Displaying publications 21 - 40 of 342 in total

Abstract:
Sort:
  1. Chai LK, Wong MH, Bruun Hansen HC
    J Environ Manage, 2013 Aug 15;125:28-32.
    PMID: 23632002 DOI: 10.1016/j.jenvman.2013.04.005
    The insecticide chlorpyrifos is extensively used in the humid tropics for insect control on crops and soils. Chlorpyrifos degradation and mineralization was studied under laboratory conditions to characterize the critical factors controlling the degradation and mineralization in three humid tropical soils from Malaysia. The degradation was fastest in moist soils (t1/2 53.3-77.0 days), compared to dry (t1/2 49.5-120 days) and wet soils (t1/2 63.0-124 days). Degradation increased markedly with temperature with activation energies of 29.0-76.5 kJ mol(-1). Abiotic degradation which is important for chlorpyrifos degradation in sub-soils containing less soil microbial populations resulted in t½ of 173-257 days. Higher chlorpyrifos dosages (5-fold) which are often applied in the tropics due to severe insects infestations caused degradation and mineralization rates to decrease by 2-fold. The mineralization rates were more sensitive to the chlorpyrifos application rates reflecting that degradation of metabolites is rate limiting and the toxic effects of some of the metabolites produced. Despite that chlorpyrifos is frequently used and often in larger amounts on tropical soils compared with temperate soils, higher temperature, moderate moisture and high activity of soil microorganisms will stimulate degradation and mineralization.
  2. Alkarkhi AF, Lim HK, Yusup Y, Teng TT, Abu Bakar MA, Cheah KS
    J Environ Manage, 2013 Jun 15;122:121-9.
    PMID: 23570974 DOI: 10.1016/j.jenvman.2013.03.010
    The ability of aluminum coagulant extracted from red earth to treat Terasil Red R (disperse) and Cibacron Red R (reactive) synthetic dye wastewater was studied. The effects of extractant concentration, soil-to-volume of extractant ratio, and the types of extracting agents (NaOH vs. KCl) on the concentration of aluminum extracted were also investigated. In addition, the efficiency of extracted aluminum was compared with aluminum sulfate, in terms of its capability to reduce the chemical oxygen demand (COD) and to remove synthetic color. Factorial design was applied to determine the effect of selected factors on the amount of aluminum extracted from red earth (i.e., pH, dose of coagulant, type of coagulant on COD reduction, and color removal). It was found that only selected factors exhibited a significant effect on the amount of aluminum extracted from red earth. It was also determined that all factors and their interactions exhibited a significant effect on COD reduction and color removal when applying the extracted aluminum in a standard coagulation process. The results were also compared to aluminum sulfate. Furthermore, NaOH was found to be a better extractant of aluminum in red earth than KCl. Therefore, the best extracting conditions for both extractants were as follows: 2 M NaOH and in a 1:5 (soil/volume of extractant) ratio; 1 M KCl and 1:5 ratio. In treating synthetic dye wastewater, the extracted coagulant showed comparable treatment efficiency to the commercial coagulant. The extracted coagulant was able to reduce the COD of the dispersed dye by 85% and to remove 99% of the color of the dispersed dye, whereas the commercial coagulant reduced 90% of the COD and removed 99% of the color of the dispersed dye. Additionally, the extracted coagulant was able to reduce the COD of the reactive dye by 73% and to remove 99% of the color of the reactive dye. However, the commercial coagulant managed to reduce the COD of the reactive dye by 94% and to remove 96% of the color for the reactive dye.
  3. Osman WH, Abdullah SR, Mohamad AB, Kadhum AA, Rahman RA
    J Environ Manage, 2013 May 30;121:80-6.
    PMID: 23524399 DOI: 10.1016/j.jenvman.2013.02.005
    A lab-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR), a combined adsorption and biological process, was developed to treat real wastewater from a recycled paper mill. In this study, one-consortia of mixed culture (4000-5000 mg/L) originating from recycled paper mill activated sludge from Kajang, Malaysia was acclimatized. The GAC-SBBR was fed with real wastewater taken from the same recycled paper mill, which had a high concentration of chemical oxygen demand (COD) and adsorbable organic halides (AOX). The operational duration of the GAC-SBBR was adjusted from 48 h to 24, 12 and finally 8 h to evaluate the effect of the hydraulic retention time (HRT) on the simultaneous removal of COD and AOX. The COD and AOX removals were in the range of 53-92% and 26-99%, respectively. From this study, it was observed that the longest HRT (48 h) yielded a high removal of COD and AOX, at 92% and 99%, respectively.
  4. Syafalni, Lim HK, Ismail N, Abustan I, Murshed MF, Ahmad A
    J Environ Manage, 2012 Dec 15;112:353-9.
    PMID: 22964042 DOI: 10.1016/j.jenvman.2012.08.001
    In this research, the capability of lateritic soil used as coagulant for the treatment of stabilized leachate from the Penang-Malaysia Landfill Site was investigated. The evaluation of lateritic soil coagulant in comparison with commercialized chemical coagulants, such as alum, was performed using conventional jar test experiments. The optimum pH and coagulant dosage were identified for the lateritic soil coagulant and the comparative alum coagulant. It was found that the application of lateritic soil coagulant was quite efficient in the removal of COD, color and ammoniacal-nitrogen content from the landfill leachate. The optimal pH value was 2.0, while 14 g/L of lateritic soil coagulant was sufficient in removing 65.7% COD, 81.8% color and 41.2% ammoniacal-nitrogen. Conversely, the optimal pH and coagulant dosage for the alum were pH 4.8 and 10 g/L respectively, where 85.4% COD, 96.4% color and 47.6% ammoniacal-nitrogen were removed from the same leachate sample. Additionally, the Sludge Volume Index (SVI) ratio of alum and lateritic soil coagulant was 53:1, which indicated that less sludge was produced and was an environmentally friendly product. Therefore, lateritic soil coagulant can be considered a viable alternative in the treatment of landfill leachate.
  5. Von Lau E, Gan S, Ng HK
    J Environ Manage, 2012 Sep 30;107:124-30.
    PMID: 22595079 DOI: 10.1016/j.jenvman.2012.04.029
    Experimental extraction tests are conducted to investigate feasibility of saturated palm kernel oil (PKO) and unsaturated soybean oil (SO) to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sand. The extraction rates and efficiencies for lowly contaminated (LC) and highly contaminated (HC) sands at temperatures of 30 °C and 70 °C are evaluated using empirical first order kinetic dissolution models. In LC sand, the extraction is dominated by the diffusion of PAHs adsorbed onto particle surfaces and the direct dissolution of PAH phase. In HC sand, a rapid diffusion of PAHs adsorbed onto particle surfaces and a direct dissolution of PAH phase occur followed by a slower diffusion of PAHs entrapped within the pores and micropores. Larger diffusion resistance during HC sand extractions results in an average 10.8% reduction in extraction efficiencies compared to LC sand. Increased temperature generally increases the mass transfer rates and extraction efficiencies. Additionally, the physicochemical properties of both oils and PAHs also determine the extent of PAH extraction into oil.
  6. Hadibarata T, Kristanti RA
    J Environ Manage, 2012 Nov 30;111:115-9.
    PMID: 22835655 DOI: 10.1016/j.jenvman.2012.06.044
    The biodegradation of benzo[a]pyrene (BaP) by using Polyporus sp. S133, a white-rot fungus isolated from oil-contaminated soil was investigated. Approximately 73% of the initial concentration of BaP was degraded within 30 d of incubation. The isolation and characterization of 3 metabolites by thin layer chromatography, column chromatography, and UV-vis spectrophotometry in combination with gas chromatography-mass spectrometry, indicated that Polyporus sp. S133 transformed BaP to BaP-1,6-quinone. This quinone was further degraded in 2 ways. First, BaP-1,6-quinone was decarboxylated and oxidized to form coumarin, which was then hydroxylated to hydroxycoumarin, and finally to hydroxyphenyl acetic acid by addition of an epoxide group. Second, Polyporus sp. S133 converted BaP-1,6-quinone into a major product, 1-hydroxy-2-naphthoic acid. During degradation, free extracellular laccase was detected with reduced activity of lignin peroxidase, manganese-dependent peroxidase and 2,3-dioxygenase, suggesting that laccase and 1,2-dioxygenase might play an important role in the transformation of PAHs compounds.
  7. Noruzman AH, Muhammad B, Ismail M, Abdul-Majid Z
    J Environ Manage, 2012 Nov 15;110:27-32.
    PMID: 22705857 DOI: 10.1016/j.jenvman.2012.05.019
    Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones.
  8. Ramayah T, Lee JW, Lim S
    J Environ Manage, 2012 Jul 15;102:141-7.
    PMID: 22446140 DOI: 10.1016/j.jenvman.2012.02.025
    This paper examines the determinants of recycling behaviour among 200 university students from the perspective of the theory of planned behaviour (TPB). Data was analysed using Structural Equation Modelling technique. Findings indicate that environmental awareness was significantly related to attitude towards recycling, whilst attitude and social norms had significant impact on recycling behaviour. However, convenience and cost of recycling were not significant reasons for recycling. The study has enhanced the understanding of the determinants of recycling behaviour and has implications for schools and governmental agencies in educating and encouraging positive recycling behaviour. It also confirms the appropriateness of the TPB in examining studies of this nature. Further suggestions for future research are offered.
  9. Hasan HA, Abdullah SR, Kofli NT, Kamarudin SK
    J Environ Manage, 2012 Nov 30;111:34-43.
    PMID: 22813857 DOI: 10.1016/j.jenvman.2012.06.027
    Manganese (Mn(2+)) is one of the inorganic contaminant that causes problem to water treatment and water distribution due to the accumulation on water piping systems. In this study, Bacillus sp. and sewage activated sludge (SAS) were investigated as biosorbents in laboratory-scale experiments. The study showed that Bacillus sp. was a more effective biosorbent than SAS. The experimental data were fitted to the Langmuir (Langmuir-1 & Langmuir-2), Freundlich, Temkin, Dubinin-Radushkevich (D-R) and Redlich-Peterson (R-P) isotherms to obtain the characteristic parameters of each model. Mn(2+) biosorption by Bacillus sp. was found to be significantly better fitted to the Langmuir-1 isotherm than the other isotherms, while the D-R isotherm was the best fit for SAS; i.e., the χ(2) value was smaller than that for the Freundlich, Temkin, and R-P isotherms. According to the evaluation using the Langmuir-1 isotherm, the maximum biosorption capacities of Mn(2+) onto Bacillus sp. and SAS were 43.5 mg Mn(2+)/g biomass and 12.7 mg Mn(2+)/g biomass, respectively. The data fitted using the D-R isotherm showed that the Mn(2+) biosorption processes by both Bacillus sp. and SAS occurred via the chemical ion-exchange mechanism between the functional groups and Mn(2+) ion.
  10. Arebey M, Hannan MA, Begum RA, Basri H
    J Environ Manage, 2012 Aug 15;104:9-18.
    PMID: 22484654 DOI: 10.1016/j.jenvman.2012.03.035
    This paper presents solid waste bin level detection and classification using gray level co-occurrence matrix (GLCM) feature extraction methods. GLCM parameters, such as displacement, d, quantization, G, and the number of textural features, are investigated to determine the best parameter values of the bin images. The parameter values and number of texture features are used to form the GLCM database. The most appropriate features collected from the GLCM are then used as inputs to the multi-layer perceptron (MLP) and the K-nearest neighbor (KNN) classifiers for bin image classification and grading. The classification and grading performance for DB1, DB2 and DB3 features were selected with both MLP and KNN classifiers. The results demonstrated that the KNN classifier, at KNN = 3, d = 1 and maximum G values, performs better than using the MLP classifier with the same database. Based on the results, this method has the potential to be used in solid waste bin level classification and grading to provide a robust solution for solid waste bin level detection, monitoring and management.
  11. Chang SH, Teng TT, Ismail N
    J Environ Manage, 2011 Oct;92(10):2580-5.
    PMID: 21700383 DOI: 10.1016/j.jenvman.2011.05.025
    This study aimed to identify the significant factors that give large effects on the efficiency of Cu(II) extraction from aqueous solutions by soybean oil-based organic solvents using fractional factorial design. Six factors (mixing time (t), di-2-ethylhexylphosphoric acid concentration ([D2EHPA]), organic to aqueous phase ratio (O:A), sodium sulfate concentration ([Na(2)SO(4)]), equilibrium pH (pH(eq)) and tributylphosphate concentration ([TBP])) affecting the percentage extraction (%E) of Cu(II) were investigated. A 2(6-1) fractional factorial design was applied and the results were analyzed statistically. The results show that only [D2EHPA], pH(eq) and their second-order interaction ([D2EHPA] × pH(eq)) influenced the %E significantly. Regression models for %E were developed and the adequacy of the reduced model was examined. The results of this study indicate that fractional factorial design is a useful tool for screening a large number of variables and reducing the number of experiments.
  12. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B
    J Environ Manage, 2011 Oct;92(10):2355-88.
    PMID: 21708421 DOI: 10.1016/j.jenvman.2011.06.009
    The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.
  13. Wong CL, Tan YN, Mohamed AR
    J Environ Manage, 2011 Jul;92(7):1669-80.
    PMID: 21450395 DOI: 10.1016/j.jenvman.2011.03.006
    Titania nanotubes are gaining prominence in photocatalysis, owing to their excellent physical and chemical properties such as high surface area, excellent photocatalytic activity, and widespread availability. They are easily produced by a simple and effective hydrothermal method under mild temperature and pressure conditions. This paper reviews and analyzes the mechanism of titania nanotube formation by hydrothermal treatment. It further examines the parameters that affect the formation of titania nanotubes, such as starting material, sonication pretreatment, hydrothermal temperature, washing process, and calcination process. Finally, the effects of the presence of dopants on the formation of titania nanotubes are analyzed.
  14. Pek CK, Jamal O
    J Environ Manage, 2011 Nov;92(11):2993-3001.
    PMID: 21820795 DOI: 10.1016/j.jenvman.2011.07.013
    In Malaysia, most municipal wastes currently are disposed into poorly managed 'controlled tipping' systems with little or no pollution protection measures. This study was undertaken to assist the relevant governmental bodies and service providers to identify an improved waste disposal management strategy. The study applied the choice experiment technique to estimate the nonmarket values for a number of waste disposal technologies. Implicit prices for environmental attributes such as psychological fear, land use, air pollution, and river water quality were estimated. Compensating surplus estimates incorporating distance from the residences of the respondents to the proposed disposal facility were calculated for a number of generic and technology-specific choice sets. The resulting estimates were higher for technology-specific options, and the distance factor was a significant determinant in setting an equitable solid waste management fee.
  15. Evans L, Cherrett N, Pemsl D
    J Environ Manage, 2011 Aug;92(8):1938-49.
    PMID: 21531068 DOI: 10.1016/j.jenvman.2011.03.010
    Co-management is now established as a mainstream approach to small-scale fisheries management across the developing world. A comprehensive review of 204 potential cases reveals a lack of impact assessments of fisheries co-management. This study reports on a meta-analysis of the impact of fisheries co-management in developing countries in 90 sites across 29 case-studies. The top five most frequently measured process indicators are participation, influence, rule compliance, control over resources, and conflict. The top five most frequently measured outcome indicators are access to resources, resource well-being, fishery yield, household well-being, and household income. To deal with the diversity of the 52 indicators measured and the different ways these data are collected and analysed, we apply a coding system to capture change over time. The results of the meta-analysis suggest that, overall fisheries co-management delivers benefits to end-users through improvements in key process and outcome indicators. However, the dataset as a whole is constituted primarily of data from the Philippines. When we exclude this body of work, few generalisations can be made about the impact of fisheries co-management. The lack of comparative data suitable for impact assessment and the difficulties in comparing data and generalising across countries and regions reiterates calls in other fields for more systematic approaches to understanding and evaluating governance frameworks.
  16. Aziz SQ, Aziz HA, Yusoff MS, Bashir MJ, Umar M
    J Environ Manage, 2010 Dec;91(12):2608-14.
    PMID: 20739117 DOI: 10.1016/j.jenvman.2010.07.042
    This study analyzes and compares the results of leachate composition at the semi-aerobic Pulau Burung Landfill Site (PBLS) (unaerated pond and intermittently aerated pond) and the anaerobic Kulim Sanitary Landfill in the northern region of Malaysia. The raw samples were collected and analyzed for twenty parameters. The average values of the parameters such as phenols (1.2, 6.7, and 2.6 mg/L), total nitrogen (448, 1200, and 300 mg/L N-TN), ammonia-N (542, 1568, and 538 mg/L NH(3)-N), nitrite (91, 49, and 52 mg/L NO(2)(-)-N), total phosphorus (21, 17, and 19 mg/L), BOD(5) (83, 243, and 326 mg/L), COD (935, 2345, and 1892 mg/L), BOD(5)/COD (0.096,0.1124,0.205%), pH (8.20, 8.28, and 7.76), turbidity (1546, 180, and 1936 Formazin attenuation units (FAU)), and color (3334, 3347, and 4041 Pt Co) for leachate at the semi-aerobic PBLS (unaerated and intermittently aerated) and the anaerobic Kulim Sanitary Landfill were recorded, respectively. The obtained results were compared with previously published data and data from the Malaysia Environmental Quality Act 1974. The results indicated that Pulau Burung leachate was more stabilized compared with Kulim leachate. Furthermore, the aeration process in PBLS has a considerable effect on reducing the concentration of several pollutants. The studied leachate requires treatment to minimize the pollutants to an acceptable level prior to discharge into water courses.
  17. Chan YJ, Chong MF, Law CL
    J Environ Manage, 2010 Aug;91(8):1738-46.
    PMID: 20430515 DOI: 10.1016/j.jenvman.2010.03.021
    The production of highly polluting palm oil mill effluent (POME) has resulted in serious environmental hazards. While anaerobic digestion is widely accepted as an effective method for the treatment of POME, anaerobic treatment of POME alone has difficulty meeting discharge limits due to the high organic strength of POME. Hence, subsequent post-treatment following aerobic treatment is vital to meet the discharge limits. The objective of the present study is to investigate the aerobic treatment of anaerobically digested POME by using a sequencing batch reactor (SBR). The SBR performance was assessed by measuring Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) removal as well as Sludge Volume Index (SVI). The operating pH and dissolved oxygen concentrations were found to be 8.25-9.14 and 1.5-6.4 mg/L, respectively, throughout the experiment. The experimental results demonstrate that MLVSS, OLR and sludge loading rate (SLR) play a significant role in the organic removal efficiency of SBR systems and therefore, further investigation on these parameters was conducted to attain optimum SBR performance. Maximum COD (95-96%), BOD (97-98%) and TSS (98-99%) removal efficiencies were achieved at optimum OLR, SLR and MLVSS concentration ranges of 1.8-4.2 kg COD/m(3)day, 2.5-4.6 kg TSS/m(3)day and 22,000-25,000 mg/L, respectively. The effluent quality remained stable and complied with the discharge limit. At the same time, the sludge showed good settling properties with average SVI of 65. It is envisaged that the SBR process could complement the anaerobic treatment to produce final treated effluent which meets the discharge limit.
  18. Wu TY, Mohammad AW, Jahim JM, Anuar N
    J Environ Manage, 2010 Jul;91(7):1467-90.
    PMID: 20231054 DOI: 10.1016/j.jenvman.2010.02.008
    Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances.
  19. Fulazzaky MA, Abdul Gany AH
    J Environ Manage, 2009 Jun;90(8):2387-92.
    PMID: 19346056 DOI: 10.1016/j.jenvman.2009.02.017
    Most developing countries, particularly Indonesia, will be facing problems of sludge pressure in the next decades due to the increase in practices of legal and illegal logging as well as land and water demands. Consequently, they will also be facing the challenges of soil erosion and sludge management due to increased quantities of sludge coming from several potential sources, such as activated sludge, chemical sludge, fecal sludge and solid wastes as well as erosion and sedimentation. Although the government of Indonesia has enacted laws and policies to speed up the implementation of the programs and activities related to sludge management, the detailed practice concepts in implementing the programs need to be identified. Discussion of role-sharing amongst the related government agencies, private institutions and other stakeholders is urgent for clarifying the participation of each party in the next years to come. This paper proposes a management approach and level of responsibilities in sludge management. Implementation of zero DeltaQ, zero DeltaS and zero DeltaP policies needs to be adopted by local and central governments. Application of sludge on the agricultural lands and other uses will promote sustainable development.
  20. Mujeebu MA, Abdullah MZ, Bakar MZ, Mohamad AA, Muhad RM, Abdullah MK
    J Environ Manage, 2009 Jun;90(8):2287-312.
    PMID: 19299066 DOI: 10.1016/j.jenvman.2008.10.009
    The rapid advances in technology and improved living standard of the society necessitate abundant use of fossil fuels which poses two major challenges to any nation. One is fast depletion of fossil fuel resources; the other is environmental pollution. The porous medium combustion (PMC) has proved to be one of the technically and economically feasible options to tackle the aforesaid problems to a remarkable extent. PMC has interesting advantages compared with free flame combustion due to the higher burning rates, the increased power dynamic range, the extension of the lean flammability limits, and the low emissions of pollutants. This article provides a comprehensive picture of the global scenario of research and developments in PMC and its applications that enable a researcher to decide the direction of further investigation. The works published so far in this area are reviewed, classified according to their objectives and presented in an organized manner with general conclusions. A separate section is devoted for the numerical modeling of PMC.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links