Displaying publications 21 - 40 of 209 in total

Abstract:
Sort:
  1. Joon, Ching Juana, Mohd Ambar Yarmob, Zhangc, Jingchang
    MyJurnal
    New solid acid catalyst consisting of zirconium sulfate (ZS) supported on a pure-HMS hexagonal mesoporous material (HMS) have been prepared and characterized. This heterogeneous catalyst is able to make a contribution to the field of acid catalyst involving bulky organic molecules. XRD analysis shows that ZS is intact after impregnated on HMS surface and formed finely dispersed species. No ZS crystal phase was developed even at ZS loadings as high as 40 wt %. The occurrence of chemical interaction between ZS and HMS was observed by XPS analysis. Further, XRF results demonstrated that there is no leaching of ZS elements after impregnation. This study shows that ZS can be impregnated on HMS and would be a promising solid acid catalyst for acid-type reactions espcially invovling bulky organic molecuels.
  2. Mohd Hamzah Harun, Elias Saion, Noorhana Yahya, Anuar Kassim, Hussain, Muhammad Yousuf, Iskandar Shahrim Mustafa, et al.
    MyJurnal
    The composite polymer films of polyvinyl alcohol/polypyrrole/chloral hydrate (PVA-PPy-CH) had been prepared. Effects of γ-rays on the electrical conductivity of the composite polymer films had been investigated by using Inductance Capacitance Resistance meter (LCR) meter at a frequency ranging from 20 Hz to 1 MHz. With the incorporation of chloral hydrate in the polymer sample, the conductivity increased indicates that it is capable to be used as dopant for polymerizing conjugated polymer. The electrical conductivity obtained increased as the dose increased, which is in the order of 10-5 Scm-1 indicates that γ-rays is capable to enhance the electrical conductivity of the composite polymer films. The parameter of s is in the range of 0.31 d s d 0.49 and obeyed simple power law dispersion ωs. The Scanning Electron Microscopy (SEM) micrographs reveal the formation of polypyrrole globules in polyvinyl alcohol matrix which increased as the irradiation dose was increased.
  3. Sofia Beagem Mohd Noal, Roslinda Shamsudin, Tan, Lee Phin, Wan Khartini Wan Abdul Khodir
    MyJurnal
    Hydroxyapatite (HA) powder was synthesized via wet method using calcium nitrate hydrate (Ca(NO3)2.H2O) and diammonium hydrogen phosphate ((NH4)2HPO4) as raw materials. Powder obtained was milled using various milling speed ranging from 250 to 400 r.p.m. and sintered at 1300°C for 2hrs. Due to the nature of HA powder that decomposed at high temperature, XRD technique have been used in this work to determine the phase composition of the HA powder and also the crystallite size. The unmilled sample was used as the control group. Results show that sufficient heat supply generated from the milling process, initiates the decomposition of HA phase into ȕ-tricalcium phosphate (ȕ-TCP). Decomposition of HA starts to occur at the milling speed of 300 rpm, i.e the formation of ȕ-TCP was occurred at lower sintering temperature. It was believed that the decomposition of HA was associated with the formation of an intermediate phase, oxyapatite. Moreover, the crystallinity and particle size of the produced powder is very much affected by the milling speed and the stability of the HA. All milled powders possess spherical shape particle.
  4. Irzaman, Jamal, Z., Idris, M.S., Kurnia, D., Barmawi, M.
    MyJurnal
    The specimens used were CaCO3 (Sigma Aldrich, purity 99.9 %). We have 23 parameters and 20 iterations, including two theta zero error, scale factor, thermal effect, coefficients for polynomial describing the background; U, V, W and mixing parameters of the profile peak function, lattice constants, positional parameters and overall isotropic temperature factors. Most the samples show that the crystal structure are rhombohedral with lattice constants a = b = 4.981 Å, c = 17.044 Å and space group is R3C. The microstrain (K) and the particle size (V) of CaCO3 ceramic were calculated using 10 the full width at half maximum (FWHM) of diffraction peaks from (0 1 2), (1 0 4), (0 0 6), (1 1 0), (1 1 3), (2 0 2), (0 1 8), (1 1 6), (2 2 1 ), (1 2 2) crystal planes are 2.1 x 10-2 and
    362 nm, respectively.
  5. Khairul Nizar Ismail, Kamarudin Hussin, Mohd Sobri Idris
    MyJurnal
    Fly ash is the finely divided mineral residue resulting from the combustion of coal in electric generating plants. Fly ash consists of inorganic, incombustible matter present in the coal that has been fused during combustion into a glassy, amorphous structure. Fly ash particles are generally spherical in shape and range in size from 2 μm to 10 μm. They consist mostly of silicon dioxide (SiO2), aluminium oxide (Al2O3) and iron oxide (Fe2O3). Fly ash like soil contains trace concentrations of the following heavy metals: nickel, vanadium, cadmium, barium, chromium, copper, molybdenum, zinc and lead. The chemical compositions of the sample have been examined and the fly ash are of ASTM C618 Class F.
  6. Yeoh, Cheow Keat, Srimala Sreekantan, Sabar Derita Hutagalung, Zainal Arifin Ahmad
    MyJurnal
    CaCu3Ti4O12 was synthesized starting from a solution of TiO2 to which Ca and Cu nitrates were added. Due to the differences in the solubilities of the Ca, Cu and Ti, initial variations from ideal stoichiometry and a high solution pH was necessary to obtain stoichiometric CaCu3Ti4O12 precipitates. As precipitated samples were amorphous with CuO phases observed after drying of the precipitates at 300 oC. CaCu3Ti4O12 phases were observed after heat treatment at 1000 oC. XRD studies show the presence of CuO and TiO2 in addition to the CaCu3Ti4O12 for non stoichiometric samples. Observations under the SEM show the presence of Cu rich and Ti rich phases in addition to the CaCu3Ti4O12.
  7. Mohd Nazri Idris, Hazizan Md. Akil, Zainal Arifin Ahmad
    MyJurnal
    Sodium silicate was used to synthesize silica fine particles at room temperature using non-ionic surfactant of triethanolamine (TEA), dissolution salt and precipitating agent. The experiments were conducted by different composition of precursor material, nonionic surfactant and dissolution salt concentrations through the sol-gel process. Various particle sizes in the range 100-300nm were synthesized. The particle size of silica powders were analyzed via Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray Analysis (EDAX), X-Ray Fluorescence (XRF), and Fourier Transformation Infrared (FTIR). The result has demonstrated that the particle size can be controlled by changing the ratio of non-ionic surfactant and dissolution salt or the sodium silicate concentration.
  8. Mohd Al Amin Muhamad Nor, Lee, Chain Hong, Hazizan Md. Akil, Zainal Arifin Ahmad
    MyJurnal
    Ceramic foams are a class of high porosity materials that are used or being considered for a wide range of technological applications. Ceramic foam was produce by polymer replication method. In this process, commercial polymeric sponge was use as template, dipping with ceramic particles slurry, drying and then sintered to yield a replica of the original foams. The study was focus on the fabrication of different density of ceramic foams by varying the density of ceramic slurries (1.1876, 1.2687, 1.3653 and 1.5295 g/cm3). Properties of ceramic foam produced such as density was characterized accordingly to ASTM C 271-94 and porosity were characterized using Archimedes methods. Compressive and bending strength was performed accordingly to ASTM C1161-94 and C773-88 (1999), respectively. The morphological study was performed using Scanning Electron Microscopy (SEM) and EDX. Density of ceramic foams produced was about 0.5588 and 1.1852 g/cm3, where as porosity was around 26.28 and 70.59 %. Compressive and bending strength was increase from strength also increases from 2.60 to 23.07 MPa and 1.20 to 11.10 MPa, respectively, with increasing of slurries density from 1.1876 to 1.3653 g/cm3. The SEM micrographs show that the cells structure become denser as the slurries density increased. EDX proved that the ceramic used is porcelain. As a conclusion, increasing in slurries density produced ceramic foams with good mechanical properties such as compressive and bending strength and denser body.
  9. Mohd Warikh Abd Rashid, Hutagalung, Sabar Derita, Zainal Arifin Ahmad
    MyJurnal
    A study on the effect of the modify values of x in CaCu3-xMn4+xO12 system has been carried out with x = 0.1, 0.3, 0.5, 0.7 and 0.9. The materials were prepared via solid-state reaction. The preparation conditions have been optimized using thermogravimetry analysis (TGA) technique. Material formations under the reported conditions have been confirmed by X-ray diffraction (XRD) studies. The results show that the formation of CaCu3Mn4O12 started at calcinations temperature of 600 0 C with the presence of raw material and was formed completely at 850 0 C. Field emission scanning electron microscopy (FESEM) analysis indicated that the increase of x value in the composition had changed the microstructures to be more faceted. The impedance spectrum is characterized by the appearance of two semicircle arcs whose pattern of evolution changes with rise of values x in the CaCu3-xMn4+xMn4O12 system. Bulk resistance (Rb) and grain boundary resistance (Rgb) of CaCu3- xMn4+xO12 decreases form 824.24 : to 98.68 : and 418.18 : to 2.20 : respectively, with the increasing of x value.
  10. Mohd Nazry Salleh, Farizul Hafiz Kasim, Khairul Nizar Ismail, Che Mohd Ruzaidi Ghazali, Kamarudin Hussin, Saiful Azhar Saad, et al.
    MyJurnal
    Batu Reput’ is primary sediment mineral and abundantly found in Perlis. Perlis is one of the major producers of ‘Batu Reput’ in Malaysia that content large deposit of high-purity dolomite [CaMg (CO3)2]. Pure samples of ‘Batu Reput’ recently explored in the Koperasi Rimba Mas Padang Besar Quarry were investigated for their physical, chemical and mineralogical composition. SEM and XRD analysis methods were applied. The potential of ‘Batu Reput’ as a raw material in fertilizer production was investigated in this paper.
  11. Faizul Che Pa, Mohd. Zaheruddin Kasmuin, Suhaina Ismail, Norlia Baharun
    MyJurnal
    Fly ash (PFA) is a complex material produced after combustion in coal-fired power plants. About half of this fly ash is disposed as solid wastes. A possible alternative to disposal of the fly ash is the synthesis of zeolite. Zeolite Boggsite (Na37Ca74Al185Si775O192 7H2O) was synthesized from fly ash by hydrothermal treatment with NaOH solutions as identified by x-ray diffraction. The zeolite type and degree of crystallization were found to be dependent on the reaction conditions and mineralogy of the raw material, particularly in terms of the relative concentrations of SiO2 and Al2O3.
  12. Shah Rizal Kasim, Yeong, Meng Yee, Hazizan Md. Akil, Zainal Arifin Ahmad, Hazman Seli
    MyJurnal
    Many attempts have been focused in the past on preparing of synthetic E-tricalcium (E-TCP), which being employed as bone substitute due to its biocompatibility and resorbability. Low temperature synthesize such as sol-gel method become popular due to the high product purity and homogenous composition. Sol-gel method is less economical towards commercialization because the cost of raw materials and the yield of the product that can be achieved. This paper describes the synthesis of ETCP via mixing of CaCO3 and H3PO4 followed by calcinations process at 750qC – 1050qC. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), fourier transformation infra-red (FTIR) were used for characterization and evaluation of the phase composition, morphology, particle size and thermal behavior of the product. E-TCP phase start to occur after calcinations at 750qC.
  13. Palaniandy, Samayamutthirian, Khairun Azizi Mohd Azizli, Hashim Hussin, Syed Fuad Saiyid Hashim
    MyJurnal
    Mechanical activation of quartz was carried out in jet mill at various specific kinetic energy level and classifier speed. The characterization of the particle size, crystallite size, amorphism rate and lattice strain was conducted on the feed and mechanically activated particles. The area under the prominent quartz peak was used to calculate the amorphism rate of the mechanically activated particles. Scherer equation was used to determine the crystallite size of the feed and mechanically activated particles. Mean particle size less than 5μm was obtained when the specific kinetic energy is ranging between 500 kWh/ton and 1000 kWh/ton. Amorphism of the mechanically activated particles up to 18% was observed at 500 kWh/ton. The crystallite size and lattice strain is influence by the intensity of the specific kinetic energy and classifier speed. The reduction in the crystallite size up to 39% was observed where the minimum crystallite is 23nm. The lattice strain is ranging from 0.024 to 0.038 respective to the specific kinetic energy and classifier speed.
  14. Saiful Azhar, S., Suhardy, D., Kasim, F.H., Nazry Saleh, M.
    MyJurnal
    The amount of sugarcane bagasse and rice straw in the state of Perlis (Malaysia) is abundant while its utilization is still limited. One of the alternatives for the bagasse and straw utilization is as pulp raw material. This paper reviews on pulp from sugarcane bagasse and rice straw and its suitability for paper production. In this study, the pulp was extracted by the Soxhlet extraction method. The objective of this study was to investigate the cellulose, lignin and silica content of the pulp from sugarcane bagasse and rice straw. For rice straw, the presence of large amount of pentosanes in the pulp and black liquors, which also contain silica were decreased the using of straw in the paper industry. Therefore, formic acid pulping and NaOH treatment are studied to reduce or prevent silica. The isolated pulp samples were further characterized by Scanning Electron Microscope (SEM) to investigate their fiber dimensions.
  15. Megat Harun Al Rashid Megat Ahmad, Abdul Aziz Mohamed, Azmi Ibrahim, Che Seman Mahmood, Putra, Edy Giri Rachman, Muhammad Rawi Muhammad Zin, et al.
    MyJurnal
    Alumina powder was synthesized from an aluminum precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was of high purity and highly crystalline D-phase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder.
  16. Meor Yusoff, M.S., Hishamuddin, H., Choo, Thye Foo
    MyJurnal
    The storage of oil sludge at refineries is a major problem to the petroleum industry. Oil sludge treatments such as by using sludge farming, incineration, physical and chemical techniques have been applied to separate the hydrocarbon from the solid sediment. The paper relates a characteristic study performed on solid sediment from a local oil sludge sample for making sintered brick. The study includes the used of XRD, XRF, digital microscopy and particle size analyzer. The result shows that the sample highly contains quartz minerals with particle size ranging from 0.5 – 200 ȝm. The chemical phosphorous from the surfactant can be removed by washing to make this solid sediment to be used as a material in the brick making.
  17. Mohamad Zaky Noh, Luay Bakir Hussain, Zainal Arifin Ahmad
    MyJurnal
    The joining of ceramic-metal could be done through a few techniques: brazing, diffusion bonding, friction welding etc. However, the mechanism of ceramic-metal joining was still not properly understood. In this study, alumina rod was bonded to mild steel rod via friction welding technique by using Al 1100 sheet as interlayer. The diameter of the rods was 10 mm. Friction pressure of 20 MPa and forging pressure of 40 MPa were used. Rotational speeds were maintained at 900 rpm and friction times of 2 to 20 seconds were applied. The joining strength was determined through four point bending test. The maximum bending strength, 240 MPa was obtained at the friction times of 20 seconds. Under optical microscope and SEM observation, the deformation of the aluminum interface was clearly obtained. Mechanical interlocking and close contact between the aluminaaluminum and aluminum-mild steel were observed at magnifications of 3000X. The strength of alumina-steel bonding is much dependent on the wettability of the alumina surface by the molten aluminum and the existing of mechanical interlocking between interlayer and sample materials.
  18. Nur Azam Badarulzaman, Lee, Chung Heung, Ahmad Azmin Mohamad, Zainal Arifin Ahmad, Purwadaria, Sunara
    MyJurnal
    Ni–SiC composite coatings were electrodeposited from a Watts-type bath containing 5 g/l SiC particles in suspension. The particles were dispersed with the aid of mechanical agitation at 75 rpm and 150 rpm. EDX analysis confirmed the existence of Ni and SiC in the coatings. The effects of agitation speed on hardness properties of the coatings were investigated. SEM results showed that lower agitation speed could improve the amount of co-deposited SiC particles and increase the hardness of the composite coatings. The bonding between the Ni metal matrix and the SiC ceramic particles was compact.
  19. Shamsiah A. Rahman, Mohd Suhaimi Hamzah, Abdul Khalik Wood, Md Suhaimi Elias, Nazaratul Ashifa Abdullah Salim, Ezwiza Sanuri
    MyJurnal
    Chemical composition of fine (PM2.5) aerosol samples collected for the 5 years period (2001- 2005) using Gent Stacked filter unit sampler at Klang Valley (3 o 10 ’ 30 ’’ N, 101 o 43 ’ 24 ’’ E) were analysed using Neutron Activation Analysis (NAA) and Proton Induced X-ray Emission (PIXE). Results of the study show that the major component of the fine aerosol was black carbon and sulfur with the mass concentration ranged from 4.4 - 6.7µg m -3 and 1.2 - 1.9µg m -3 , respectively. The total fine aerosol mass concentration were in the ranged of 25 - 31µg m -3 with the reconstructed mass was about 50% as relative to the gravimetric mass. Statistical method, factor analysis with varimax approach has been applied to the aerosol composition data for the fingerprint identification. The analysis produces five identified fingerprint represent soil, industry, motor vehicles/biomass burning and Pb and Zn sources. There is also an unidentified source that could be related to unknown industrial activities.
  20. Nazaratul Ashifa Abdullah Salim, Md Suhaimi Elias, Abdul Khalik Wood, Ezwiza Sanuri, Mohd Suhaimi Hamzah, Shamsiah Abd. Rahman
    MyJurnal
    Over 114 countries in the world grow rice and more than 50 countries have an annual rice production of 100,000 tonnes or more. Asian farmers produce about 90% of the global total rice production. Generally, there are two most common varieties of rice; cultivated and hill rice. Nowadays a lot of agriculture land is contaminated with toxic elements owing to the use of sludge or municipal compost, pesticides, fertilizers and emissions from municipal waste incinerators, car exhausts, residues from metalliferous mines, and smelting industries. The distribution and concentration of several toxic elements in grains particularly rice has lately become a big concern. A study to determine the concentrations of some elements in a few varieties of rice in our local market using Instrumental Neutron Activation Analysis has been performed by Waste and Environmental Technology Division, Malaysian Nuclear Agency. A total of 15 elements were measured. The method was validated by analysing the Standard Reference Material SRM-1568a (Rice Flour) and SRM-1573a (Tomato Leaves) of NIST. The measured concentrations of major and minor elements were analysed in terms of the average intake of nutrient content and comparison of several toxic elements to other studied values.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links