Displaying publications 21 - 40 of 119 in total

Abstract:
Sort:
  1. Khairul Hasni NA, Anual ZF, Rashid SA, Syed Abu Thahir S, Veloo Y, Fang KS, et al.
    Environ Pollut, 2023 May 01;324:121095.
    PMID: 36682614 DOI: 10.1016/j.envpol.2023.121095
    Contamination of water systems with endocrine disrupting chemicals (EDCs) is becoming a major public health concern due to their toxicity and ubiquity. The intrusion of EDCs into water sources and drinking water has been associated with various adverse health effects on humans. However, there is no comprehensive overview of the occurrence of EDCs in Malaysia's water systems. This report aims to describe the occurrence of EDCs and their locations. Literature search was conducted electronically in two databases (PubMed and Scopus). A total of 41 peer-reviewed articles published between January 2000 and May 2021 were selected. Most of the articles dealt with pharmaceuticals (16), followed by pesticides (7), hormones (7), mixed compounds (7), and plasticisers (4). Most studies (40/41) were conducted in Peninsular Malaysia, with 60.9% in the central region and almost half (48.8%) in the Selangor State. Only one study was conducted in the northern region and East Malaysia. The Langat River, the Klang River, and the Selangor River were among the most frequently studied EDC-contaminated surface waters, while the Pahang River and the Skudai River had the highest concentrations of some of the listed compounds. Most of the risk assessments resulted in a hazard quotient (HQ) and a risk quotient (RQ)  1 in the Selangor River. An RQ > 1 for combined pharmaceuticals was found in Putrajaya tap water. Overall, this work provides a comprehensive overview of the occurrence of EDCs in Malaysia's water systems. The findings from this review can be used to mitigate risks and strengthen legislation and policies for safer drinking water.
  2. Ben Chabchoubi I, Lam SS, Pane SE, Ksibi M, Guerriero G, Hentati O
    Environ Pollut, 2023 May 01;324:120698.
    PMID: 36435277 DOI: 10.1016/j.envpol.2022.120698
    The uncontrolled or continuous release of effluents from wastewater treatment plants leads to the omnipresence of pharmaceutical active compounds (PhACs) in the aquatic media. Today, this is a confirmed problem becoming a main subject of twin public and scientific concerns. However, still little information is available about the long-term impacts of these PhACs on aquatic organisms. In this review, efforts were made to reveal correlation between the occurrence in the environment, ecotoxicological and health risks of different PhACs via toxicological evaluation by zebrafish (Danio rerio). This animal model served as a bioindicator for any health impacts after the exposure to these contaminants and to better understand the responses in relation to human diseases. This review paper focused on the calculation of Risk Quotients (RQs) of 34 PhACs based on environmental and ecotoxicological data available in the literature and prediction from the ECOSAR V2.2 software. To the best of the authors' knowledge, this is the first report on the risk assessment of PhACs by the two different methods as mentioned above. RQs showed greater difference in potential environmental risks of the PhACs. These differences in risk values underline the importance of environmental and experimental factors in exposure conditions and the interpretation of RQ values. While the results showed high risk to Danio rerio of the majority of PhACs, risk qualification of the others varied between moderate to insignifiant. Further research is needed to assess pharmaceutical hazards when present in wastewater before discharge and monitor the effectiveness of treatment processes. The recent new advances in the morphological assessment of toxicant-exposed zebrafish larvae for the determination of test compounds effects on the developmental endpoints were also discussed. This review emphasizes the need for strict regulations on the release of PhACs into environmental media in order to minimize their toxicity to aquatic organisms.
  3. Guo K, Yan L, He Y, Li H, Lam SS, Peng W, et al.
    Environ Pollut, 2023 Apr 01;322:121130.
    PMID: 36693585 DOI: 10.1016/j.envpol.2023.121130
    With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including the prospects for stereoscopic forestry. Currently, most automobiles on the global market are internal combustion vehicles using fossil energy sources as the primary fuel, such as gasoline, diesel, and liquid or compressed natural gas. The composition of vehicle exhaust is relatively complex. When it enters the atmosphere, it is prone to a series of chemical reactions to generate various secondary pollutants, which are very harmful to human beings, plants, animals, and the eco-environment. Despite improving the automobile fuel quality and installing exhaust gas purification devices, helping to reduce air pollution, the treatment costs of these approaches are expensive and cannot achieve zero emissions of automobile exhaust pollutants. The purification of vehicle exhaust by plants is a crucial way to remediate the environmental pollution caused by automobile exhaust and improve the environment along the highway by utilizing the ecosystem's self-regulating ability. Therefore, it has become a global trend to use phytoremediation technology to restore the automobile exhaust pollution. Now, there is no scientific report or systematic review about how plants absorb vehicle pollutants. The screening and configuration of suitable plant species is the most crucial aspect of successful phytoremediation. The mechanisms of plant adsorption, metabolism, and detoxification are reviewed in this paper to address the problem of automobile exhaust pollution.
  4. Bolan S, Wijesekara H, Tanveer M, Boschi V, Padhye LP, Wijesooriya M, et al.
    Environ Pollut, 2023 Mar 01;320:121077.
    PMID: 36646409 DOI: 10.1016/j.envpol.2023.121077
    Beryllium (Be) is a relatively rare element and occurs naturally in the Earth's crust, in coal, and in various minerals. Beryllium is used as an alloy with other metals in aerospace, electronics and mechanical industries. The major emission sources to the atmosphere are the combustion of coal and fossil fuels and the incineration of municipal solid waste. In soils and natural waters, the majority of Be is sorbed to soil particles and sediments. The majority of contamination occurs through atmospheric deposition of Be on aboveground plant parts. Beryllium and its compounds are toxic to humans and are grouped as carcinogens. The general public is exposed to Be through inhalation of air and the consumption of Be-contaminated food and drinking water. Immobilization of Be in soil and groundwater using organic and inorganic amendments reduces the bioavailability and mobility of Be, thereby limiting the transfer into the food chain. Mobilization of Be in soil using chelating agents facilitates their removal through soil washing and plant uptake. This review provides an overview of the current understanding of the sources, geochemistry, health hazards, remediation practices, and current regulatory mandates of Be contamination in complex environmental settings, including soil and aquatic ecosystems.
  5. Nauman Mahamood M, Zhu S, Noman A, Mahmood A, Ashraf S, Aqeel M, et al.
    Environ Pollut, 2023 Feb 15;319:120979.
    PMID: 36586554 DOI: 10.1016/j.envpol.2022.120979
    Soil heavy metal contamination is increasing rapidly due to increased anthropogenic activities. Lead (Pb) is a well-known human carcinogen causing toxic effects on humans and the environment. Its accumulation in food crops is a serious hazard to food security. Developing environment-friendly and cost-efficient techniques is necessary for Pb immobilization in the soil. A pot experiment was executed to determine the role of biochar (BC), zero-valent iron nanoparticles (n-ZVI), and zero-valent iron nanoparticles biochar composite (n-ZVI-BC) in controlling the Pb mobility and bioaccumulation in wheat (Triticum aestivum L.). The results showed that BC and n-ZVI significantly enhanced the wheat growth by increasing their photosynthetic and enzymatic activities. Among all the applied treatments, the maximum significant (p ≤ 0.05) improvement in wheat biomass was with the n-ZVI-BC application (T3). Compared to the control, the biomass of wheat roots, shoots & grains increased by 92.5, 58.8, and 49.1%, respectively. Moreover, the soil addition of T3 amendment minimized the Pb distribution in wheat roots, shoots, and grains by 33.8, 26.8, and 16.2%, respectively. The outcomes of this experiment showed that in comparison to control treatment plants, soil amendment with n-ZVI-BC (T3) increased the catalase (CAT), superoxide dismutase (SOD) activity by 49.8 and 31.1%, respectively, ultimately declining electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) content in wheat by 38.7, 33.3, and 38%respectively. In addition, applied amendments declined the Pb mobility in the soil by increasing the residual Pb fractions. Soil amendment with n-ZVI-BC also increased the soil catalase (CAT), urease (UR), and acid phosphatase (ACP) activities by 68, 59, and 74%, respectively. Our research results provided valuable insight for the remediation of Pb toxicity in wheat. Hence, we can infer from our findings that n-ZVI-BC can be considered a propitious, environment friendly and affordable technique for mitigating Pb toxicity in wheat crop and reclamation of Pb polluted soils.
  6. Li Z, He Y, Sonne C, Lam SS, Kirkham MB, Bolan N, et al.
    Environ Pollut, 2023 Feb 15;319:120964.
    PMID: 36584860 DOI: 10.1016/j.envpol.2022.120964
    Radionuclides released from nuclear contamination harm the environment and human health. Nuclear pollution spread over large areas and the costs associated with decontamination is high. Traditional remediation methods include both chemical and physical, however, these are expensive and unsuitable for large-scale restoration. Bioremediation is the use of plants or microorganisms to remove pollutants from the environment having a lower cost and can be upscaled to eliminate contamination from soil, water and air. It is a cheap, efficient, ecologically, and friendly restoration technology. Here we review the sources of radionuclides, bioremediation methods, mechanisms of plant resistance to radionuclides and the effects on the efficiency of biological adsorption. Uptake of radionuclides by plants can be facilitated by the addition of appropriate chemical accelerators and agronomic management, such as citric acid and intercropping. Future research should accelerate the use of genetic engineering and breeding techniques to screen high-enrichment plants. In addition, field experiments should be carried out to ensure that this technology can be applied to the remediation of nuclear contaminated sites as soon as possible.
  7. Hao Y, Sun H, Zeng X, Dong G, Kronzucker HJ, Min J, et al.
    Environ Pollut, 2023 Jan 15;317:120805.
    PMID: 36470457 DOI: 10.1016/j.envpol.2022.120805
    Microplastics (MPs) accumulation in farmland has attracted global concern. Smallholder farming is the dominant type in China's agriculture. Compared with large-scale farming, smallholder farming is not constrained by restrictive environmental policies and public awareness about pollution. Consequently, the degree to which smallholder farming is associated with MP pollution in soils is largely unknown. Here, we collected soil samples from both smallholder and large-scale vegetable production systems to determine the distribution and characteristics of MPs. MP abundance in vegetable soils was 147.2-2040.4 MP kg-1 (averaged with 500.8 MP kg-1). Soil MP abundance under smallholder cultivation (730.9 MP kg-1) was twice that found under large-scale cultivation (370.7 MP kg-1). MP particle sizes in smallholder and large-scale farming were similar, and were mainly <1 mm. There were also differences in MP characteristics between the two types of vegetable soils: fragments (60%) and fibers (34%) were dominant under smallholder cultivation, while fragments (42%), fibers (42%), and films (11%) were dominant under large-scale cultivation. We observed a significant difference in the abundance of fragments and films under smallholder versus large-scale cultivation; the main components of MPs under smallholder cultivation were PP (34%), PE (28%), and PE-PP (10%), while these were PE (29%), PP (16%), PET (16%), and PE-PP (13%) under large-scale cultivation. By identifying the shape and composition of microplastics, it can be inferred that agricultural films were not the main MP pollution source in vegetable soil. We show that smallholder farming produces more microplastics pollution than large-scale farming in vegetable soil.
  8. Liu B, Yang L, Shi J, Zhang S, Yalçınkaya Ç, Alshalif AF
    Environ Pollut, 2023 Jan 15;317:120839.
    PMID: 36493937 DOI: 10.1016/j.envpol.2022.120839
    Stabilizing/solidificating municipal solid waste incineration fly ash (MIFA) with cement is a common strategy, and it is critical to study the high-value utilization of MIFA in ordinary Portland cement (OPC) components. With this aim, binary-binding-system mortar was produced by partially replacing OPC (∼50%) with MIFA, and the effects of different curing regimes (steam curing and carbonation curing) on the properties of the cement mortar were studied. The results showed that the setting time of the cement paste was shorten with the increase of MIFA content, and steam curing accelerated the hardening of the mixture. Although the incorporation of MIFA reduced the strength of the mortar, compared to conventional curing method, steam curing and carbonation curing increased the 3-d strength of the mortar. For high-volume MIFA mortars, the CO2-cured samples had the highest long-term strength and lowest permeability. The incorporation of MIFA increased the initial porosity of the mortar, thereby significantly increasing the carbonation degree and crystallinity of the reaction product - CaCO3. Steam curing also further narrowed the difference in the hydration degree between MIFA-modified sample and plain paste, which may be due to the enhanced hydraulic reactivity of MIFA at high temperatures. Although the incorporation of MIFA increased the porosity of the mortar, this waste-derived SCM refined the bulk pore structure and decreased the interconnected porosity. Additionally, the heavy metal leaching contents of MIFA-modified mortars were all below 1%, which meet the requirements of Chinese standards. Compared with standard curing, steam curing and carbonation curing made the early-age and long-term performance of MIFA-modified mortar better, which can promote the efficient application of MIFA in OPC products.
  9. Jimoh JO, Rahmah S, Mazelan S, Jalilah M, Olasunkanmi JB, Lim LS, et al.
    Environ Pollut, 2023 Jan 15;317:120769.
    PMID: 36455766 DOI: 10.1016/j.envpol.2022.120769
    Microplastic pollution in our environment, especially water bodies is an emerging threat to food security and human health. Inevitably, the outbreak of Covid-19 has necessitated the constant use of face masks made from polymers such as polypropylene, polyurethane, polyacrylonitrile, polystyrene, polycarbonate, polyethylene, or polyester which eventually will disintegrate into microplastic particles. They can be broken down into microplastics by the weathering action of UV radiation from the sun, heat, or ocean wave-current and precipitate in natural environments. The global adoption of face masks as a preventive measure to curb the spread of Covid-19 has made the safe management of wastes from it cumbersome. Microplastics gain access into aquaculture facilities through water sources and food including planktons. The negative impacts of microplastics on aquaculture cannot be overemphasized. The impacts includes low growth rates of animals, hindered reproductive functions, neurotoxicity, low feeding habit, oxidative stress, reduced metabolic rate, and increased mortality rate among aquatic organisms. With these, there is every tendency of microplastic pollution to negatively impact fish production through aquaculture if the menace is not curbed. It is therefore recommended that biodegradable materials rather than plastics to be considered in the production of face mask while recycle of already produced ones should be encouraged to reduce waste.
  10. Gou Z, Zheng H, He Z, Su Y, Chen S, Chen H, et al.
    Environ Pollut, 2023 Jan 15;317:120790.
    PMID: 36460190 DOI: 10.1016/j.envpol.2022.120790
    This study aims to investigate the positive effects of the combined use of Enterobacter cloacae and biochar on improving nitrogen (N) utilization. The greenhouse pots experimental results showed the synergy of biochar and E. cloacae increased soil total N content and plant N uptake by 33.54% and 15.1%, respectively. Soil nitrogenase (NIT) activity increased by 253.02%. Ammonia monooxygenase (AMO) and nitrate reductase (NR) activity associated with nitrification and denitrification decreased by 10.94% and 29.09%, respectively. The relative abundance of N fixing microorganisms like Burkholderia and Bradyrhizobium significantly increased. Sphingomonas and Ottowia, two bacteria involved in the nitrification and denitrification processes, were found to be in lower numbers. The E. cloacae's ability to fix N2 and promote the growth of plants allow the retention of N in soil and make more N available for plant development. Biochar served as a reservoir of N for plants by adsorbing N from the soil and providing a shelter for E. cloacae. Thus, biochar and E. cloacae form a synergy for the management of agricultural N and the mitigation of negative impacts of pollution caused by excessive use of N fertilizer.
  11. Tran HT, Lin C, Lam SS, Le TH, Hoang HG, Bui XT, et al.
    Environ Pollut, 2023 Jan 01;316(Pt 2):120640.
    PMID: 36403881 DOI: 10.1016/j.envpol.2022.120640
    Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer derived from phthalate ester, is used as an additive in industrial products such as plastics, paints, and medical devices. However, DEHP is known as an endocrine-disrupting chemical, causing cancers and adverse effects on human health. This study evaluated DEHP biodegradation efficiency via food waste composting during 35 days of incubation. At high DEHP concentrations (2167 mg kg-1) in food waste compost mixture, the DEHP biodegradation efficiency was 99% after 35 days. The highest degradation efficiency was recorded at the thermophilic phase (day 3 - day 11) with the biodegradation rate reached 187 mg kg-1 day-1. DEHP was metabolized to dibutyl phthalate (DBP) and dimethyl phthalate (DMP) and would be oxidized to benzyl alcohol (BA) and mineralized into CO2 and water via various metabolisms. Finally, the compost's quality with residual DEHP was evaluated using Brassica chinensis L. seeds via 96 h of germination tests. The compost (at day 35) with a trace amount of DEHP as the end product showed no significant effect on the germination rate of Brassica chinensis L. seeds (88%) compared to that without DEHP (94%), indicating that the compost can be reused as fertilizer in agricultural applications. These results provide an improved understanding of the DEHP biodegradation via food waste composting without bioaugmentation and hence facilitating its green remediation and conversion into value-added products. Nevertheless, further studies are needed on DEHP biodegradation in large-scale food waste composting or industrial applications.
  12. Praveena SM, Shamsul Ariffin NI, Nafisyah AL
    Environ Pollut, 2022 Dec 15;315:120494.
    PMID: 36279991 DOI: 10.1016/j.envpol.2022.120494
    The World Health Organization noted that there is a growing need to determine the occurrence of microplastics in bottled water and its potential risks to human health. Thus, present study analyzes microplastics in eight major bottled water brands available in Malaysia and estimates the potential human exposure. Membrane filtration method followed by visual and polymer identifications were utilized to identify microplastics particles in these eight major bottled water brands. Microplastic concentrations in bottled water samples ranged from 8 to 22 particles/L, with an average of 11.7 ± 4.6 particles/L. Particle sizes ranging between 100 and 300 μm were dominant and accounted for approximately 31% in these bottled water brands. Fragments were the most identified microplastics in bottled water with transparent color being the most prevalent. The polyethylene terephthalate (PET) and polypropylene (PP) polymer types found in this study are consistent with prior results in that microplastics in bottled water are mainly derived from packaging materials and bottle caps. The Estimated Dietary Intake (EDI) for adults was between 0.068 and 0.19 particle/kg/day, while the EDI for children was between 0.089 and 0.25 particle/kg/day. Although consumption of bottled water was estimated to have low EDI values, the potential risks to human health should be heeded due to the presence of numerous plastic additives and residual monomers in these particles, which have the potential to increase inflammatory reactions and cytotoxicity in human body. Future studies should concentrate on understanding microplastics particles less than 1.5 μm and other associated factors (bottled material quality, consumption behaviour, bottled water storage conditions, and the frequency of bottle opening and closing) to further understand the effects of these microplastics particles on human toxicological aspects.
  13. Kataria N, Bhushan D, Gupta R, Rajendran S, Teo MYM, Khoo KS
    Environ Pollut, 2022 Dec 15;315:120319.
    PMID: 36183872 DOI: 10.1016/j.envpol.2022.120319
    Bisphenol-A (BPA) is a type of endocrine disrupting compound (EDC) that is being widely used in the production of polycarbonate and epoxy resins. In the last few years, human exposure to BPA has been extensively high due to the continuous increment in the Annual Growth Rate (AGR) of the BPA global market. The presence and transportation of BPA in the environment could cause serious damage to aquatic life and human health. This paper reviewed the literature on the exposure and toxicity mechanisms of BPA and advanced analytical techniques for the detection of BPA in the environment and human beings. The study indicated that BPA can cause damaging effects on numerous tissues and organs, including the reproductive system, metabolic dysfunction, respiratory system, immune system and central nervous system. On the basis of reported studies on animals, it appears that the exposure of BPA can be carcinogenic and responsible for causing a variety of cancers like ovarian cancer, uterine cancer, prostate cancer, testicular cancer, and liver cancer. This review paper focused mainly on the current progress in BPA removal technologies within last ten years (2012-2022). This paper presents a comprehensive overview of individual removal technologies, including adsorption, photocatalysis/photodegradation, ozonation/advance oxidation, photo-fenton, membranes/nanofilters, and biodegradation, along with removal mechanisms. The extensive literature study shows that each technology has its own removal mechanism and their respective limitations in BPA treatment. In adsorption and membrane separation process, most of BPA has been treated by electrostatic interaction, hydrogen boning and π-π interations mechanism. Whereas in the degradation mechanism, O* and OH* species have played a major role in BPA removal. Some factors could alter the removal potential and efficiency of BPA removal. This review paper will provide a useful guide in providing directions for future investigation to address the problem of BPA-containing wastewater treatment.
  14. Sabrina J, Nurulhuda K, Amin AM, Sulaiman MF, Man HC
    Environ Pollut, 2022 Dec 15;315:120282.
    PMID: 36174812 DOI: 10.1016/j.envpol.2022.120282
    Studies have indicated that up to 47% of total N fertilizer applied in flooded rice fields may be lost to the atmosphere through NH3 volatilization. The volatilized NH3 represents monetary loss and contributes to increase in formation of PM2.5 in the atmosphere, eutrophication in surface water, and degrades water and soil quality. The NH3 is also a precursor to N2O formation. Thus, it is important to monitor NH3 volatilization from fertilized and flooded rice fields. Commercially available samplers offer ease of transportation and installation, and thus, may be considered as NH3 absorbents for the static chamber method. Hence, the objective of this study is to investigate the use of a commercially available NH3 sampler/absorbent (i.e., Ogawa® passive sampler) for implementation in a static chamber. In this study, forty closed static chambers were used to study two factors (i.e., trapping methods, exposure duration) arranged in a Randomized Complete Block Design. The three trapping methods are standard boric acid solution, Ogawa® passive sampler with acid-coated pads and exposed coated pads without casing. The exposure durations are 1 and 4 h. Results suggest that different levels of absorbed NH3 was obtained for each of the trapping methods. Highest level of NH3 was trapped by the standard boric acid solution, followed by the exposed acid-coated pads without casing, and finally acid-coated pads with protective casing, given the same exposure duration. The differences in absorbed NH3 under same conditions does not warrant direct comparison across the different trapping methods. Any three trapping methods can be used for conducting studies to compare multi-treatments using the static chamber method, provided the same trapping method is applied for all chambers.
  15. Hui Li AS, Sathishkumar P, Selahuddeen ML, Asyraf Wan Mahmood WM, Zainal Abidin MH, Wahab RA, et al.
    Environ Pollut, 2022 Sep 01;308:119674.
    PMID: 35772616 DOI: 10.1016/j.envpol.2022.119674
    The widespread use of disposable face masks as a preventative strategy to address transmission of the SARS-CoV-2 virus has been a key environmental concern since the pandemic began. This has led to an unprecedented new form of contamination from improperly disposed masks, which liberates significant amounts of heavy metals and toxic chemicals in addition to volatile organic compounds (VOCs). Therefore, this study monitored the liberation of heavy metals, VOCs, and microfibers from submerged disposable face masks at different pH (4, 7 and 12), to simulate distinct environmental conditions. Lead (3.238% ppb), cadmium (0.672 ppb) and chromium (0.786 ppb) were found in the analyzed leachates. By pyrolysis, 2,4-dimethylhept-1-ene and 4-methylheptane were identified as the VOCs produced by the samples. The chemically degraded morphology in the FESEM images provided further evidence that toxic heavy metals and volatile organic compounds had been leached from the submerged face masks, with greater degradation observed in samples submerged at pH 7 and higher. The results are seen to communicate the comparable danger of passively degrading disposable face masks and the release of micro- or nanofibers into the marine environment. The toxicity of certain heavy metals and chemicals released from discarded face masks warrants better, more robust manufacturing protocols and increased public awareness for responsible disposal to reduce the adverse impact on ecology and human health.
  16. Jang FH, Wong C, Choo J, Aun Sia ES, Mujahid A, Müller M
    Environ Pollut, 2022 Apr 01;298:118850.
    PMID: 35041899 DOI: 10.1016/j.envpol.2022.118850
    Microplastic ingestion has been documented in various aquatic species. This causes physical damage, and additionally contaminated microplastics transfer attached pollutants and microbial pathogens to ingesting organisms. Continued metal accumulation can lead to toxicity and adverse health effects; attached microbial pathogens can cause dysbiosis - which lowers host immunity and promotes infections. Catfish, Clarias gariepinus, are a major food source in Southeast Asia, a hotspot of plastic pollution. This study aimed to quantify the transfer of the trace metals copper (Cu) and lead (Pb) -at environmentally relevant concentrations-from microplastics (polyamide 12, PA12, and polylactic acid, PLA) to catfish. Fish were reared for three months and exposed to seven different combinations of feed, supplemented with plastics and metals. At monthly intervals, fish gills, intestines, liver, and edible muscles were analysed for Cu and Pb concentrations using ICP-OES, and the intestines content assessed for Vibrio sp.. Our results showed that biodegradable PLA transferred higher amounts of metals to catfish than expected and also led to increased Vibrio counts in the intestines compared to PA12. Trace metal accumulation was significantly different in varying tissues, with highest concentrations observed in the gills, followed by liver, intestines, and lastly edible muscles. The results of this study further support the existing evidence that microplastics act as efficient shuttles to concentrate and transfer metals. They also indicate that their uptake can cause dysbiosis (increased numbers of Vibrio sp.). Most importantly, however, our study highlights that biodegradable polymers, such as PLA, could actually pose a greater environmental threat when ingested compared to the more common polymers such as PA12.
  17. Zhao N, Liu K, He C, Zhao D, Zhu L, Zhao C, et al.
    Environ Pollut, 2022 Feb 05;300:118965.
    PMID: 35134429 DOI: 10.1016/j.envpol.2022.118965
    Zero valent iron-loaded biochar (Fe0-BC) has shown promise for the removal of various organic pollutants, but is restricted by reduced specific surface area, low utilization efficiency and limited production of reactive oxygen species (ROS). In this study, iron carbide-loaded activated biochar (Fe3C-AB) with a high surface area was synthesized through the pyrolysis of H3PO4 activated biochar with Fe(NO3)3, tested for removing bisphenol A (BPA) and elucidated the adsorption and degradation mechanisms. As a result, H3PO4 activated biochar was beneficial for the transformation of Fe0 to Fe3C. Fe3C-AB exhibited a significantly higher removal rate and removal capacity for BPA than that of Fe0-BC within a wide pH range of 5.0-11.0, and its performance was maintained even under extremely high salinity and different water sources. Moreover, X-ray photoelectron spectra and density functional theory calculations confirmed that hydrogen bonds were formed between the COOH groups and BPA. 1O2 was the major reactive species, constituting 37.0% of the removal efficiency in the degradation of BPA by Fe3C-AB. Density functional reactivity theory showed that degradation pathway 2 of BPA was preferentially attacked by ROS. Thus, Fe3C-AB with low cost and excellent recycling performance could be an alternative candidate for the efficient removal of contaminants.
  18. Feng Y, Feng Y, Liu Q, Chen S, Hou P, Poinern G, et al.
    Environ Pollut, 2022 Feb 01;294:118598.
    PMID: 34861331 DOI: 10.1016/j.envpol.2021.118598
    Biochar has been considered as a potential tool to mitigate soil ammonia (NH3) volatilization and greenhouse gases (GHGs) emissions in recent years. However, the aging effect of biochar on soils remains elusive, which introduces uncertainty on the effectiveness of biochar to mitigate global warming in a long term. Here, a meta-analysis of 22 published works of literature with 217 observations was conducted to systematically explore the aging effect of biochar on soil NH3 and GHGs emissions. The results show that, in comparison with the fresh biochar, the aging makes biochar more effective to decrease soil NH3 volatilization by 7% and less risk to contribute CH4 emissions by 11%. However, the mitigation effect of biochar on soil N2O emissions is decreased by 15% due to aging. Additionally, aging leads to a promotion effect on soil CO2 emissions by 25% than fresh biochar. Our findings suggest that along with aging, particularly the effect of artificial aging, biochar could further benefit the alleviation of soil NH3 volatilization, whereas its potential role to mitigate global warming may decrease. This study provides a systematic assessment of the aging effect of biochar to mitigate soil NH3 and GHGs, which can provide a scientific basis for the sustainable green development of biochar application.
  19. Bilal M, Lam SS, Iqbal HMN
    Environ Pollut, 2022 Jan 15;293:118582.
    PMID: 34856243 DOI: 10.1016/j.envpol.2021.118582
    The discharge of an alarming number of recalcitrant pollutants from various industrial activities presents a serious threat to environmental sustainability and ecological integrity. Bioremediation has gained immense interest around the world due to its environmentally friendly and cost-effective nature. In contrast to physical and chemical methods, the use of microbial enzymes, particularly immobilized biocatalysts, has been demonstrated as a versatile approach for the sustainable mitigation of environmental pollution. Considerable attention is now devoted to developing novel enzyme engineering approaches and state-of-the-art bioreactor design for ameliorating the overall bio-catalysis and biodegradation performance of enzymes. This review discusses the contemporary and state of the art technical and scientific progress regarding applying oxidoreductase enzyme-based biocatalytic systems to remediate a vast number of pharmaceutically active compounds from water and wastewater bodies. A comprehensive insight into enzyme immobilization, the role of mediators, bioreactors designing, and transformation products of pharmaceuticals and their associated toxicity is provided. Additional studies are necessary to elucidate enzymatic degradation mechanisms, monitor the toxicity levels of the resulting degraded metabolites and optimize the entire bio-treatment strategy for technical and economical affordability.
  20. Yusuf A, Sodiq A, Giwa A, Eke J, Pikuda O, Eniola JO, et al.
    Environ Pollut, 2022 Jan 01;292(Pt B):118421.
    PMID: 34756874 DOI: 10.1016/j.envpol.2021.118421
    The gravity of the impending threats posed by microplastics (MPs) pollution in the environment cannot be over-emphasized. Several research studies continue to stress how important it is to curb the proliferation of these small plastic particles with different physical and chemical properties, especially in aquatic environments. While several works on how to monitor, detect and remove MPs from the aquatic environment have been published, there is still a lack of explicit regulatory framework for mitigation of MPs globally. A critical review that summarizes recent advances in MPs research and emphasizes the need for regulatory frameworks devoted to MPs is presented in this paper. These frameworks suggested in this paper may be useful for reducing the proliferation of MPs in the environment. Based on all reviewed studies related to MPs research, we discussed the occurrence of MPs by identifying the major types and sources of MPs in water bodies; examined the recent ways of detecting, monitoring, and measuring MPs routinely to minimize projected risks; and proposed recommendations for consensus regulatory actions that will be effective for MPs mitigation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links