Displaying publications 21 - 40 of 58 in total

Abstract:
Sort:
  1. Yap AU, Ong JE, Yahya NA
    J Mech Behav Biomed Mater, 2021 01;113:104120.
    PMID: 33086137 DOI: 10.1016/j.jmbbm.2020.104120
    OBJECTIVES: This study determined the effects of self-adhesive resin coatings on viscoelastic properties of highly viscous glass ionomer cements (HVGICs) using dynamic mechanical analysis.

    MATERIALS AND METHODS: The HVGICs evaluated were Zirconomer [ZR] (Shofu), Equia Forte [EQ] (GC) and Riva [RV] (SDI). Sixty specimens (12mm x 2mm x 2mm) of each material were fabricated using customized Teflon molds. After initial set, the specimens were removed from their molds, finished, measured and randomly divided into 3 groups of 20. Half the specimens in each group were left uncoated while the remaining half was covered with the respective manufacturers' resin coating. The specimens were subsequently conditioned in distilled water, artificial saliva or citric acid at 37°C for 7 days. The uncoated and coated specimens (n=10) were then subjected to dynamic mechanical testing in flexure mode at 37°C with a frequency of 0.1 to 10Hz. Storage modulus, loss modulus and loss tangent data were subjected to normality testing and statistical analysis using one-way ANOVA/Scheffe's post-hoc test and Ttest at significance level p<0.05.

    RESULTS: Mean storage modulus ranged from 1.39 ± 0.36 to 10.80 ± 0.86 GPa while mean loss modulus varied from 0.13 ± 0.03 to 0.70 ± 0.14 GPa after conditioning in the different mediums. Values for loss tangent ranged from 39.4 ± 7.75 to 213.2 ± 20.11 (x10 -3 ). Significant differences in visco-elastic properties were observed between mediums and materials. When conditioned in distilled water and artificial saliva,storage modulus was significantly improved when ZR, EQ and RV were uncoated. Significantly higher values were, however, observed with resin coating when the materials were exposed to citric acid.

    CONCLUSION: The visco-elastic properties of HVGICs were influenced by both resin coating and chemical environment.

  2. Alavi R, Akbarzadeh AH, Hermawan H
    J Mech Behav Biomed Mater, 2021 05;117:104413.
    PMID: 33640846 DOI: 10.1016/j.jmbbm.2021.104413
    In-depth analyses of post-corrosion mechanical properties and architecture of open cell iron foams with hollow struts as absorbable bone scaffolds were carried out. Variations in the architectural features of the foams after 14 days of immersion in a Hanks' solution were investigated using micro-computed tomography and scanning electron microscope images. Finite element Kelvin foam model was developed, and the numerical modeling and experimental results were compared against each other. It was observed that the iron foam samples were mostly corroded in the periphery regions. Except for quasi-elastic gradient, other mechanical properties (i.e. compressive strength, yield strength and energy absorbability) decreased monotonically with immersion time. Presence of adherent corrosion products enhanced the load-bearing capacity of the open cell iron foams at small strains. The finite element prediction for the quasi-elastic response of the 14-day corroded foam was in an agreement with the experimental results. This study highlights the importance of considering corrosion mechanism when designing absorbable scaffolds; this is indispensable to offer desirable mechanical properties in porous materials during degradation in a biological environment.
  3. Fu C, Deng S, Koneski I, Awad MM, Akram Z, Matinlinna J, et al.
    J Mech Behav Biomed Mater, 2020 12;112:104082.
    PMID: 32979607 DOI: 10.1016/j.jmbbm.2020.104082
    OBJECTIVE: To investigate the effect of blue light photoactivated riboflavin modified universal adhesives on dentin collagen biodegradation resistance, dentin apparent elastic modulus, and resin-dentin bond strength with interfacial morphology.

    METHODS: Dentin slabs were treated with 0.1% riboflavin-5-phosphate modified (powder added slowly while shaking and then sonicated to enhance the dispersion process) Universal Adhesive Scotch Bond and Zipbond™ along with control (non-modified) and experimental adhesives, photoactivated with blue light for 20s. Hydroxyproline (HYP) release was assessed after 1-week storage. Elastic-modulus testing was evaluated using universal testing machine at 24 h. Resin-dentin interfacial morphology was assessed with scanning electron-microscope, after 6-month storage. 0.1% rhodamine dye was added into each adhesive and analyzed using CLSM. Detection of free amino groups was carried out using ninhydrin and considered directly proportional to optical absorbance. Collagen molecular confirmation was determined using spectropolarimeter to evaluate and assess CD spectra. For molecular docking studies with riboflavin (PDB ID file), the binding pocket was selected with larger SiteScore and DScore using Schrodinger PB software. After curing, Raman shifts in Amide regions were obtained at 8 μm levels. Data were analyzed using Two-way analysis of variance (ANOVA, p ≤ 0.05) and Tukey-Kramer multiple comparison post hoc tests.

    RESULTS: At baseline, bond strength reduced significantly (p ≤ 0.05) in control specimens. However, at 6 months' storage, UVA Zipbond™ had significantly higher μTBS. Resin was able to diffuse through the porous demineralized dentin creating adequate hybrid layers in both 0.1%RF modified adhesives in CLSM images. In riboflavin groups, hybrid layer and resin tags were more pronounced. The circular dichroism spectrum showed negative peaks for riboflavin adhesive specimens. Best fitted poses adopted by riboflavin compound are docked with MMP-2 and -9 proteases. Amide bands and CH2 peaks followed the trend of being lowest for control UA Scotch bond adhesive specimens and increasing in Amides, proline, and CH2 intensities in 0.1%RF modified adhesive specimens. All 0.1%RF application groups showed statistically significant (p 

  4. Daood U, Omar H, Qasim S, Nogueira LP, Pichika MR, Mak KK, et al.
    J Mech Behav Biomed Mater, 2020 10;110:103927.
    PMID: 32957222 DOI: 10.1016/j.jmbbm.2020.103927
    OBJECTIVE: Here we describe a novel formulation, based on quaternary ammonium (QA) and riboflavin (RF), which combines antimicrobial activities and protease inhibitory properties with collagen crosslinking without interference to bonding capabilities, was investigated.

    METHODS: Experimental adhesives modified with different fractions of dioctadecyldimethyl ammonium bromide quaternary ammonium and riboflavin (QARF) were formulated. Dentine specimens were bonded to resincomposites with control or the experimental adhesives to be evaluated for bond strength, interfacial morphology, micro-Raman analysis, nano-CT and nano-leakage expression. In addition, the antibacterial and biocompatibilities of the experimental adhesives were investigated. The endogenous proteases activities and their molecular binding-sites were studied.

    RESULTS: Modifying the experimental adhesives with QARF did not adversely affect micro-tensile bond strength or the degree of conversion along with the demonstration of anti-proteases and antibacterial abilities with acceptable biocompatibilities. In general, all experimental adhesives demonstrated favourable bond strength with increased and improved values in 1% QARF adhesive at 24 h (39.2 ± 3.0 MPa) and following thermocycling (34.8 ± 4.3 MPa).

    SIGNIFICANCE: It is possible to conclude that the use of QARF with defined concentration can maintain bond strength values when an appropriate protocol is used and have contributed in ensuring a significant decrease in microbial growth of biofilms. Incorporation of 1% QARF in the experimental adhesive lead to simultaneous antimicrobial and anti-proteolytic effects with low cytotoxic effects, acceptable bond strength and interfacial morphology.

  5. Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin Johan MR, et al.
    J Mech Behav Biomed Mater, 2020 10;110:103884.
    PMID: 32957191 DOI: 10.1016/j.jmbbm.2020.103884
    Cellulose constitutes most of a plant's cell wall, and it is the most abundant renewable polymer source on our planet. Given the hierarchical structure of cellulose, nanocellulose has gained considerable attention as a nano-reinforcement for polymer matrices in various industries (medical and healthcare, oil and gas, packaging, paper and board, composites, printed and flexible electronics, textiles, filtration, rheology modifiers, 3D printing, aerogels and coating films). Herein, nanocellulose is considered as a sustainable nanomaterial due to its substantial strength, low density, excellent mechanical performance and biocompatibility. Indeed, nanocellulose exists in several forms, including bacterial cellulose, nanocrystalline cellulose and nanofibrillated cellulose, which results in biodegradable and environmentally friendly bionanocomposites with remarkably improved material properties. This paper reviews the recent advances in production, physicochemical properties, and structural characterization of nanocelluloses. It also summarises recent developments in several multifunctional applications of nanocellulose with an emphasis on bionanocomposite properties. Besides, various challenges associated with commercialisation and economic aspects of nanocellulose for current and future markets are also discussed inclusively.
  6. Mohammadi H, Baba Ismail YM, Shariff KA, Mohd Noor AF
    J Mech Behav Biomed Mater, 2021 04;116:104379.
    PMID: 33561674 DOI: 10.1016/j.jmbbm.2021.104379
    Despite the excellent in vitro and in vivo performance of akermanite ceramic, its poor toughness and strength limit the biomedical application, particularly under load. Herein, the incorporation of strontium enhanced the physicomechanical properties of akermanite and this is ascribed to the decrease in grain size and better sinterability. To investigate the biological performance, the bone-cell interaction with sintered pellets was assessed by in vitro biocompatibility with human fetal osteoblast cell (hFOB). The cell viability using MTT assay revealed that the Ca1.9Sr0.1MgSi2O7 pellets with finer grain size provided better interaction between the cells compared to the unsubstituted counterpart with larger grain size. Our findings highlighted that the synergistic effect of controlled degradation rate and release of Sr2+ into the medium enhanced the in vitro biological properties of akermanite-based materials.
  7. Rafieerad AR, Bushroa AR, Nasiri-Tabrizi B, Kaboli SHA, Khanahmadi S, Amiri A, et al.
    J Mech Behav Biomed Mater, 2017 May;69:1-18.
    PMID: 28027481 DOI: 10.1016/j.jmbbm.2016.11.019
    Recently, the robust optimization and prediction models have been highly noticed in district of surface engineering and coating techniques to obtain the highest possible output values through least trial and error experiments. Besides, due to necessity of finding the optimum value of dependent variables, the multi-objective metaheuristic models have been proposed to optimize various processes. Herein, oriented mixed oxide nanotubular arrays were grown on Ti-6Al-7Nb (Ti67) implant using physical vapor deposition magnetron sputtering (PVDMS) designed by Taguchi and following electrochemical anodization. The obtained adhesion strength and hardness of Ti67/Nb were modeled by particle swarm optimization (PSO) to predict the outputs performance. According to developed models, multi-objective PSO (MOPSO) run aimed at finding PVDMS inputs to maximize current outputs simultaneously. The provided sputtering parameters were applied as validation experiment and resulted in higher adhesion strength and hardness of interfaced layer with Ti67. The as-deposited Nb layer before and after optimization were anodized in fluoride-base electrolyte for 300min. To crystallize the coatings, the anodically grown mixed oxide TiO2-Nb2O5-Al2O3 nanotubes were annealed at 440°C for 30min. From the FESEM observations, the optimized adhesive Nb interlayer led to further homogeneity of mixed nanotube arrays. As a result of this surface modification, the anodized sample after annealing showed the highest mechanical, tribological, corrosion resistant and in-vitro bioactivity properties, where a thick bone-like apatite layer was formed on the mixed oxide nanotubes surface within 10 days immersion in simulated body fluid (SBF) after applied MOPSO. The novel results of this study can be effective in optimizing a variety of the surface properties of the nanostructured implants.
  8. Pahlevanzadeh F, Bakhsheshi-Rad HR, Hamzah E
    J Mech Behav Biomed Mater, 2018 06;82:257-267.
    PMID: 29627737 DOI: 10.1016/j.jmbbm.2018.03.016
    In this study, a bone cement consisting of poly methyl methacrylate (PMMA)-poly caprolactone (PCL)-fluorapatite (FA)-graphene oxide (GO) was synthesized as bone filler for application in orthopedic surgeries. The FA and GO particulates were homogenously distributed in the PMMA-PCL polymer matrix and no defects and agglomeration were found in the PMMA-PCL/FA/GO bone cement. The in-vitro bioactivity result exhibited that addition of FA and GO to the polymer cement (PMMA-PCL) improved the apatite formation ability on the surface of polymer. The results also showed that addition of FA to the polymer bone cement escalated the compressive strength and elastic modulus while reducing elongation to 8 ± 2%. However, after addition of GO into the PMMA-PCL/FA bone cement, both compressive strength and elongation considerably increased to 101 ± 5 MPa and 35 ± 6%, respectively. Furthermore, tensile tests exhibited that inclusion of GO was favorable in improving the tensile modulus, UTS and elongation of the PMMA-PCL/FA bone cement. The cytotoxicity test pointed out that MG63 osteoblast cells viability increased to 279 ± 15% after addition of FA and GO to the PMMA-PCL polymer bone cement. The DAPI (4',6-diamidino-2-phenylindole) staining demonstrated better spreading and attachment of MG63 cells on PMMA-PCL/FA/GO surface compared to the PMMA-PCL bone cements. These results confirm the suitable mechanical properties and favorable bioactivity along with high cells viability of PMMA-PCL/FA/GO bone cement, indicating its potentials for orthopedic applications.
  9. Revati R, Majid MSA, Ridzuan MJM, Basaruddin KS, Rahman Y MN, Cheng EM, et al.
    J Mech Behav Biomed Mater, 2017 10;74:383-391.
    PMID: 28688321 DOI: 10.1016/j.jmbbm.2017.06.035
    The in vitro degradation and mechanical properties of a 3D porous Pennisetum purpureum (PP)/polylactic acid (PLA)-based scaffold were investigated. In this study, composite scaffolds with PP to PLA ratios of 0%, 10%, 20%, and 30% were immersed in a PBS solution at 37°C for 40 days. Compression tests were conducted to evaluate the compressive strength and modulus of the scaffolds, according to ASTM F451-95. The compression strength of the scaffolds was found to increase from 1.94 to 9.32MPa, while the compressive modulus increased from 1.73 to 5.25MPa as the fillers' content increased from 0wt% to 30wt%. Moreover, field emission scanning electron microscopy (FESEM) and X-ray diffraction were employed to observe and analyse the microstructure and fibre-matrix interface. Interestingly, the degradation rate was reduced for the PLA/PP20scaffold, though insignificantly, this could be attributed to the improved mechanical properties and stronger fibre-matrix interface. Microstructure changes after degradation were observed using FESEM. The FESEM results indicated that a strong fibre-matrix interface was formed in the PLA/PP20scaffold, which reflected the addition of P. purpureum into PLA decreasing the degradation rate compared to in pure PLA scaffolds. The results suggest that the P. purpureum/PLA scaffold degradation rate can be altered and controlled to meet requirements imposed by a given tissue engineering application.
  10. Khuder T, Yunus N, Sulaiman E, Dabbagh A
    J Mech Behav Biomed Mater, 2017 11;75:97-104.
    PMID: 28709037 DOI: 10.1016/j.jmbbm.2017.06.039
    Denture fracture is a common clinical complication caused by improper material selection, design, or fabrication technique. This study aimed to investigate the effect of two attachment systems on fracture risk of the implant-overdentures (IOD) via finite element analysis (FEA), using the force distributions obtained from patients' occlusal analyses and to compare the obtained results with the clinical complications associated with these attachments. A three-dimensional jaw model comprised of the edentulous bones was constructed. Three types of mandibular prostheses including complete denture (CD) (model LCD), IOD with Locator attachment (model LID-L), and IOD with telescopic attachment (model LID-T), as well as a maxillary CD (model UCD) were assembled. The vertical occlusal forces at anterior and posterior quadrants were obtained from the patients wearing mandibular CDs or IODs. The FEA results were further compared with the mechanical failures of different prostheses observed at patient recalls. In overall, the fracture risk of mandibular prostheses was lower than the maxillary compartments. The UCD opposing LCD underwent higher strains than that opposing LID-L and LID-T, which was mostly concentrated at the anterior mid-palatal polished surface. On the other hand, LID-L showed the lowest strain, followed by LID-T, and LCD. The obtained results were consistent with the clinical complications observed in the patient recalls.
  11. Matinmanesh A, Li Y, Clarkin O, Zalzal P, Schemitsch EH, Towler MR, et al.
    J Mech Behav Biomed Mater, 2017 11;75:212-221.
    PMID: 28756281 DOI: 10.1016/j.jmbbm.2017.07.030
    Bioactive glasses have been used as coatings for biomedical implants because they can be formulated to promote osseointegration, antibacterial behavior, bone formation, and tissue healing through the incorporation and subsequent release of certain ions. However, shear loading on coated implants has been reported to cause the delamination and loosening of such coatings. This work uses a recently developed fracture mechanics testing methodology to quantify the critical strain energy release rate under nearly pure mode II conditions, GIIC, of a series of borate-based glass coating/Ti6Al4V alloy substrate systems. Incorporating increasing amounts of SrCO3in the glass composition was found to increase the GIICalmost twofold, from 25.3 to 46.9J/m2. The magnitude and distribution of residual stresses in the coating were quantified, and it was found that the residual stresses in all cases distributed uniformly over the cross section of the coating. The crack was driven towards, but not into, the glass/Ti6Al4V substrate interface due to the shear loading. This implied that the interface had a higher fracture toughness than the coating itself.
  12. Eweis AH, Yap AU, Yahya NA
    J Mech Behav Biomed Mater, 2017 10;74:183-188.
    PMID: 28605721 DOI: 10.1016/j.jmbbm.2017.06.004
    This study investigated the effect of food simulating liquids on visco-elastic properties of bulk-fill restoratives using dynamic mechanical analysis. One conventional composite (Filtek Z350 [FZ]), two bulk-fill composites (Filtek Bulk-fill [FB] and Tetric N Ceram [TN]) and a bulk-fill giomer (Beautifil-Bulk Restorative [BB]) were evaluated. Specimens (12 × 2 × 2mm) were fabricated using customized stainless steel molds. The specimens were light-cured, removed from their molds, finished, measured and randomly divided into six groups. The groups (n = 10) were conditioned in the following mediums for 7 days at 37°C: air (control), artificial saliva (SAGF), distilled water, 0.02N citric acid, heptane, 50% ethanol-water solution. Specimens were assessed using dynamic mechanical testing in flexural three-point bending mode and their respective mediums at 37°C and a frequency range of 0.1-10Hz. The distance between the supports were fixed at 10mm and an axial load of 5N was employed. Data for elastic modulus, viscous modulus and loss tangent were subjected to ANOVA/Tukey's tests at significance level p < 0.05. Significant differences in visco-elastic properties were observed between materials and mediums. Apart from bulk-fill giomer, elastic modulus was the highest after conditioning in heptane. No apparent trends were noted for viscous modulus. Generally, loss tangent was the highest after conditioning in ethanol. The effect of food-simulating liquids on the visco-elastic properties of bulk-fill composites was material and medium dependent.
  13. Choudhury D, Vrbka M, Mamat AB, Stavness I, Roy CK, Mootanah R, et al.
    J Mech Behav Biomed Mater, 2017 08;72:192-199.
    PMID: 28500998 DOI: 10.1016/j.jmbbm.2017.05.011
    Coefficient of friction (COF) tests were conducted on 28-mm and 36-mm-diameter hip joint prostheses for four different material combinations, with or without the presence of Ultra High Molecular Weight Polyethylene (UHMWPE) particles using a novel pendulum hip simulator. The effects of three micro dimpled arrays on femoral head against a polyethylene and a metallic cup were also investigated. Clearance played a vital role in the COF of ceramic on polyethylene and ceramic on ceramic artificial hip joints. Micro dimpled metallic femoral heads yielded higher COF against a polyethylene cup; however, with metal on metal prostheses the dimpled arrays significantly reduced the COF. In situ images revealed evidence that the dimple arrays enhanced film formation, which was the main mechanism that contributed to reduced friction.
  14. Shahemi N, Liza S, Abbas AA, Merican AM
    J Mech Behav Biomed Mater, 2018 11;87:1-9.
    PMID: 30031358 DOI: 10.1016/j.jmbbm.2018.07.017
    A revision of a metal-on-ultra high molecular weight (UHMWPE) bearing couple for total hip replacement was performed due to aseptic loosening after 23 years in-vivo. It is a major long-term failure identified from wear generation. This study includes performing failure analysis of retrieved polyethylene acetabular cup from Zimmer Trilogy® Acetabular system. The UHMWPE acetabular cup was retrieved from a 61 years old male patient with ability to walk but limited leg movement when he presented to hospital in early 2016 with complaint left thigh pain. It was 23 years after his primary total hip replacement procedure. Surface roughness and morphology condition were measured using 3D laser microscope and Scanning Electron Microscope (SEM) to evaluate and characterize the wear features on polyethylene acetabular cup surface. ATR-Fourier Transform Infra-Red (ATR-FTIR), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) were used to characterize the chemical composition of carbon-oxygen bonding, crystallinity percentage and molecular weight of the polymer liner that might changes the mechanical properties of polyethylene. Nano indentation is to measure hardness and elasticity modulus where the ratio of hardness to elastic modulus value can be reflected as the degradation of mechanical properties. A prominent difference of thickness between two regions resulted from acentric loading concentration was observed and wear rate were measured. The linear wear rate for thin side and thick side were 0.33 mm/year and 0.05 mm/year respectively. Molecular weight reduction of 57.5% and relatively low ratio of hardness to elastic modulus (3.59 × 10-3) were the indicator of major mechanical properties degradation happened on UHMWPE acetabular cup. This major degradation was contributed by oxidation and polishing wear feature accompanied with delamination, craters, ripple and cracks were the indication of extensive usage of UHMWPE from the suggested life span of acetabular cup application.
  15. Soon G, Pingguan-Murphy B, Akbar SA
    J Mech Behav Biomed Mater, 2017 04;68:26-31.
    PMID: 28135639 DOI: 10.1016/j.jmbbm.2017.01.028
    This study utilizes the technique of self-assembly to fabricate arrays of nanoislands on (001)-oriented yttria-stabilized zirconia single crystal substrates with miscut of 10° toward <110> direction. These self-assembled nanostructures were annealed at 1100°C for 5h upon doping with 10mol% gadolinium-doped ceria (GDC) by powder-suspension based method. X-Ray diffraction result showed that the miscut substrate after doping GDC was in the cubic phase. Energy dispersive X-ray (EDX) illustrates that the nanopatterned material contains all the elements from the GDC source and yttria-stabilized zirconia (YSZ) substrate. It also demonstrates a higher surface roughness and a more hydrophilic surface. The nanostructured materials were subsequently used for an in vitro study using a human fetal osteoblastic cell line (hFOB). An improved spreading, enhanced cell proliferation and up-regulated alkaline phosphatase activity (ALP) were observed on the nanopatterned substrates compared to the control substrates. Calcium deposits, which were stained positively by Alizarin Red S, appeared to be more abundant on the nanopatterned surfaces on day 7. The overall findings suggest that post fabrication treatment with surface modification such as creating a nanostructure (e.g. nanopatterns) can improve biocompatibility.
  16. Butcher AL, Koh CT, Oyen ML
    J Mech Behav Biomed Mater, 2017 May;69:412-419.
    PMID: 28208112 DOI: 10.1016/j.jmbbm.2017.02.007
    Electrospinning is a simple and efficient process for producing sub-micron fibres. However, the process has many variables, and their effects on the non-woven mesh of fibres is complex. In particular, the effects on the mechanical properties of the fibre meshes are poorly understood. This paper conducts a parametric study, where the concentration and bloom strength of the gelatin solutions are varied, while all electrospinning process parameters are held constant. The effects on the fibrous meshes are monitored using scanning electron microscopy and mechanical testing under uniaxial tension. Mesh mechanical properties are relatively consistent, despite changes to the solutions, demonstrating the robustness of electrospinning. The gel strength of the solution is shown to have a statistically significant effect on the morphology, stiffness and strength of the meshes, while the fibre diameter has surprisingly little influence on the stiffness of the meshes. This experimental finding is supported by finite element analysis, demonstrating that the stiffness of the meshes is controlled by the volume fraction, rather than fibre diameter. Our results demonstrate the importance of understanding how electrospinning parameters influence the pore size of the meshes, as controlling fibre diameter alone is insufficient for consistent mechanical properties.
  17. Talib AT, P Mohammed MA, Baharuddin AS, Mokhtar MN, Wakisaka M
    J Mech Behav Biomed Mater, 2019 09;97:58-64.
    PMID: 31100486 DOI: 10.1016/j.jmbbm.2019.05.010
    This paper demonstrates the potential use of toy-bricks as the building block of a mechanical tensile testing instrument for the mechanical characterisation of natural fibres. A table-top tensile testing instrument was developed using LEGO parts (Mindstorms EV3 and Technics) and a 2 kg capacity load cell, whereas deformation modes were programmed in an open source programming language. Experimental work was conducted on oil palm fibres under different tensile modes (i.e. constant deformation, triple-twisted-tension and deformation-relaxation modes), which showed anisotropic-viscoelastic behaviour, and microstructural damages due to deformation.
  18. Alao AR, Mohd Azhari MA
    J Mech Behav Biomed Mater, 2021 12;124:104842.
    PMID: 34555624 DOI: 10.1016/j.jmbbm.2021.104842
    Indentation size effect (ISE) and R-curve behaviour of Li2O-SiO2 and Li2O-2SiO2 glass ceramics are investigated using micro-indentation and indentation-strength (IS) techniques, respectively. Vickers micro-indentations were applied on both materials at the load of 0.10-19.6 N to determine the load influence on the measured hardness. For the IS-measured fracture toughness, the load ranged from 1.96 to 19.6 N. The hardness decreased with increasing load by 20% and 18% on Li2O-SiO2 and Li2O-2SiO2 glass ceramics, respectively, indicating the ISE behaviour on both materials. The fracture toughness increased with the load by 27% and 59% on Li2O-SiO2 and Li2O-2SiO2 glass ceramics, respectively, signifying the R-curve behaviour. The ISE behaviour of both materials was analysed using the Meyer's, Hays-Kendall (HK), proportional specimen resistance (PSR), Nix-Gao (NG), modified PSR (MPSR) and elastic plastic deformation (EPD) models while the R-curve behaviour was analysed by the fractional power law. The Meyer's index of both materials was less than 2, strongly confirming the ISE existence. The HK, PSR and NG models were only suitable to determine intrinsic Vickers hardness for Li2O-2SiO2 glass ceramic while the MPSR and EPD models were successful for both materials. The fractional power law gave higher R-curve steepness for Li2O-2SiO2 than Li2O-SiO2 glass ceramics. Also, material and brittleness indices predicted, respectively, higher quasi-plasticity and better machinability for Li2O-2SiO2 than Li2O-SiO2 glass ceramics indicating superior performance in the former to the latter. Finally, this study presents a new significant insight into the micro-mechanisms of fracture tolerance behaviour of these glass ceramics which is critical to their functional performance as structural ceramics.
  19. Myat-Htun M, Mohd Noor AF, Kawashita M, Baba Ismail YM
    J Mech Behav Biomed Mater, 2022 Feb 07;128:105122.
    PMID: 35168129 DOI: 10.1016/j.jmbbm.2022.105122
    Dense iron-doped akermanite ceramics with 0.3, 0.6 and 0.9 mol% of Fe3+ were synthesized via high-speed planetary ball milling and subsequently subjected to sintering at 1200 and 1250 °C. The aim of the current work was to investigate the effect of trivalent iron (Fe3+) in tuning the physicomechanical and in vitro biological properties of akermanite. The incorporation of Fe3+ into akermanite host and sintering at a high temperature of 1200 °C resulted in a synergistic effect in enhancing the sinterability and densification of akermanite ceramics. Although varying the Fe3+ content, it was found that similar densification and mechanical properties (i.e., diametral tensile strength, Vickers microhardness and fracture toughness) were observed for the doped ceramics at 1250 °C, indicating that this newly developed formulation is temperature-dependent. Fe3+-doped akermanite ceramics revealed greater in vitro bioactivity as compared to undoped akermanite, demonstrated by better coverage of needle-like apatite precipitates after 21 days of immersion in simulated body fluid. Additionally, Rat-1 cells cultured in direct contact with Fe3+-doped akermanite ceramics showed almost double levels of cell proliferation than their undoped counterpart on both 3 and 7 days of culture. Our finding suggests that 0.9Fe-AK ceramic is a suitable formulation to be considered for future bone substitute material as it provides sufficient mechanical strength as well as good bioactivity and the ability to encourage cell proliferation.
  20. Khalajabadi SZ, Abu ABH, Ahmad N, Yajid MAM, Hj Redzuan NB, Nasiri R, et al.
    J Mech Behav Biomed Mater, 2018 Jan;77:360-374.
    PMID: 28985616 DOI: 10.1016/j.jmbbm.2017.09.032
    This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36MPa for MgO and ~32MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links