Displaying publications 21 - 31 of 31 in total

Abstract:
Sort:
  1. Eleazu C, Suleiman JB, A Othman Z, Zakaria Z, Nna VU, Mohamed M
    J Food Biochem, 2021 02;45(2):e13626.
    PMID: 33492697 DOI: 10.1111/jfbc.13626
    The effect of bee bread (BB) on the biochemical parameters-body weights, calorie intake, Lee obesity indices, serum amylase, aspartate and alanine amino transferases, skeletal muscle activities of creatine kinase, superoxide dismutase, glutathione peroxidase, catalase, malondialdehyde, glutathione-S-transferase, total antioxidant activity, endogenous secretory receptor for advanced glycation end products (esRAGE), and muscle histology of high-fat diet (HFD) obese rats-was studied. Thirty-six male Sprague-Dawley rats were divided into six groups: Control: received rat feed and water (1 ml/kg); HFD: received HFD and water (1 ml/kg): BB or orlistat preventive: received HFD and BB (0.5 g/kg) or HFD and orlistat (10 mg/kg; weeks 1 to 12); BB or orlistat treated: received HFD and BB (0.5 g/kg) or HFD and orlistat (10 mg/kg; weeks 6 to 12), following obesity induction. At week 12, HFD group had altered (p 
  2. Ong CB, Annuar MSM
    J Food Biochem, 2021 10;45(10):e13924.
    PMID: 34490635 DOI: 10.1111/jfbc.13924
    Multi-walled carbon nanotubes (MWCNT)-tannase composite was investigated as an immobilized biocatalyst on the basis of its facile preparation, low cost, and excellent aqueous dispersibility. Cross-linked tannase enzymes, obtained in the presence of glutaraldehyde, were composited with MWCNT via physical adsorption. Multiple techniques were applied to investigate, and corroborate the successful adsorption of cross-linked tannase onto the MWCNT structure. Green tea infusion extract post-treatment using the composite preparation showed elevated radical scavenging activities relative to the control. Green tea infusion extract exhibited a markedly reduced EC50 value on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals following its treatment with the enzyme composite, which represents 20%-34% enhancement in its free radical scavenging capacity. Stoichiometry and number of reduced DPPH were determined and compared. The antioxidative potential of a widely consumed, health-beneficial green tea is elevated by the treatment with MWCNT-tannase composite. PRACTICAL APPLICATIONS: Cross-linked tannase enzymes were composited with pristine multi-walled carbon nanotubes via simple physical adsorption. The composite presents key advantages such as low specific volume compared to other well-known immobilization media, inert, facile enzyme composition, and ease of recovery for repeated use. The work demonstrated carbon nanotube prosthetic utility in the biotransformation of food-based health commodity sought after for its nutritional benefits. The approach is of both industrial- and agricultural importance, and is a promising and viable strategy to obtain a natural, functional food supplement for the multi-billion dollar well-being and health-related industries.
  3. Mehta M, Malyla V, Paudel KR, Chellappan DK, Hansbro PM, Oliver BG, et al.
    J Food Biochem, 2021 11;45(11):e13954.
    PMID: 34609010 DOI: 10.1111/jfbc.13954
    Metastasis represents the leading cause of death in lung cancer patients. C-X-C Motif Chemokine Ligand 8 (CXCL-8), Chemokine (C-C motif) ligand 20 (CCL-20) and heme oxygenase -1 (HO-1) play an important role in cancer cell proliferation and migration. Berberine is an isoquinoline alkaloid isolated from several herbs in the Papaveraceae family that exhibits anti-inflammatory, anticancer and antidiabetic properties. Therefore, the aim of present study is to investigate the inhibitory potential of berberine monoolein loaded liquid crystalline nanoparticles (berberine-LCNs) against cancer progression. Berberine-LCNs were prepared by mixing berberine, monoolein and poloxamer 407 (P407) using ultrasonication method. A549 cells were treated with or without 5 µM dose of berberine LCNs for 24 hr and total cellular protein was extracted and further analyzed for the protein expression of CCl-20, CXCL-8 and HO-1 using human oncology array kit. Our results showed that berberine-LCNs significantly reduced the expression of CCl-20, CXCL-8 and HO-1 at dose of 5µM. Collectively, our findings suggest that berberine-LCNs have inhibitory effect on inflammation/oxidative stress related cytokines i.e. CCL20, CXCL-8, and HO-1 which could be a novel therapeutic target for the management of lung cancer. PRACTICAL APPLICATIONS: Berberine is an isoquinoline alkaloid extracted from various plants of Papaveraceae family. CXCL-8, CCL-20 and HO-1 play an important role in cancer progression. Our study showed that Berberine LCNs significantly downregulate the expression of CXCL-8, CCL-20 and HO-1 which suggests that Berberine loaded nanoparticles could be a promising therapeutic alternative for the management of lung cancer.
  4. Nahar N, Mohamed S, Mustapha NM, Fong LS, Mohd Ishak NI
    J Food Biochem, 2021 11;45(11):e13948.
    PMID: 34622461 DOI: 10.1111/jfbc.13948
    Diabetes affected about a quarter of a billion people globally, and one out of four diabetics has eye or vision problems. This study investigated whether gallic acid and myricetin-rich Labisia pumila extract (LP) consumption would help prevent diabetic eye disorders and some probable biochemistry involved relating to inflammation, vascular leakage, and oxidative tension. Male rats were divided into four groups (n = 6), namely healthy control, diabetic non-treated control, and hyperglycemic rats treated with 150 or 300 mg/kg LP. Intraperitoneal injection of 60 mg/kg streptozotocin was used to induce diabetes. Rats were fed in the morning and evening. Diabetic retinopathy was graded in rats using a dilated retinal digital ophthalmoscopy. Rats were sacrificed at 12 weeks and the retina, optic nerve, cornea, lens, sclera, ciliary bodies, iris, and conjunctiva were examined histologically. The diabetic rats consuming LP for 10 weeks showed dose-dependent, histopathologically-reduced eye abnormalities (keratopathy, cataract, sclera, conjunctiva, ciliary bodies, iris, limbus, corneal edema, epithelial barrier inefficiency, shallow punctate keratitis, lower basal layer cell density, retinopathy, glaucoma, and corneal changes). The LP significantly suppressed inflammation [increased serum tumor necrosis factor-α (TNF-α), prostaglandin-E2 (PGE2)], vascular leakage [claudin-1], abnormal vascularization [vascular endothelial growth factor (VEGF)], oxidative tension [malondialdehyde/reduced glutathione ratio], and hyperglycemia [fasting blood glucose] of the diabetic rats. The LP consumption was significantly protective against diabetic eye disorders and optic nerve dysfunction which were related to inflammation, vascular leakage, abnormal vascularization, and oxidative tension, which most likely influenced eye hemorrhage and collagen cross-linkage. PRACTICAL APPLICATIONS: The study shows that gallic acid and myricetin-rich Labisia pumila (LP) leaf consumption may be used as a complementary therapy for managing diabetes (fasting blood glucose) and preventing diabetic eye disorders (keratopathy, cataract, sclera, conjunctiva, ciliary bodies, iris, limbus, corneal edema, epithelial barrier inefficiency, shallow punctate keratitis, lower basal layer cell density, retinopathy, glaucoma, and corneal abnormalities). The LP consumptions reduced the serum biomarkers for inflammation (serum tumor necrosis factor-α TNF-α; prostaglandin-E2), vascular leakage/abnormalities (claudin-1 and vascular endothelial growth factor VEGF), and oxidative tension (malondialdehyde/reduced glutathione MDA/GSH ratio). The LP was eye-protective probably by normalizing fasting blood glucose, reducing inflammation, oxidative tension, vascular leakage, and irregular vascularization.
  5. Afroz S, Fairuz S, Joty JA, Uddin MN, Rahman MA
    J Food Biochem, 2021 12;45(12):e13961.
    PMID: 34676581 DOI: 10.1111/jfbc.13961
    COVID-19 has become the focal point since 2019 after the outbreak of coronavirus disease. Many drugs are being tested and used to treat coronavirus infections; different kinds of vaccines are also introduced as preventive measure. Alternative therapeutics are as well incorporated into the health guidelines of some countries. This research aimed to look into the underlying mechanisms of functional foods and how they may improve the long-term post COVID-19 cardiovascular, diabetic, and respiratory complications through their bioactive compounds. The potentiality of nine functional foods for post COVID-19 complications was investigated through computational approaches. A total of 266 bioactive compounds of these foods were searched via extensive literature reviewing. Three highly associated targets namely troponin I interacting kinase (TNNI3K), dipeptidyl peptidase 4 (DPP-4), and transforming growth factor beta 1 (TGF-β1) were selected for cardiovascular, diabetes, and respiratory disorders, respectively, after COVID-19 infections. Best docked compounds were further analyzed by network pharmacological tools to explore their interactions with complication-related genes (MAPK1 and HSP90AA1 for cardiovascular, PPARG and TNF-alpha for diabetes, and AKT-1 for respiratory disorders). Seventy-one suggested compounds out of one-hundred and thirty-nine (139) docked compounds in network pharmacology recommended 169 Gene Ontology (GO) items and 99 Kyoto Encyclopedia of Genes and Genomes signaling pathways preferably AKT signaling pathway, MAPK signaling pathway, ACE2 receptor signaling pathway, insulin signaling pathway, and PPAR signaling pathway. Among the chosen functional foods, black cumin, fenugreek, garlic, ginger, turmeric, bitter melon, and Indian pennywort were found to modulate the actions. Results demonstrate that aforesaid functional foods have attenuating roles to manage post COVID-19 complications. PRACTICAL APPLICATIONS: Functional foods have been approaching a greater interest due to their medicinal uses other than gastronomic pleasure. Nine functional food resources have been used in this research for their traditional and ethnopharmacological uses, but their directive-role in modulating the genes involved in the management of post COVID-19 complications is inadequately studied and reported. Therefore, the foods types used in this research may be prioritized to be used as functional foods for ameliorating the major post COVID-19 complications through appropriate science.
  6. Salleh SZ, Hamid AA, Jaafar AH, Abdul Majid ND, Saari N, Halim HH, et al.
    J Food Biochem, 2022 Jan;46(1):e14027.
    PMID: 34914111 DOI: 10.1111/jfbc.14027
    Ergogenic property is the ability to enhance capacity for physical activities through efficient production of energy and is potentially beneficial in weight management for the obese. In this study, ergogenic property of Morinda citrifolia leaf's extract (MCL) was evaluated using AMP-activated protein kinase (AMPK) activity and high fat diet-induced obese rats. Findings from the study showed that MCL demonstrated ergogenic activity via enhancement of AMPK activity using L6 skeletal muscle cell line. Interestingly, the result also revealed that rats treated with the intermediate dosage of MCL experienced the lowest % weight gain. The rats fed the highest dose of 200 mg/kg BW MCL demonstrated the longest swimming time of approximately three times that of green tea and caffeine-fed rats. The highest dose fed rats were also found to have lower glucose and lactate levels, suggesting that energy metabolism was more effective in these rats. In addition, lactate dehydrogenase and creatinine kinase activities, the muscle injury indicators, were found to be the lowest in rats fed the highest MCL dose. The same effect was not seen in rats fed either caffeine or green tea, indicating that MCL treatment is may be protective of the rats' muscles. It was also shown that MCL consisted of various flavonoids with epicatechin, catechin, and quercetin that may be responsible for the effects measured. In conclusion, improvements were seen in rats fed MCL in terms of weight management, endurance capacity, energy metabolism, and muscle injury parameters. PRACTICAL APPLICATIONS: Results of the study revealed that Morinda citrifolia leaf has great potential to be used as functional ingredient in the development of designer food/drink as ergogenic aid for both obese and non-obese individuals. Morinda citrifolia leaf could help in the weight management of obese people and enhance endurance capacity and energy metabolism in active individuals.
  7. Jibril MM, Haji-Hamid A, Abas F, Karrupan J, Mohammed AS, Jaafar AH, et al.
    J Food Biochem, 2022 Feb;46(2):e14058.
    PMID: 34981526 DOI: 10.1111/jfbc.14058
    The present research aimed to investigate the attenuative effects of watermelon (Citrullus lanatus) leaf extract on biochemical and histological parameters in a high-fat diet combined with a low-dose streptozotocin (HFD/STZ)-induced type 2 diabetes mellitus. Forty male Sprague Dawley rats were divided into five groups, including three supplemented groups: 10 mg metformin/kg BW (HFD/STZ +M), 200 mg watermelon leaf extract /kg BW (HFD/STZ + LD), and 400 mg watermelon leaf extract /kg BW (HFD/STZ + HD). The efficacy of the 6-week intervention was evaluated by measuring body weight, fasting blood sugar, serum insulin, lipid profile, superoxide dismutase, catalase, malondialdehyde, and serum liver markers. Kidneys and liver structure were defined by histopathological examination. Results revealed that intervention with watermelon leaf extract attenuated the biochemical parameters and the structural changes in kidneys and liver. In brief, the watermelon leaf extract treatment could effectively decrease complications associated with diabetes better than metformin, and that the treatment with 400 mg/kg BW is the most potent. PRACTICAL APPLICATIONS: This was the first study to investigate the antidiabetic potential of watermelon leaf extract in obese diabetic rats. Data revealed that the watermelon leaf extract significantly attenuated the HFD/STZ-induced diabetes changes, as evidenced by the biochemical and histological data. Hence, watermelon leaf could be an excellent candidate to be developed as a functional food ingredients or nutraceuticals for holistic management of diabetes mellitus and its complications.
  8. Alharbi KS, Almalki WH, Makeen HA, Albratty M, Meraya AM, Nagraik R, et al.
    J Food Biochem, 2022 Dec;46(12):e14387.
    PMID: 36121313 DOI: 10.1111/jfbc.14387
    Breast cancer (BC) is one of the most challenging cancers to treat, accounting for many cancer-related deaths. Over some years, chemotherapy, hormone treatment, radiation, and surgeries have been used to treat cancer. Unfortunately, these treatment options are unsuccessful due to crucial adverse reactions and multidrug tolerance/resistance. Although it is clear that substances in the nutraceuticals category have a lot of anti-cancer activity, using a supplementary therapy strategy, in this case, could be very beneficial. Nutraceuticals are therapeutic agents, which are nutrients that have drug-like characteristics and can be used to treat diseases. Plant nutraceuticals categorized into polyphenols, terpenoids, vitamins, alkaloids, and flavonoids are part of health food products, that have great potential for combating BC. Nutraceuticals can reduce BC's severity, limit malignant cell growth, and modify cancer-related mechanisms. Nutraceuticals acting by attenuating Hedgehog, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Notch, and Wnt/β-catenin signaling are the main pathways in controlling the self-renewal of breast cancer stem cells (BCSCs). This article reviews some important nutraceuticals and their modes of action, which can be very powerful versus BC. PRACTICAL APPLICATIONS: Nutraceuticals' importance to the control and diagnosis of breast cancer is undeniable and cannot be overlooked. Natural dietary compounds have a wide range of uses and have been used in traditional medicine. In addition, these natural chemicals can enhance the effectiveness of other traditional medicines. They may also be used as a treatment process independently because of their capacity to affect several cancer pathways. This study highlights a variety of natural chemicals, and their mechanisms of action, routes, synergistic effects, and future potentials are all examined.
  9. Paudel KR, Patel V, Vishwas S, Gupta S, Sharma S, Chan Y, et al.
    J Food Biochem, 2022 Dec;46(12):e14445.
    PMID: 36239436 DOI: 10.1111/jfbc.14445
    Nutraceuticals have emerged as potential compounds to attenuate the COVID-19 complications. Precisely, these food additives strengthen the overall COVID treatment and enhance the immunity of a person. Such compounds have been used at a large scale, in almost every household due to their better affordability and easy access. Therefore, current research is focused on developing newer advanced formulations from potential drug candidates including nutraceuticals with desirable properties viz, affordability, ease of availability, ease of administration, stability under room temperature, and potentially longer shelf-lives. As such, various nutraceutical-based products such as compounds could be promising agents for effectively managing COVID-19 symptoms and complications. Most importantly, regular consumption of such nutraceuticals has been shown to boost the immune system and prevent viral infections. Nutraceuticals such as vitamins, amino acids, flavonoids like curcumin, and probiotics have been studied for their role in the prevention of COVID-19 symptoms such as fever, pain, malaise, and dry cough. In this review, we have critically reviewed the potential of various nutraceutical-based therapeutics for the management of COVID-19. We searched the information relevant to our topic from search engines such as PubMed and Scopus using COVID-19, nutraceuticals, probiotics, and vitamins as a keyword. Any scientific literature published in a language other than English was excluded. PRACTICAL APPLICATIONS: Nutraceuticals possess both nutritional values and medicinal properties. They can aid in the prevention and treatment of diseases, as well as promote physical health and the immune system, normalizing body functions, and improving longevity. Recently, nutraceuticals such as probiotics, vitamins, polyunsaturated fatty acids, trace minerals, and medicinal plants have attracted considerable attention and are widely regarded as potential alternatives to current therapeutic options for the effective management of various diseases, including COVID-19.
  10. Wong SK, Chin KY, Ahmad F, Ima-Nirwana S
    J Food Biochem, 2020 Aug 03.
    PMID: 32744348 DOI: 10.1111/jfbc.13371
    This study aimed to evaluate the oxidative stress status, antioxidants capacity, and presence of nonalcoholic fatty liver disease (NAFLD) in an animal model of MetS induced by high-carbohydrate high-fat (HCHF) diet. Male Wistar rats were randomized into two groups, assigned for two different types of diet (standard rat pellet or HCHF diet) for 20 weeks. Liver was excised, weighed, and subjected to lipid peroxidation, nitric oxide (NO·) production, antioxidants activity, and histological assessment. The HCHF rats had higher lipid peroxidation and NO· level but lower enzymatic and nonenzymatic antioxidant levels than the normal animals. Histological evaluation revealed higher lobular inflammation, hepatocellular ballooning, NAFLD activity score, and lipid accumulation in the liver of HCHF group. In conclusion, the HCHF diet causes an increase in oxidative stress, depletion of antioxidants capacity, NAFLD, and liver injury. The induction of oxidative stress may be partially responsible for the development of NAFLD in MetS. PRACTICAL APPLICATIONS: The prevalence of MetS is estimated to increase rapidly with the escalating levels of obesity, diabetes, hypertension, and dyslipidemia. A suitable animal model of MetS that best mimicked the human disease state with known underlying mechanisms responsible for the pathogenesis of MetS is indispensable to search for potential adjunct therapies and drug targets. Thus, our current study elucidated the involvement of oxidative stress in linking MetS and NAFLD which might resemble the pathogenesis of MetS among Southeast Asian population.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links