Displaying publications 21 - 40 of 96 in total

Abstract:
Sort:
  1. Kiew LV, Cheong SK, Sidik K, Chung LY
    Int J Pharm, 2010 May 31;391(1-2):212-20.
    PMID: 20214970 DOI: 10.1016/j.ijpharm.2010.03.010
    To enhance the stability of the anticancer drug gemcitabine (2'-deoxy-2',2'-difluorocytidine), it was conjugated to poly-l-glutamic acid (PG-H) via a carbodiimide reaction. The synthesised poly-l-glutamic acid-gemcitabine (PG-G) was purified and characterised by using SDS-PAGE to estimate its molecular weight, HPLC to determine its purity and degree of drug loading, and NMR to elucidate the structure. In vitro aqueous hydrolytic studies showed that the gemcitabine release from the polymeric drug conjugate was pH dependent, and that the conjugation to PG-H improved its stability in human plasma. The release of the bound gemcitabine from PG-G in plasma was mediated by a hydrolytic process. It began with a lag phase, followed by linear release between 12 and 48h, and reached equilibrium at 72h with 51% of the gemcitabine released. In vitro cytotoxicity studies using MCF-7 and MDA-MB-231 human mammary cancer cells, as well as human dermal fibroblasts (HDF), showed that PG-G displayed a lower dose dependent cytotoxic effect with respect to the parent drug gemcitabine. On the other hand, in 4T1 mouse mammary tumour cells, PG-G and gemcitabine showed similar toxicities. Gemcitabine was more than likely released hydrolytically from PG-G and taken up by MCF-7, MDA-MB-231 and HDF, whereas both released gemcitabine and PG-G were taken up by 4T1 to mediate the observed cytotoxicities. The improved stability and extended sustained release profile may render PG-G a potential anticancer prodrug.
  2. Anuar MS, Briscoe BJ
    Int J Pharm, 2010 Mar 15;387(1-2):42-7.
    PMID: 19963050 DOI: 10.1016/j.ijpharm.2009.11.031
    The predilection of a bi-layered tablet to fail in the interface region after its initial formation in the compaction process reduces its practicality as a choice for controlled release solid drug delivery system. Hence, a fundamental appreciation of the governing mechanism that causes the weakening of the interfacial bonds within the bi-layered tablet is crucial in order to improve the overall bi-layered tablet mechanical integrity. This work has shown that the occurrence of the elastic relaxation in the interface region during the ejection stage of the compaction process decreases with the increase in the bi-layered tablet interface strength. This is believed to be due to the increase in the plastic bonding in the interface region. The tablet diametrical elastic relaxation affects the tablet height elastic relaxation, where the impediment of the tablet height expansion is observed when the interface region experiences a diametrical expansion.
  3. Keck CM
    Int J Pharm, 2010 May 5;390(1):3-12.
    PMID: 19733647 DOI: 10.1016/j.ijpharm.2009.08.042
    The influence of optical parameters, additional techniques (e.g. PIDS technology) and the importance of light microscopy were investigated by comparing laser diffraction data obtained via the conventional method and an optimized analysis method. Also the influence of a possible dissolution of nanocrystals during a measurement on the size result obtained was assessed in this study. The results reveal that dissolution occurs if unsaturated medium or microparticle saturated medium is used for the measurements. The dissolution is erratic and the results are not reproducible. Dissolution can be overcome by saturating the measuring medium prior to the measurement. If nanocrystals are analysed the dispersion medium should be saturated with the nanocrystals, because the solubility is higher than for coarse micro-sized drug material. The importance of using the optimized analysis method was proven by analysing 40 different nanosuspensions via the conventional versus the optimized sizing method. There was no large difference in the results obtained for the 40 nanosuspensions using the conventional method. This would have led to the conclusion, that all the 40 formulations investigated are physically stable. However, the analysis via the optimized method revealed that from 40 formulations investigated only four were physically stable. In conclusion an optimized analysis saves time and money and avoids misleading developments, because discrimination between "stable" and "unstable" can be done reliably at a very early stage of the development.
  4. Al-Edresi S, Baie S
    Int J Pharm, 2009 May 21;373(1-2):174-8.
    PMID: 19429303 DOI: 10.1016/j.ijpharm.2009.02.011
    Virgin coconut oil (VCO)-in-water, nano-emulsion in the form of cream stabilized by Emulium Kappa as an emulsifier, was prepared by using the Emulsion Inversion Point method. A nano-emulsion with droplet size <300 nm was then obtained. VCO has recently become a more popular new material in the cosmetic industries. Emulium Kappa is an ionic emulsifier that contains sodium stearoyl lactylate, the active whitening ingredient was Kojic Dipalmitate. Ostwald ripening is the main destabilizing factor for the nano-emulsion. This decline can be reduced by adding non-soluble oil, namely squalene, to the virgin coconut oil. We tested VCO:squalene in the ratios of 10:0, 9.8:0.2, 9.6:0.4, 9.4:0.6, 9.2:0.8, 9:1 and 8:2 and discovered that squalene's higher molecular weight (above critical molecular weight) resulted in low polarity and insolubility in the continuous phase. The continuous partitioning between the droplets results in the decline of Ostwald ripening. Furthermore, flocculation may occur due to the instability of nano-emulsion, especially for the preparations with little or no squalene at all. The stability of the nano-emulsion was evaluated by the electrophoretic properties of the emulsion droplets. The zeta potential values for the emulsion increased as the percentage of squalene oil increased.
  5. Chee JW, Amirul AA, Majid MI, Mansor SM
    Int J Pharm, 2008 Sep 1;361(1-2):1-6.
    PMID: 18584978 DOI: 10.1016/j.ijpharm.2008.05.007
    Copolyesters of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) were produced by Cupriavidus sp. (USMAA2-4) (DSM 19379) from carbon sources of 1,4-butanediol and gamma-butyrolactone. The composition of copolyesters produced varied from 0 to 45 mol% 4HB, depending on the combination of carbon sources supplied. The P(3HB-co-4HB) films containing Mitragyna speciosa crude extract were prepared with the ratio varying from 10 to 40% (w/w). The in vitro crude extract release of the films was studied in 0.1M phosphate buffer (pH 7.4) at 37 degrees C. Although the release rate was slow, it was maintained at a constant rate. This suggests that the crude extract release was due to the polymer degradation because the amount of crude extract released was consistent. The amount of degradation was based on the films' dry weight loss, decrease in molecular weight and surface morphology changes. The degradation rate increased with the 4HB content. This showed that the polymer degradation is dependant on the molecular weight, crystallinity, thermal properties and water permeability. The different drug loading ratio which led to surface morphology changes also gave an effect on polymer degradation.
  6. Goh CF, Lane ME
    Int J Pharm, 2014 Oct 1;473(1-2):607-16.
    PMID: 25091375 DOI: 10.1016/j.ijpharm.2014.07.052
    Diclofenac (DF) was first synthesized in the 1960's and is currently available as ophthalmic, oral, parenteral, rectal and skin preparations. This review focuses on the administration of DF to the skin. As a member of the non-steroidal anti-inflammatory (NSAID) group of drugs the primary indications of DF are for the management of inflammation and pain but it is also used to treat actinic keratosis. The specific aims of this paper are to: (i) provide an overview of the pharmacokinetics and metabolism of DF following oral and topical administration; (ii) examine critically the various formulation approaches which have been investigated to enhance dermal delivery of DF; and (iii) identify new formulation strategies for enhanced DF skin penetration.
  7. Kumar GP, Phani AR, Prasad RG, Sanganal JS, Manali N, Gupta R, et al.
    Int J Pharm, 2014 Aug 25;471(1-2):146-52.
    PMID: 24858388 DOI: 10.1016/j.ijpharm.2014.05.033
    Enrofloxacin is a fluoroquinolone derivative used for treating urinary tract, respiratory and skin infections in animals. However, low solubility and low bioavailability prevented it from using on humans. Polyvinylpyrrolidone (PVP) is an inert, non toxic polymer with excellent hydrophilic properties, besides it can enhance bioavailability by forming drug polymer conjugates. With the aim of increasing solubility and bioavailability, enrofloxacin thin films were prepared using PVP as a polymer matrix. The obtained oral thin films exhibited excellent uniformity and mechanical properties. Swelling properties of the oral thin films revealed that the water uptake was enhanced by 21%. The surface pH has been found to be 6.8±0.1 indicating that these films will not cause any irritation to oral mucosa. FTIR data of the oral thin films indicated physical interaction between drug and polymer. SEM analysis revealed uniform distribution of drug in polymer matrix. In vitro drug release profiles showed enhanced release profiles (which are also pH dependant) for thin films compared to pure drug. Antibacterial activity was found to be dose dependent and maximum susceptibility was found on Klebsiella pneumonia making this preparation more suitable for respiratory infections.
  8. Bose A, Elyagoby A, Wong TW
    Int J Pharm, 2014 Jul 1;468(1-2):178-86.
    PMID: 24709212 DOI: 10.1016/j.ijpharm.2014.04.006
    In situ coating of 5-fluorouracil pellets by ethylcellulose and pectin powder mixture (8:3 weight ratio) in capsule at simulated gastrointestinal media provides colon-specific drug release in vitro. This study probes into pharmacodynamic and pharmacokinetic profiles of intra-capsular pellets coated in vivo in rats with reference to their site-specific drug release outcomes. The pellets were prepared by extrusion-spheronization technique. In vitro drug content, drug release, in vivo pharmacokinetics, local colonic drug content, tumor, aberrant crypt foci, systemic hematology and clinical chemistry profiles of coated and uncoated pellets were examined against unprocessed drug. In vivo pellet coating led to reduced drug bioavailability and enhanced drug accumulation at colon (179.13 μg 5-FU/g rat colon content vs 4.66 μg/g of conventional in vitro film-coated pellets at 15 mg/kg dose). The in vivo coated pellets reduced tumor number and size, through reforming tubular epithelium with basement membrane and restricting expression of cancer from adenoma to adenocarcinoma. Unlike uncoated pellets and unprocessed drug, the coated pellets eliminated aberrant crypt foci which represented a putative preneoplastic lesion in colon cancer. They did not inflict additional systemic toxicity. In vivo pellet coating to orally target 5-fluorouracil delivery at cancerous colon is a feasible therapeutic treatment approach.
  9. Thu HE, Ng SF
    Int J Pharm, 2013 Sep 15;454(1):99-106.
    PMID: 23856162 DOI: 10.1016/j.ijpharm.2013.06.082
    In our previous study, a novel alginate-based bilayer film for slow-release wound dressings was successfully developed. We found that alginate alone yielded poor films; however, the addition of gelatine had significantly enhanced the drug dispersion as well as the physical properties. Here, an investigation of the drug-polymer interactions in the bilayer films was carried out. Drug content uniformity test and microscopy observation revealed that the addition of gelatine generated bilayer films with a homogenous drug distribution within the matrix. The FTIR and XRD data showed an increase in film crystallinity which might infer the presence of drug-polymer crystalline microaggregates in the films. DSC confirmed the drug-polymer interaction and indicated that the gelatine has no effect on the thermal behaviour of the microaggregates, suggesting the compatibility of the drug and excipients in the bilayer films. In conclusion, the addition of gelatine can promote homogenous dispersion of hydrophobic drugs in alginate films possibly through the formation of crystalline microaggregates.
  10. Majid AM, Wong TW
    Int J Pharm, 2013 May 1;448(1):150-8.
    PMID: 23506957 DOI: 10.1016/j.ijpharm.2013.03.008
    The conventional powder flow testers require sample volumes larger than 40g and are met with experimental hiccups due to powder cohesion. This study designed a gas-pressurized dispersive powder flow tester where a high velocity air is used to disaggregate powder (9g) and eliminate its cohesion. The pressurized gas entrained solid particles leaving an orifice where the distance, surface area, width and weight of particle dispersion thereafter are determined as flow index. The flow indices of seven lactose grades with varying size, size distribution, shape, morphology, bulk and tapped densities characteristics were examined. They were compared against Hausner ratio and Carr's index parameters of the same powder mass. Both distance and surface area attributes of particle dispersion had significant negative correlations with Hausner ratio and Carr's index values of lactose. The distance, surface area and ease of particle dispersion varied proportionately with circular equivalent, surface weighted mean and volume weighted mean diameters of lactose, and inversely related to their specific surface area and elongation characteristics. Unlike insensitive Hausner ratio and Carr's index, an increase in elongation property of lactose particles was detectable through reduced powder weight loss from gas-pressurized dispersion as a result of susceptible particle blockage at orifice. The gas-pressurized dispersive tester is a useful alternative flowability measurement device for low volume and cohesive powder.
  11. Hussain Z, Katas H, Mohd Amin MC, Kumolosasi E, Buang F, Sahudin S
    Int J Pharm, 2013 Feb 28;444(1-2):109-19.
    PMID: 23337632 DOI: 10.1016/j.ijpharm.2013.01.024
    In this study, hydroxytyrosol (HT; a potent antioxidant) was co-administered with hydrocortisone (HC) to mitigate the systemic adverse effects of the latter and to provide additional anti-inflammatory and antioxidant benefits in the treatment of atopic dermatitis (AD). The co-loaded nanoparticles (NPs) prepared had shown different particle sizes, zeta potentials, loading efficiencies, and morphology, when the pH of the chitosan solution was increased from 3.0 to 7.0. Ex vivo permeation data showed that the co-loaded NPs formulation significantly reduced the corresponding flux (17.04μg/cm(2)/h) and permeation coefficient (3.4×10(-3)cm/h) of HC across full-thickness NC/Nga mouse skin. In addition, the NPs formulation showed higher epidermal (1560±31μg/g of skin) and dermal (880±28μg/g of skin) accumulation of HC than did a commercial HC formulation. Moreover, an in vivo study using an NC/Nga mouse model revealed that compared to the other treatment groups, the group treated with the NPs formulation efficiently controlled transepidermal water loss (13±2g/m(2)/h), intensity of erythema (207±12), and dermatitis index (mild). In conclusion, NPs co-loaded with HC/HT is proposed as a promising system for the percutaneous co-delivery of anti-inflammatory and antioxidative agents in the treatment of AD.
  12. Tan HW, Misran M
    Int J Pharm, 2013 Jan 30;441(1-2):414-23.
    PMID: 23174410 DOI: 10.1016/j.ijpharm.2012.11.013
    In this study, the preparation of N-pamitoyl chitosan (ChP) anchored oleic acid (OA) liposome was demonstrated. Two different types of water-soluble ChPs with different degrees of acylation (DA) were selected for this study. The presence of ChPs on the surface of OA liposome was confirmed with their micrographs and physicochemical properties. The "peeling off" effect on the surface of the ChP-anchored OA (OAChP) liposomes was observed on the atomic force microscope micrographs and confirmed the presence of the ChPs layer on the liposome surface. The surface tension of the OAChPs liposome solution was found to be higher than that of the OA liposome solution. This result indicated the removal of OA monomer by ChPs from the air-water interface. The increase in the minimum area per headgroup (A(min)) of the OA with the presence of ChPs has further proved the interaction between OA monomer and the hydrophobic moieties of the ChPs. The ChPs anchored onto the OA monolayer increased the curvature of the OAChP liposomes monolayer and reduced the liposome size. The size of the OAChP liposomes was reduced by 30 nm as compared with the unmodified OA liposome. Results revealed that the anchored ChPs can improve the integrity and rigidity of the OA liposome.
  13. Yew YP, Shameli K, Mohamad SEB, Nagao Y, Teow SY, Lee KX, et al.
    Int J Pharm, 2019 Dec 15;572:118743.
    PMID: 31705969 DOI: 10.1016/j.ijpharm.2019.118743
    Superparamagnetic magnetite nanocomposites (Fe3O4-NCs) were successfully synthesized, which comprised of montmorillonite (MMT) as matrix support, Kappaphycus alvarezii (SW) as bio-stabilizer and Fe3O4 as filler in the composites to form MMT/SW/Fe3O4-NCs. Nanocomposite with 0.5 g Fe3O4 (MMT/SW/0.5Fe3O4) was selected for anticancer activity study because it revealed high crystallinity, particle size of 7.2 ± 1.7 nm with majority of spherical shape, and Ms = 5.85 emu/g with negligible coercivity. Drug loading and release studies were carried out using protocatechuic acid (PCA) as the model for anticancer drug, which showed 19% and 87% of PCA release in pH 7.4 and 4.8, respectively. Monolayer anticancer assay showed that PCA-loaded MMT/SW/Fe3O4 (MMT/SW/Fe3O4-PCA) had selectivity towards HCT116 (colorectal cancer cell line). Although MMT/SW/Fe3O4-PCA (0.64 mg/mL) showed higher IC50 than PCA (0.148 mg/mL) and MMT/SW/Fe3O4 (0.306 mg/mL, MMT/SW/Fe3O4-PCA showed more effective killing towards tumour spheroid model generated from HCT116. The IC50 for MMT/SW/Fe3O4-PCA, MMT/SW/Fe3O4 and PCA were 0.132, 0.23 and 0.55 mg/mL, respectively. This suggests the improved penetration efficiency and drug release of MMT/SW/Fe3O4-PCA towards HCT116 spheroids. Moreover, concentration that lower than 2 mg/mL MMT/SW/Fe3O4-PCA did not result any hemolysis in human blood, which suggests them to be ideal for intravenous injection. This study highlights the potential of MMT/SW/Fe3O4-NCs as drug delivery agent.
  14. Harjoh N, Wong TW, Caramella C
    Int J Pharm, 2020 Jun 30;584:119416.
    PMID: 32423875 DOI: 10.1016/j.ijpharm.2020.119416
    Inhaled/oral insulin have been investigated as an alternative to injectable insulin, but are met with unsatisfactory outcomes. Transdermal administration bears several advantages unmet by inhalation/oral delivery, but macromolecular drugs permeation is poor. This study explored microwave to elicit transdermal insulin permeation, and compared against conventional permeation enhancers (fatty acids) in vitro/in vivo. The transdermal insulin permeation was promoted by microwave (2450 MHz/1 mW) > oleic acid (monounsaturated) ~ linoleic acid (double unsaturated bonds). The linolenic acid (triple unsaturated bonds) or combination of microwave/fatty acid reduced skin insulin permeation. Transdermal insulin permeation enhancement was attributed to epidermal lipid bilayer fluidization (CH) and corneocyte shrinkage due to keratin condensation (OH/NH, CO), which had aqueous pore enlarged to facilitate insulin transport. Its reduction by linolenic acid, a molecularly larger and rigid fatty acid with higher surface tension, was due to reduced fatty acid permeation into epidermis and minimal skin microstructural changes. The oleic acid, despite favoured skin microstructural changes, did not provide a remarkably high insulin permeation due to it embedded in skin as hydrophobic shield to insulin transport. Microwave penetrates skin volumetrically with no chemical residue retention. It alone promoted insulin absorption and sustained blood glucose level reduction in vivo.
  15. Halib N, Ahmad I, Grassi M, Grassi G
    Int J Pharm, 2019 Jul 20;566:631-640.
    PMID: 31195074 DOI: 10.1016/j.ijpharm.2019.06.017
    Cellulose is a natural homopolymer, composed of β-1,4- anhydro-d-glucopyranose units. Unlike plant cellulose, bacterial cellulose (BC), obtained from species belonging to the genera of Acetobacter, Rhizobium, Agrobacterium, and Sarcina through various cultivation methods and techniques, is produced in its pure form. BC is produced in the form of gel-like, never dry sheet with tremendous mechanical properties. Containing up to 99% of water, BC hydrogel is considered biocompatible thus finding robust applications in the health industry. Moreover, BC three-dimensional structure closely resembles the extracellular matrix (ECM) of living tissue. In this review, we focus on the porous BC morphology particularly suited to host oxygen and nutrients thus providing conducive environment for cell growth and proliferation. The remarkable BC porous morphology makes this biological material a promising templet for the generation of 3D tissue culture and possibly for tissue-engineered scaffolds.
  16. Citartan M, Kaur H, Presela R, Tang TH
    Int J Pharm, 2019 Aug 15;567:118483.
    PMID: 31260780 DOI: 10.1016/j.ijpharm.2019.118483
    Aptamers, nucleic acid ligands that are specific against their corresponding targets are increasingly employed in a variety of applications including diagnostics and therapeutics. The specificity of the aptamers against their targets is also used as the basis for the formulation of the aptamer-based drug delivery system. In this review, we aim to provide an overview on the chaperoning roles of aptamers in acting as the cargo or load carriers, delivering contents to the targeted sites via cell surface receptors. Internalization of the aptamer-biomolecule conjugates via receptor-mediated endocytosis and the strategies to augment the rate of endocytosis are underscored. The cargos chaperoned by aptamers, ranging from siRNAs to DNA origami are illuminated. Possible impediments to the aptamer-based drug deliveries such as susceptibility to nuclease resistance, potentiality for immunogenicity activation, tumor heterogeneity are speculated and the corresponding amendment strategies to address these shortcomings are discussed. We prophesy that the future of the aptamer-based drug delivery will take a trajectory towards DNA nanorobot-based assay.
  17. Aminu N, Chan SY, Yam MF, Toh SM
    Int J Pharm, 2019 Oct 30;570:118659.
    PMID: 31493495 DOI: 10.1016/j.ijpharm.2019.118659
    This study aimed to develop a dual action, namely anti-inflammatory and antimicrobial, nanogels (NG) for the treatment of periodontitis using triclosan (TCS) and flurbiprofen (FLB). Triclosan, an antimicrobial drug, was prepared as nanoparticles (NPs) using poly-ε-caprolactone (PCL), while flurbiprofen, an anti-inflammatory drug, was directly loaded in a chitosan (CS) based hydrogel. The entwinement of both NPs and hydrogel loaded systems resulted in the NG. The characterisation data confirmed that the developed formulation consists of nanosized spherical structures and displays pH-dependent swelling/erosion and temperature-responsiveness. Besides, the NG exhibited adequate bioadhesiveness using the chicken pouch model and displayed antibacterial activity through the agar plate method. An in-vivo study of the NG on experimental periodontitis (EP) rats confirmed the dual antibacterial and anti-inflammatory effects which revealed an excellent therapeutic outcome. In conclusion, a dual action NG was successfully developed and proved to have superior therapeutic effects in comparison to physical mixtures of the individual drugs.
  18. Alcantara KP, Zulfakar MH, Castillo AL
    Int J Pharm, 2019 Nov 25;571:118705.
    PMID: 31536765 DOI: 10.1016/j.ijpharm.2019.118705
    Mupirocin is a promising broad-spectrum antibiotic that is effective in treating MRSA infections. However, due to its rapid elimination and hydrolysis following injection and high protein binding, current therapeutic use is limited to topical administration. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug degradation by encapsulation. The objective of this research is to develop and characterize Mupirocin-Loaded Nanostructured Lipid Carriers (M-NLC) for intravascular administration. The MNLC was produced by a combination of high shear homogenization and high pressure homogenization of solid (cetyl palmitate) and liquid (caprylic/caprylic acid) biocompatible lipids in 5 different ratios. The mean particle size, polydispersity index (PDI) and the zeta potential (ZP) of the MNLC formulations were between 99.8 and 235 nm, PDI lower than 0.164, ZP from -25.96 to -19.53 and pH ranging from 6.28-6.49. The MNLC formulation also enhances the anti-bacterial activity of mupirocin. All formulation showed sustained drug release and good physical characteristics for three months storage under 25 °C. It also revealed that the MNLC 1 is safe at 250 mg/kg dose in rats. The MNLC 1 also showed a significant increase in plasma concentration in rabbits following IV administration thus, demonstrating an enhancement on its pharmacokinetic profile as compared to free mupirocin.
  19. Sabra R, Billa N, Roberts CJ
    Int J Pharm, 2019 Dec 15;572:118775.
    PMID: 31678385 DOI: 10.1016/j.ijpharm.2019.118775
    In the present study, we successfully developed a cetuximab-conjugated modified citrus pectin-chitosan nanoparticles for targeted delivery of curcumin (Cet-MCPCNPs) for the treatment of colorectal cancer. In vitro analyses revealed that nanoparticles were spherical with size of 249.33 ± 5.15 nm, a decent encapsulation efficiency (68.43 ± 2.4%) and a 'smart' drug release profile. 61.37 ± 0.70% of cetuximab was adsorbed to the surface of the nanoparticles. Cellular uptake studies displayed enhanced internalization of Cet-MCPCNPs in Caco-2 (EGFR +ve) cells, which ultimately resulted in a significant reduction in cancer cell propagation. The cell cycle analysis indicated that Cet- MCPCNPs induced cell death in enhanced percentage of Caco-2 cells by undergoing cell cycle arrest in the G2/M phase. These data suggest that Cet-MCPCNPs represent a new and promising targeting approach for the treatment of colorectal cancer.
  20. Choudhury H, Gorain B, Pandey M, Kumbhar SA, Tekade RK, Iyer AK, et al.
    Int J Pharm, 2017 Aug 30;529(1-2):506-522.
    PMID: 28711640 DOI: 10.1016/j.ijpharm.2017.07.018
    Docetaxel (DTX) is one of the important antitumor drugs, being used in several common chemotherapies to control leading cancer types. Severe toxicities of the DTX are prominent due to sudden parenteral exposure of desired loading dose to maintain the therapeutic concentration. Field of nanotechnology is leading to resist sudden systemic exposure of DTX with more specific delivery to the site of cancer. Further nanometric size range of the formulation aid for prolonged circulation, thereby extensive exposure results better efficacy. In this article, we extensively reviewed the therapeutic benefit of incorporating d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS, or simply TPGS) in the nanoparticle (NP) formulation of DTX for improved delivery, tumor control and tolerability. TPGS is well accepted nonionic-ampiphilic polymer which has been identified in the role of emulsifier, stabilizer, penetration enhancer, solubilizer and in protection in micelle. Simultaneously, P-glycoprotein inhibitory activity of TPGS in the multidrug resistant (MDR) cancer cells along with its apoptotic potential are the added advantage of TPGS to be incorporated in nano-chemotherapeutics. Thus, it could be concluded that TPGS based nanoparticulate application is an advanced approach to improve therapeutic efficacy of chemotherapeutic agents by better internalization and sustained retention of the NPs.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links