Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Nadeem M, Ahmad M, Saeed MA, Shaari A, Riaz S, Naseem S, et al.
    IET Nanobiotechnol, 2015 Jun;9(3):136-41.
    PMID: 26023157 DOI: 10.1049/iet-nbt.2014.0012
    Nanoparticles as solid colloidal particles are extensively studied and used as anticancer drug delivery agents because of their physical properties. This current research aims to prepare water base suspension of uncoated iron oxide nanoparticles and their biodistribution study to different organs, especially the brain, by using a single photon emission computed tomography gamma camera. The water-based suspension of iron oxide nanoparticles was synthesised by a reformed version of the co-precipitation method and labelled with Tc99m for intravenous injection. The nanoparticles were injected without surface modification. X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and transmission electron microscope (TEM) techniques were used for characterisation. Peaks of XRD and EDS indicate that the particles are magnetite and exist in aqueous suspension. The average diameter of iron oxide nanoparticles without any surface coating determined by TEM is 10 nm. These particles are capable of evading the reticuloendothelial system and can cross the blood-brain barrier in the rabbit. The labelling efficiency of iron oxide nanoparticles labelled with Tc99m is 85%, which is good for the biodistribution study. The sufficient amount of iron oxide nanoparticles concentration in the brain as compared with the surrounding soft tissues and their long blood retention time indicates that the water-based suspension of iron oxide nanoparticles may be an option for drug delivery into the brain.
  2. Hussein-Al-Ali SH, Abudoleh SM, Abualassal QIA, Abudayeh Z, Aldalahmah Y, Hussein MZ
    IET Nanobiotechnol, 2022 May;16(3):92-101.
    PMID: 35332980 DOI: 10.1049/nbt2.12081
    Silver nanoparticles (AgNPs) have shown potential applications in drug delivery. In this study, the AgNPs was prepared from silver nitrate in the presence of alginate as a capping agent. The ciprofloxacin (Cipro) was loaded on the surface of AgNPs to produce Cipro-AgNPs nanocomposite. The characteristics of the Cipro-AgNPs nanocomposite were studied by X-ray diffraction (XRD), UV-Vis, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier-transform infra-red analysis (FT-IR) and zeta potential analyses. The XRD of AgNPs and Cipro-AgNPs nanocomposite data showed that both have a crystalline structure in nature. The FT-IR data indicate that the AgNPs have been wrapped by the alginate and loaded with the Cipro drug. The TEM image showed that the Cipro-AgNPs nanocomposites have an average size of 96 nm with a spherical shape. The SEM image for AgNPs and Cipro-AgNPs nanocomposites confirmed the needle-lumpy shape. The zeta potential for Cipro-AgNPs nanocomposites exhibited a positive charge with a value of 6.5 mV. The TGA for Cipro-AgNPs nanocomposites showed loss of 79.7% in total mass compared to 57.6% for AgNPs which is due to the Cipro loaded in the AgNPs. The release of Cipro from Cipro-AgNPs nanocomposites showed slow release properties which reached 98% release within 750 min, and followed the Hixson-Crowell kinetic model. In addition, the toxicity of AgNPs and Cipro-AgNPs nanocomposites was evaluated using normal (3T3) cell line. The present work suggests that Cipro-AgNPs are suitable for drug delivery.
  3. Kalantari K, Afifi AM, Moniri M, Moghaddam AB, Kalantari A, Izadiyan Z
    IET Nanobiotechnol, 2019 May;13(3):262-268.
    PMID: 31053688 DOI: 10.1049/iet-nbt.2018.5066
    In this study, the authors synthesised silver nanoparticles (AgNPs) using autoclave as a simple, unique and eco-friendly approach. The effect of Zingiber officinale extract was evaluated as a reducing and stabiliser agent. According to transmission electron microscopy results, the AgNPs were in the spherical shape with a particle size of ∼17 nm. The biomedical properties of AgNPs as antibacterial agents and free radical scavenging activity were estimated. Synthesised AgNPs showed significant 1,1-diphenyl-2-picryl-hydrazyl free radical scavenging. Strong bactericidal activity was shown by the AgNPs on Gram-positive and Gram-negative bacteria. A maximum inhibition zone of ∼14 mm was obtained for epidermidis at a concentration of 60 μg/ml for sample fabricated at 24 h. The AgNPs also showed a significant cytotoxic effect against MCF-7 breast cancer cell lines with an half maximal inhibitory concentration value of 62 μg/ml in 24 h by the MTT assay. It could be concluded that Z. officinale extract can be used effectively in the production of potential antioxidant and antimicrobial AgNPs for commercial application.
  4. Habibvand M, Yousefi M, Ahmed SA, Hassanzadeh H
    IET Nanobiotechnol, 2023 Apr;17(2):80-90.
    PMID: 36478175 DOI: 10.1049/nbt2.12106
    Today, the increasing use of chemical preservatives in foods is considered one of the main problems in food industries. This study aimed to produce the pasteurised Doogh (Iranian yogurt drink) containing a nanoemulsion of essential oil (EO) with appropriate quality. A factorial test based on a completely randomised design with two treatments in three levels, including EO type (pennyroyal, Gijavash, and their equal combination) and a control sample was applied to assess the physicochemical and sensory properties of Doogh. The highest negative zeta potential and antioxidant activity percentage were observed in the sample containing the nanoemulsion of pennyroyal and enriched with a combination of two essential oils. The microbial evaluation results indicated that the total microorganism count was minimised in the Doogh containing the nanoemulsion of Gijavash. The nanoemulsions of pennyroyal and Gijavash can be added into Doogh formulation to produce a new product with maximum sensory acceptability.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links