Displaying publications 21 - 40 of 119 in total

Abstract:
Sort:
  1. Hao Y, Sun H, Zeng X, Dong G, Kronzucker HJ, Min J, et al.
    Environ Pollut, 2023 Jan 15;317:120805.
    PMID: 36470457 DOI: 10.1016/j.envpol.2022.120805
    Microplastics (MPs) accumulation in farmland has attracted global concern. Smallholder farming is the dominant type in China's agriculture. Compared with large-scale farming, smallholder farming is not constrained by restrictive environmental policies and public awareness about pollution. Consequently, the degree to which smallholder farming is associated with MP pollution in soils is largely unknown. Here, we collected soil samples from both smallholder and large-scale vegetable production systems to determine the distribution and characteristics of MPs. MP abundance in vegetable soils was 147.2-2040.4 MP kg-1 (averaged with 500.8 MP kg-1). Soil MP abundance under smallholder cultivation (730.9 MP kg-1) was twice that found under large-scale cultivation (370.7 MP kg-1). MP particle sizes in smallholder and large-scale farming were similar, and were mainly <1 mm. There were also differences in MP characteristics between the two types of vegetable soils: fragments (60%) and fibers (34%) were dominant under smallholder cultivation, while fragments (42%), fibers (42%), and films (11%) were dominant under large-scale cultivation. We observed a significant difference in the abundance of fragments and films under smallholder versus large-scale cultivation; the main components of MPs under smallholder cultivation were PP (34%), PE (28%), and PE-PP (10%), while these were PE (29%), PP (16%), PET (16%), and PE-PP (13%) under large-scale cultivation. By identifying the shape and composition of microplastics, it can be inferred that agricultural films were not the main MP pollution source in vegetable soil. We show that smallholder farming produces more microplastics pollution than large-scale farming in vegetable soil.
  2. Aziz FFA, Jalil AA, Hassan NS, Fauzi AA, Azami MS
    Environ Pollut, 2021 Sep 15;285:117490.
    PMID: 34091265 DOI: 10.1016/j.envpol.2021.117490
    The co-existence of heavy metals and organic compounds including Cr(VI) and p-cresol (pC) in water environment becoming a challenge in the treatment processes. Herein, the synchronous photocatalytic reduction of Cr(VI) and oxidation of pC by silver oxide decorated on fibrous silica zirconia (AgO/FSZr) was reported. In this study, the catalysts were successfully developed using microemulsion and electrochemical techniques with various AgO loading (1, 5 and 10 wt%) and presented as 1, 5 and 10-AgO/FSZr. Catalytic activity was tested towards simultaneous photoredox of hexavalent chromium and p-cresol (Cr(VI)/pC) and was ranked as followed: 5-AgO/FSZr (96/78%) > 10-AgO/FSZr (87/61%) > 1-AgO/FSZr (47/24%) > FSZr (34/20%). The highest photocatalytic activity of 5-AgO/FSZr was established due to the strong interaction between FSZr and AgO and the lowest band gap energy, which resulted in less electron-hole recombination and further enhanced the photoredox activity. Cr(VI) ions act as a bridge between the positive charge of catalyst and cationic pC in pH 1 solution which can improve the photocatalytic reduction and oxidation of Cr(VI) and pC, respectively. The scavenger experiments further confirmed that the photogenerated electrons (e-) act as the main species for Cr(VI) to be reduced to Cr(III) while holes (h+) and hydroxyl radicals are domain for photooxidation of pC. The 5-AgO/FSZr was stable after 5 cycles of reaction, suggesting its potential for removal of Cr(VI) and pC simultaneously in the chemical industries.
  3. Surif S, Chai CY
    Environ Pollut, 1995;88(2):177-81.
    PMID: 15091558
    The study of lead exposure among workers in Selangor and the Federal Territory was carried out based on the delta-aminolevulinic acid (ALA) level in urine. Occupations which are expected to have higher lead exposure were chosen in this research. The ALA level in the workers' urine was linked to a few variables which may contribute to the lead level in the body. The result of this study showed that the ALA level of the urine of university students (0.352 +/- 0.038 mg/100 ml) < clerical staff (0.560 +/- 0.043 mg/100 ml) < traffic police (0.612 +/- 0.064 mg/100 ml) < vehicle workshop workers (0.673 +/- 0.099 mg/100 ml) < petrol kiosk workers (0.717 +/- 0.069 mg/100 ml) < bus drivers/conductors (0.850 +/- 0.055 mg/100 ml) which was similar to workers in the printing industry (0.852 +/- 0.110 mg/100 ml). The ALA levels in the urine of the exposed workers were significantly different from the control group (university students). However, results obtained from clerical staff revealed that they were also in the exposed group category. Analysis of variance showed that the exposed groups are in a population which is different from the control population. Correlation tests suggest that there is no significant connection between the ALA level in the urine and the variables tested. Furthermore, Duncan's Multiple Range Test showed no significant differences between the smoking/non smoking group, alcoholic/non-alcoholic group, race and sex (p > 0.05).
  4. Auta HS, Emenike CU, Fauziah SH
    Environ Pollut, 2017 Dec;231(Pt 2):1552-1559.
    PMID: 28964604 DOI: 10.1016/j.envpol.2017.09.043
    The continuous accumulation of microplastics in the environment poses ecological threats and has been an increasing problem worldwide. In this study, eight bacterial strains were isolated from mangrove sediment in Peninsular Malaysia to mitigate the environmental impact of microplastics and develop a clean-up option. The bacterial isolates were screened for their potential to degrade UV-treated microplastics from polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). Only two isolates, namely, Bacillus cereus and Bacillus gottheilii, grew on a synthetic medium containing different microplastic polymers as the sole carbon source. A shake flask experiment was carried out to further evaluate the biodegradability potential of the isolates. Degradation was monitored by recording the weight loss of microplastics and the growth pattern of the isolates in the mineral medium. The biodegradation extent was validated by assessment of the morphological and structural changes through scanning electron microscopy and Fourier transform infrared spectroscopy analyses. The calculated weight loss percentages of the microplastic particles by B. cereus after 40 days were 1.6%, 6.6%, and 7.4% for PE, PET, and PS, respectively. B. gottheilii recorded weight loss percentages of 6.2%, 3.0%, 3.6%, and 5.8% for PE, PET, PP, and PS, respectively. The designated isolates degraded the microplastic material and exhibited potential for remediation of microplastic-contaminated environment. Biodegradation tests must be conducted to characterize the varied responses of microbes toward pollutants, such as microplastics. Hence, a novel approach for biodegradation of microplastics must be developed to help mitigate the environmental impact of plastics and microplastic polymers.
  5. Ahmad Kamal N, Muhammad NS, Abdullah J
    Environ Pollut, 2020 Apr;259:113909.
    PMID: 31927277 DOI: 10.1016/j.envpol.2020.113909
    Malaysia is a tropical country that is highly dependent on surface water for its raw water supply. Unfortunately, surface water is vulnerable to pollution, especially in developed and dense urban catchments. Therefore, in this study, a methodology was developed for an extensive temporal water quality index (WQI) and classification analysis, simulations of various pollutant discharge scenarios using QUAL2K software, and maps with NH3-N as the core pollutant using an integrated QUAL2K-GIS. It was found that most of the water quality stations are categorized as Class III (slightly polluted to polluted). These stations are surrounded by residential areas, industries, workshops, restaurants and wet markets that contribute to the poor water quality levels. Additionally, low WQI values were reported in 2010 owing to development and agricultural activities. However, the WQI values improved during the wet season. High concentrations of NH3-N were found in the basin, especially during dry weather conditions. Three scenarios were simulated, i.e. 10%, 50% and 70% of pollution discharge into Skudai river using a calibrated and validated QUAL2K model. Model performance was evaluated using the relative percentage difference. An inclusive graph showing the current conditions and pollution reduction scenarios with respect to the distance of Skudai river and its tributaries is developed to determine the WQI classification. Comprehensive water quality maps based on NH3-N as the core pollutant are developed using integrated QUAL2K-GIS to illustrate the overall condition of the Skudai river. High NH3-N in the Skudai River affects water treatment plant operations. Pollution control of more than 90% is required to improve the water quality classification to Class II. The methodology and analysis developed in this study can assist various stakeholders and authorities in identifying problematic areas and determining the required percentage of pollution reduction to improve the Skudai River water quality.
  6. Wang C, Lin X, Zhang X, Show PL
    Environ Pollut, 2024 May 01;348:123860.
    PMID: 38537803 DOI: 10.1016/j.envpol.2024.123860
    Algae, comprising microalgae and macroalgae, have emerged as a promising feedstock for the production of functional biochar. Recently, the application of algal biochar in environmental remediation gains increasing attention. This review summarizes research advancements in the synthesis and application of algal biochar, a versatile and sustainable material for environmental remediation ranging from wastewater treatment to soil improvement. Algal biochar can be prepared by pyrolysis, microwave-assisted pyrolysis, and hydrothermal carbonization. Physical and chemical modifications have proven to be effective for improving biochar properties. Algal biochar is promising for removing diverse pollutants including heavy metals, organic pollutants, and microplastics. The role in soil improvement signifies a sustainable approach to enhancing soil structure, nutrient retention, and microbial activity. Research gaps are identified based on current understanding, necessitating further exploration into variations in biochar characteristics, the performance improvement, large-scale applications, and the long-term evaluation for environmental application. This review provides a better understanding of algal biochar as a sustainable and effective tool in environmental remediation.
  7. Chan YH, Syed Abdul Rahman SNF, Lahuri HM, Khalid A
    Environ Pollut, 2021 Mar 01;278:116843.
    PMID: 33711630 DOI: 10.1016/j.envpol.2021.116843
    Carbon monoxide (CO) is a highly valuable component of syngas which could be used to synthesize various chemicals and fuels. Conventionally, syngas is derived from fossil-based natural gas and coal which are non-renewable. To curb the problem, CO2 gasification offers a win-win solution in which CO2 is converted with wastes to CO, achieving carbon emission mitigation and addressing waste disposal issue simultaneously. In this review, gasification of various wastes by CO2 with particular focus given to generation of CO-rich syngas is presented and critically discussed. This includes the effects of operating parameters (temperature, pressure and physicochemical properties of feedstocks) and advanced CO2 gasification techniques (catalytic CO2 gasification, CO2 co-gasification and microwave-driven CO2 gasification). Furthermore, associated technological challenges are highlighted and way forward in this field are proposed.
  8. Ismail NAH, Wee SY, Kamarulzaman NH, Aris AZ
    Environ Pollut, 2019 Jun;249:1019-1028.
    PMID: 31146308 DOI: 10.1016/j.envpol.2019.03.089
    Emerging pollutants known as endocrine-disrupting compounds (EDCs) are a contemporary global issue, especially in aquatic ecosystems. As aquaculture production through mariculture activities in Malaysia supports food production, the concentration and distribution of EDCs in estuarine water ecosystems may have changed. Therefore, this current study aims to prepare a suitable and reliable method for application on environmental samples. Besides, this study also presented the occurrence of EDCs pollutant in Pulau Kukup, Johor, where the biggest and most active mariculture site in Malaysia takes place. Analytical methods based on a combination of solid-phase extraction with liquid chromatography tandem mass spectrometry (Solid-phase extraction (SPE)-LC-MS/MS) have been modified and optimised to examine the level of targeted EDCs contaminant. In the current study, this method displays high extraction recovery for targeted EDCs, ranging from 92.02% to 132.32%. The highest concentration detected is diclofenac (<0.47-79.89 ng/L) followed by 17β-estradiol (E2) (<5.28-31.43 ng/L) and 17α-ethynylestradiol (EE2) (<0.30-7.67 ng/L). The highest percentage distribution for the targeted EDCs in the current study is diclofenac, followed by EE2 and dexamethasone with the percentages of 99.44%, 89.53% and 73.23%, respectively. This current study can be a baseline assessment to understand the pollution profile of EDCs and their distribution in the estuarine water of the mariculture site throughout the world, especially in Malaysia. Owing to the significant concentration of targeted EDCs detected in water samples, the need for further monitoring in the future is required.
  9. Bhagat SK, Tiyasha T, Awadh SM, Tung TM, Jawad AH, Yaseen ZM
    Environ Pollut, 2021 Jan 01;268(Pt B):115663.
    PMID: 33120144 DOI: 10.1016/j.envpol.2020.115663
    Hybrid artificial intelligence (AI) models are developed for sediment lead (Pb) prediction in two Bays (i.e., Bramble (BB) and Deception (DB)) stations, Australia. A feature selection (FS) algorithm called extreme gradient boosting (XGBoost) is proposed to abstract the correlated input parameters for the Pb prediction and validated against principal component of analysis (PCA), recursive feature elimination (RFE), and the genetic algorithm (GA). XGBoost model is applied using a grid search strategy (Grid-XGBoost) for predicting Pb and validated against the commonly used AI models, artificial neural network (ANN) and support vector machine (SVM). The input parameter selection approaches redimensioned the 21 parameters into 9-5 parameters without losing their learned information over the models' training phase. At the BB station, the mean absolute percentage error (MAPE) values (0.06, 0.32, 0.34, and 0.33) were achieved for the XGBoost-SVM, XGBoost-ANN, XGBoost-Grid-XGBoost, and Grid-XGBoost models, respectively. At the DB station, the lowest MAPE values, 0.25 and 0.24, were attained for the XGBoost-Grid-XGBoost and Grid-XGBoost models, respectively. Overall, the proposed hybrid AI models provided a reliable and robust computer aid technology for sediment Pb prediction that contribute to the best knowledge of environmental pollution monitoring and assessment.
  10. Ishii S, Bell JN, Marshall FM
    Environ Pollut, 2007 Nov;150(2):267-79.
    PMID: 17379364
    The phytotoxic risk of ambient air pollution to local vegetation was assessed in Selangor State, Malaysia. The AOT40 value was calculated by means of the continuously monitored daily maximum concentration and the local diurnal pattern of O3. Together with minor risks associated with the levels of NO2 and SO2, the study found that the monthly AOT40 values in these peri-urban sites were consistently over 1.0 ppm.h, which is well in exceedance of the given European critical level. Linking the O3 level to actual agricultural crop production in Selangor State also indicated that the extent of yield losses could have ranged from 1.6 to 5.0% (by weight) in 2000. Despite a number of uncertainties, the study showed a simple but useful methodological framework for phytotoxic risk assessment with a limited data set, which could contribute to appropriate policy discussion and countermeasures in countries under similar conditions.
  11. Qu Y, Yang Y, Sonne C, Chen X, Yue X, Gu H, et al.
    Environ Pollut, 2023 Nov 01;336:122417.
    PMID: 37598935 DOI: 10.1016/j.envpol.2023.122417
    Industrialization and overpopulation have polluted aquatic environments with significant impacts on human health and wildlife. The main pollutants in urban sewage are nitrogen, phosphorus, heavy metals and organic pollutants, which need to be treated with sewage, and the use of aquatic plants to purify wastewater has high efficiency and low cost. However, the effectiveness and efficiency of phytoremediation are also affected by temperature, pH, microorganisms and other factors. The use of biochar can reduce the cost of wastewater purification, and the combination of biochar and nanotechnology can improve the efficiency of wastewater purification. Some aquatic plants can enrich pollutants in wastewater, so it can be considered to plant these aquatic plants in constructed wetlands to achieve the effect of purifying wastewater. Biochar treatment technology can purify wastewater with high efficiency and low cost, and can be further applied to constructed wetlands. In this paper, the latest research progress of various pollutants in wastewater purification by aquatic plants is reviewed, and the efficient treatment technology of wastewater by biochar is discussed. It provides theoretical basis for phytoremediation of urban sewage pollution in the future.
  12. Guo K, Yan L, He Y, Li H, Lam SS, Peng W, et al.
    Environ Pollut, 2023 Apr 01;322:121130.
    PMID: 36693585 DOI: 10.1016/j.envpol.2023.121130
    With the synchronous development of highway construction and the urban economy, automobiles have entered thousands of households as essential means of transportation. This paper reviews the latest research progress in using phytoremediation technology to remediate the environmental pollution caused by automobile exhaust in recent years, including the prospects for stereoscopic forestry. Currently, most automobiles on the global market are internal combustion vehicles using fossil energy sources as the primary fuel, such as gasoline, diesel, and liquid or compressed natural gas. The composition of vehicle exhaust is relatively complex. When it enters the atmosphere, it is prone to a series of chemical reactions to generate various secondary pollutants, which are very harmful to human beings, plants, animals, and the eco-environment. Despite improving the automobile fuel quality and installing exhaust gas purification devices, helping to reduce air pollution, the treatment costs of these approaches are expensive and cannot achieve zero emissions of automobile exhaust pollutants. The purification of vehicle exhaust by plants is a crucial way to remediate the environmental pollution caused by automobile exhaust and improve the environment along the highway by utilizing the ecosystem's self-regulating ability. Therefore, it has become a global trend to use phytoremediation technology to restore the automobile exhaust pollution. Now, there is no scientific report or systematic review about how plants absorb vehicle pollutants. The screening and configuration of suitable plant species is the most crucial aspect of successful phytoremediation. The mechanisms of plant adsorption, metabolism, and detoxification are reviewed in this paper to address the problem of automobile exhaust pollution.
  13. Dayana Priyadharshini S, Suresh Babu P, Manikandan S, Subbaiya R, Govarthanan M, Karmegam N
    Environ Pollut, 2021 Aug 17;290:117989.
    PMID: 34433126 DOI: 10.1016/j.envpol.2021.117989
    Surface and water bodies in many parts of the world are affected due to eutrophication, contamination and depletion. The approach of wastewater treatment using algae for eliminating nutrients and other pollutants from domestic wastewater is growing interest among the researchers. However, sustainable treatment of the wastewater is considered to be important in establishing more effective nutrient and pollutant reduction using algal systems. In comparison to the conventional method of remediation, there are opportunities to commercially viable businesses interest with phycoremediation, thus by achieving cost reductions and renewable bioenergy options. Phycoremediation is an intriguing stage for treating wastewater since it provides tertiary bio-treatment while producing potentially valuable biomass that may be used for a variety of applications. Furthermore, the phycoremediation provides the ability to remove heavy metals as well as harmful organic substances, without producing secondary contamination. In this review, the role of microalgae in treating different wastewaters and the process parameters affecting the treatment and future scope of research have been discussed. Though several algae are employed for wastewater treatment, species of the genera Chlamydomonas, Chlorella, and Scenedesmus are extensively utilized. Interestingly, there is a vast scope for employing algal species with high flocculation capacity and adsorption mechanisms for the elimination of microplastics. In addition, the algal biomass generated during phycoremediation has been found to possess high protein and lipid contents, promising their exploitation in biofuel, food and animal feed industries.
  14. Lim HR, Khoo KS, Chew KW, Chang CK, Munawaroh HSH, Kumar PS, et al.
    Environ Pollut, 2021 Sep 01;284:117492.
    PMID: 34261213 DOI: 10.1016/j.envpol.2021.117492
    Spirulina biomass accounts for 30% of the total algae biomass production globally. In conventional process of Spirulina biomass production, cultivation using chemical-based culture medium contributes 35% of the total production cost. Moreover, the environmental impact of cultivation stage is the highest among all the production stages which resulted from the extensive usage of chemicals and nutrients. Thus, various types of culture medium such as chemical-based, modified, and alternative culture medium with highlights on wastewater medium is reviewed on the recent advances of culture media for Spirulina cultivation. Further study is needed in modifying or exploring alternative culture media utilising waste, wastewater, or by-products from industrial processes to ensure the sustainability of environment and nutrients source for cultivation in the long term. Moreover, the current development of utilising wastewater medium only support the growth of Spirulina however it cannot eliminate the negative impacts of wastewater. In fact, the recent developments in coupling with wastewater treatment technology can eradicate the negative impacts of wastewater while supporting the growth of Spirulina. The application of Spirulina cultivation in wastewater able to resolve the global environmental pollution issues, produce value added product and even generate green electricity. This would benefit the society, business, and environment in achieving a sustainable circular bioeconomy.
  15. Tanabe S, Kunisue T
    Environ Pollut, 2007 Mar;146(2):400-13.
    PMID: 16949712
    In this paper, we concisely reviewed the contamination of persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) in human breast milk collected from Asian countries such as Japan, China, Philippines, Vietnam, Cambodia, India, Malaysia, and Indonesia during 1999-2003. Dioxins, PCBs, CHLs in Japanese, and DDTs in Vietnamese, Chinese, Cambodian, Malaysian, and HCHs in Chinese, Indian, and HCB in Chinese breast milk were predominant. In India, levels of dioxins and related compounds (DRCs) in the mothers living around the open dumping site were notably higher than those from the reference site and other Asian developing countries, indicating that significant pollution sources of DRCs are present in the dumping site of India and the residents there have been exposed to relatively higher levels of these contaminants possibly via bovine milk.
  16. Al-Raad AA, Hanafiah MM, Naje AS, Ajeel MA
    Environ Pollut, 2020 Oct;265(Pt B):115049.
    PMID: 32599327 DOI: 10.1016/j.envpol.2020.115049
    In this study, a novel rotating anode-based reactor (RAR) was designed to investigate its effectiveness in removing dissolved salts (i.e., Br-, Cl-, TDS, and SO42-) from saline water samples. Two configurations of an impeller's rotating anode with various operation factors, such as operating time (min), rotating speed (rpm), current density (mA/cm2), temperature (°C), pH, and inter-electrode space (cm), were used in the desalination process. The total cost consumed was calculated on the basis of the energy consumption and aluminum (Al) used in the desalination. In this respect, operating costs were calculated using optimal operating conditions. Salinity was removed electrochemically from saline water through electrocoagulation (EC). Results showed that the optimal adjustments for treating saline water were carried out at the following conditions: 150 and 75 rpm rotating speeds for the impeller's rod anode and plate anode designs, respectively; 2 mA/cm2 current density (I), 1 cm2 inter-electrode space, 25 °C temperature, 10 min operation time, and pH 8. The results indicated that EC technology with impeller plates of rotating anode can be considered a very cost-effective technique for treating saline water.
  17. Balogun AL, Yekeen ST, Pradhan B, Wan Yusof KB
    Environ Pollut, 2021 Jan 01;268(Pt A):115812.
    PMID: 33143984 DOI: 10.1016/j.envpol.2020.115812
    This study develops an oil spill environmental vulnerability model for predicting and mapping the oil slick trajectory pattern in Kota Tinggi, Malaysia. The impact of seasonal variations on the vulnerability of the coastal resources to oil spill was modelled by estimating the quantity of coastal resources affected across three climatic seasons (northeast monsoon, southwest monsoon and pre-monsoon). Twelve 100 m3 (10,000 splots) medium oil spill scenarios were simulated using General National Oceanic and Atmospheric Administration Operational Oil Modeling Environment (GNOME) model. The output was integrated with coastal resources, comprising biological, socio-economic and physical shoreline features. Results revealed that the speed of an oil slick (40.8 m per minute) is higher during the pre-monsoon period in a southwestern direction and lower during the northeast monsoon (36.9 m per minute). Evaporation, floating and spreading are the major weathering processes identified in this study, with approximately 70% of the slick reaching the shoreline or remaining in the water column during the first 24 h (h) of the spill. Oil spill impacts were most severe during the southwest monsoon, and physical shoreline resources are the most vulnerable to oil spill in the study area. The study concluded that variation in climatic seasons significantly influence the vulnerability of coastal resources to marine oil spill.
  18. Khairul Hasni NA, Anual ZF, Rashid SA, Syed Abu Thahir S, Veloo Y, Fang KS, et al.
    Environ Pollut, 2023 May 01;324:121095.
    PMID: 36682614 DOI: 10.1016/j.envpol.2023.121095
    Contamination of water systems with endocrine disrupting chemicals (EDCs) is becoming a major public health concern due to their toxicity and ubiquity. The intrusion of EDCs into water sources and drinking water has been associated with various adverse health effects on humans. However, there is no comprehensive overview of the occurrence of EDCs in Malaysia's water systems. This report aims to describe the occurrence of EDCs and their locations. Literature search was conducted electronically in two databases (PubMed and Scopus). A total of 41 peer-reviewed articles published between January 2000 and May 2021 were selected. Most of the articles dealt with pharmaceuticals (16), followed by pesticides (7), hormones (7), mixed compounds (7), and plasticisers (4). Most studies (40/41) were conducted in Peninsular Malaysia, with 60.9% in the central region and almost half (48.8%) in the Selangor State. Only one study was conducted in the northern region and East Malaysia. The Langat River, the Klang River, and the Selangor River were among the most frequently studied EDC-contaminated surface waters, while the Pahang River and the Skudai River had the highest concentrations of some of the listed compounds. Most of the risk assessments resulted in a hazard quotient (HQ) and a risk quotient (RQ)  1 in the Selangor River. An RQ > 1 for combined pharmaceuticals was found in Putrajaya tap water. Overall, this work provides a comprehensive overview of the occurrence of EDCs in Malaysia's water systems. The findings from this review can be used to mitigate risks and strengthen legislation and policies for safer drinking water.
  19. Omar TFT, Aris AZ, Yusoff FM, Mustafa S
    Environ Pollut, 2019 May;248:763-773.
    PMID: 30851586 DOI: 10.1016/j.envpol.2019.02.060
    The occurrence, level, and distribution of multiclass emerging organic contaminants (EOCs) in fish and mollusks from the Klang River estuary were examined. The targeted EOCs for this assessment were phenolic endocrine disrupting compounds (bisphenol A, 4-OP, and 4-NP), organophosphorous pesticides (quinalphos, chlorpyrifos, and diazinon), estrogenic hormones (E2, E1, and EE2), and pharmaceutically active chemicals (primidone, sulfamethoxazole, dexamethasone, diclofenac, amoxicillin, progesterone, and testosterone). Results from this study showed that the prevalent contamination of the Klang River estuary by EOCs with diclofenac, bisphenol A, progesterone, and amoxicillin were predominantly detected in fish and mollusks. Among the EOCs, diclofenac and progesterone had the highest concentrations in fish and mollusk samples, respectively. The concentrations of diclofenac and progesterone in fish and mollusk samples range from 1.42 ng/g to 10.76 ng/g and from 0.73 ng/g to 9.57 ng/g, respectively. Bisphenol A should also be highlighted because of its significant presence in both fish and mollusks. The concentration of bisphenol A in both matrices range from 0.92 ng/g to 5.79 ng/g. The calculated hazard quotient (HQ) for diclofenac, bisphenol A, and progesterone without consideration to their degradation byproduct were less than one, thus suggesting that the consumption of fish and mollusks from the Klang River estuary will unlikely pose any health risk to consumers on the basis of the current assessment. Nonetheless, this preliminary result is an important finding for pollution studies in Malaysian tropical coastal ecosystems, particularly for organic micropollutant EOCs, and can serve as a baseline database for future reference.
  20. Hoy ZX, Phuang ZX, Farooque AA, Fan YV, Woon KS
    Environ Pollut, 2024 Mar 01;344:123386.
    PMID: 38242306 DOI: 10.1016/j.envpol.2024.123386
    Improper municipal solid waste (MSW) management contributes to greenhouse gas emissions, necessitating emissions reduction strategies such as waste reduction, recycling, and composting to move towards a more sustainable, low-carbon future. Machine learning models are applied for MSW-related trend prediction to provide insights on future waste generation or carbon emissions trends and assist the formulation of effective low-carbon policies. Yet, the existing machine learning models are diverse and scattered. This inconsistency poses challenges for researchers in the MSW domain who seek to identify and optimize the machine learning techniques and configurations for their applications. This systematic review focuses on MSW-related trend prediction using the most frequently applied machine learning model, artificial neural network (ANN), while addressing potential methodological improvements for reducing prediction uncertainty. Thirty-two papers published from 2013 to 2023 are included in this review, all applying ANN for MSW-related trend prediction. Observing a decrease in the size of data samples used in studies from daily to annual timescales, the summarized statistics suggest that well-performing ANN models can still be developed with approximately 33 annual data samples. This indicates promising opportunities for modeling macroscale greenhouse gas emissions in future works. Existing literature commonly used the grid search (manual) technique for hyperparameter (e.g., learning rate, number of neurons) optimization and should explore more time-efficient automated optimization techniques. Since there are no one-size-fits-all performance indicators, it is crucial to report the model's predictive performance based on more than one performance indicator and examine its uncertainty. The predictive performance of newly-developed integrated models should also be benchmarked to show performance improvement clearly and promote similar applications in future works. The review analyzed the shortcomings, best practices, and prospects of ANNs for MSW-related trend predictions, supporting the realization of practical applications of ANNs to enhance waste management practices and reduce carbon emissions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links