 0.9886) obtained in 5-fold cross validation, GPR model was rendered with highest generalization, while sufficiently preserving its accuracy in development process. Besides, SVM and RTE models were also demonstrated promising R2 (0.9372 and 0.9208), which however shadowed by their high RMSEs (4.2174 and 4.7366). Furthermore, the extraordinary generalization of GPR model was coincidentally verified in 10-fold cross validation. The lowest RMSE (2.1624) and highest R2 (0.9835) obtained with feature number of 36 asserted its sufficiency in both generalization and accuracy prospect. Other models were all rendered with slight lower R2 (> 0.9), plausibly due to the higher RMSE (> 4.0). According to GPR model, optimized POME degradation (52.52%) can be obtained at 70 mL/min of O2, 70.0 g/L of TiO2 and 250 ppm of POME concentration, with only ∼3% error as compared to the actual data.
  20. Ng CKY, Lam JCW, Zhang XH, Gu HX, Li TH, Ye MB, et al.
    Environ Pollut, 2018 Mar;234:735-742.
    PMID: 29245147 DOI: 10.1016/j.envpol.2017.11.100
    Sea turtles are globally endangered and face daily anthropogenic threats, including pollution. However, there is a lack of ecotoxicological information on sea turtles, especially in the Asia-Pacific region. This study aims to determine pollutant levels of foraging green turtles (Chelonia mydas) in South China, including Hong Kong, Guangdong and Taiwan, as a basis for their conservation. Scute, liver and muscle tissues of stranded green turtles were analysed for levels of 17 trace elements and methylmercury (MeHg) (n = 86 for scute and n = 14 for liver) and polybrominated diphenyl ethers (PBDEs) (n = 11 for muscle and n = 13 for liver). Ten-fold higher levels of Pb, Ba, V and Tl and 40-fold greater Cd levels were measured in green turtle livers in South China relative to other studies conducted over 10 years ago. Measured PBDE levels were also 27-fold and 50-fold greater than those reported in Australia and Japan. These results warrant further investigation of potential toxicological risks to green turtles in South China and their source rookeries in Malaysia, Micronesia, Indonesia, Marshall Islands, Japan and Taiwan. Research should target monitoring pollutant levels in sea turtles within the West Pacific/Southeast Asia regional management unit spanning East Asia to Southeast Asia to fill in knowledge gaps, in particular in areas such as Thailand, Vietnam, Indonesia, Malaysia and the Philippines where less or no data is available and where foraging grounds of sea turtles have been identified.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links