Displaying publications 21 - 40 of 53 in total

Abstract:
Sort:
  1. Chelliah S, Velappan RD, Lim KT, Swee CWK, Nor Rashid N, Rothan HA, et al.
    Mol Biotechnol, 2020 May;62(5):289-296.
    PMID: 32185600 DOI: 10.1007/s12033-020-00244-0
    Pasteurella multocida is the main cause of haemorrhagic septicaemia (HS) outbreak in livestock, such as cattle and buffaloes. Conventional vaccines such as alum-precipitated or oil-adjuvant broth bacterins were injected subcutaneously to provide protection against HS. However, the immunity developed is only for short term and needed to be administered frequently. In our previous study, a short gene fragment from Pasteurella multocida serotype B was obtained via shotgun cloning technique and later was cloned into bacterial expression system. pQE32-ABA392 was found to possess immunogenic activity towards HS when tested in vivo in rat model. In this study, the targeted gene fragment of ABA392 was sub-cloned into a DNA expression vector pVAX1 and named as pVAX1-ABA392. The new recombinant vaccine was stable and expressed on mammalian cell lines. Serum sample collected from a group of vaccinated rats for ELISA test shows that the antibody in immunized rats was present at high titer and can be tested as a vaccine candidate with challenge in further studies. This successful recombinant vaccine is immunogenic and potentially could be used as vaccine in future against HS.
  2. Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC
    Mol Biotechnol, 2021 Apr;63(4):316-326.
    PMID: 33565047 DOI: 10.1007/s12033-021-00304-z
    Prenylation of aromatic natural products by membrane-bound prenyltransferases (PTs) is an important biosynthesis step of many bioactive compounds. At present, only a few plant flavonoid-related PT genes have been functionally characterized, mainly due to the difficulties of expressing these membrane proteins. Rapid and effective methods to produce functional plant membrane proteins are thus indispensable. Here, we evaluated expression systems through cell-based and cell-free approaches to express Boesenbergia rotunda BrPT2 encoding a membrane-bound prenyltransferase. We attempted to express BrPT2 in Escherichia coli and tobacco plants but failed to detect this protein using the Western-blot technique, whereas an intact single band of 43 kDa was detected when BrPT2 was expressed using a cell-free protein synthesis system (PURE). Under in vitro enzymatic condition, the synthesized BrPT2 successfully catalyzed pinostrobin chalcone to pinostrobin. Molecular docking analysis showed that pinostrobin chalcone interacts with BrPT2 at two cavities: (1) the main binding site at the central cavity and (2) the allosteric binding site located away from the central cavity. Our findings suggest that cell-free protein synthesis could be an alternative for rapid production of valuable difficult-to-express membrane proteins.
  3. Trang NTH, Tang DYY, Chew KW, Linh NT, Hoang LT, Cuong NT, et al.
    Mol Biotechnol, 2021 Nov;63(11):1004-1015.
    PMID: 34185249 DOI: 10.1007/s12033-021-00362-3
    Various studies showed that the suppression of α-glucosidase activity can impede the glucose absorption in our body, and therefore, it can be used to treat type 2 diabetes. Hence, the compounds with anti-α-glucosidase have gained considerable attention because of their potential application in diabetes treatment. In previous literature studies, these anti-α-glucosidase compounds were extracted from plants and fungus. Less studies are being conducted to identify the anti-α-glucosidase compounds in the microbial community. In this study, 23 marine bacterial strains were screened for their potential to suppress the α-glucosidase activity. The highest inhibitory activity was exhibited by isolated L06 which was identified as Oceanimonas smirnovii EBL6. The cultivation conditions, such as temperature and pH, were optimized to increase the production of α-glucosidase inhibitors by Oceanimonas smirnovii EBL6 strain. The result findings showed that the highest yield of α-glucosidase inhibitors can be obtained at the culture time of 120 h, fermentation temperature of 30 °C, and pH 4.6. Under these conditions, the inhibitory activity of α-glucosidase can reach 81%. The IC50 of n-butanol extract was 13.89 μg/ml, while standard acarbose was 31.16 μg/ml. Overall, these findings suggest that Oceanimonas smirnovii produces α-glucosidase inhibitors and could been applied in the biochemical and medicinal fields in the future.
  4. Rothan HA, Teoh TC
    Mol Biotechnol, 2021 Mar;63(3):240-248.
    PMID: 33464543 DOI: 10.1007/s12033-021-00299-7
    The global public health has been compromised since the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in late December 2019. There are no specific antiviral drugs available to combat SARS-CoV-2 infection. Besides the rapid dissemination of SARS-CoV-2, several variants have been identified with a potential epidemiologic and pathogenic variation. This fact has forced antiviral drug development strategies to stay innovative, including new drug discovery protocols, combining drugs, and establishing new drug classes. Thus, developing novel screening methods and direct-targeting viral enzymes could be an attractive strategy to combat SARS-CoV-2 infection. In this study, we designed, optimized, and validated a cell-based assay protocol for high-throughput screening (HTS) antiviral drug inhibitors against main viral protease (3CLpro). We applied the split-GFP complementation to develop GFP-split-3CLpro HTS system. The system consists of GFP-based reporters that become fluorescent upon cleavage by SARS-CoV-2 protease 3CLpro. We generated a stable GFP-split-3CLpro HTS system valid to screen large drug libraries for inhibitors to SARS-CoV-2 main protease in the bio-safety level 2 laboratory, providing real-time antiviral activity of the tested compounds. Using this assay, we identified a new class of viral protease inhibitors derived from quinazoline compounds that worth further in vitro and in vivo validation.
  5. Tan KL, Chia WC, How CW, Tor YS, Show PL, Looi QHD, et al.
    Mol Biotechnol, 2021 Sep;63(9):780-791.
    PMID: 34061307 DOI: 10.1007/s12033-021-00339-2
    The objective of this study is to develop a simple protocol to isolate and characterise small extracellular vesicles (sEVs) from human umbilical cord-derived MSCs (hUC-MSCs). hUC-MSCs were characterised through analysis of morphology, immunophenotyping and multidifferentiation ability. SEVs were successfully isolated by ultrafiltration from the conditioned medium of hUC-MSCs. The sEVs' size distribution, intensity within a specific surface marker population were measured with zetasizer or nanoparticle tracking analysis. The expression of surface and internal markers of sEVs was also assessed by western blotting. Morphology of hUC-MSCs displayed as spindle-shaped, fibroblast-like adherent cells. Phenotypic analysis by flow cytometry revealed that hUC-MSCs expressed MSC surface marker, including CD90, CD73, CD105, CD44 and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. Populations of sEVs with CD9, CD63 and CD81 positive were detected with size distribution in the diameter of 63.2 to 162.5 nm. Typical sEVs biomarkers such as CD9, CD63, CD81, HSP70 and TSG101 were also detected with western blotting. Our study showed that sEVs from hUC-MSCs conditioned medium were successfully isolated and characterised. Downstream application of hUC-MSCs-sEVs will be further explored.
  6. Nizan IEF, Kamaruddin K, Ong PW, Ramli Z, Singh R, Rose RJ, et al.
    Mol Biotechnol, 2022 Feb 02.
    PMID: 35107753 DOI: 10.1007/s12033-022-00450-y
    EgENOD93 was first identified in a cDNA microarray study of oil palm tissue culture where it was highly expressed in leaf explants with embryogenic potential. Functional characterization via an RNA interference study of its orthologue in Medicago truncatula demonstrated a significant role of this gene in somatic embryo formation. In this study, EgENOD93 was overexpressed in the important model plant Arabidopsis thaliana to investigate the embryogenic potential of EgENOD93 transgenic Arabidopsis explants compared to explants from control plants (pMDC140 and WT). Experiments using leaf explants revealed higher numbers of regenerated shoots at day 27 in all the homozygous transgenic Arabidopsis cultures (Tg01, Tg02 and Tg03) compared to controls. The expression level of EgENOD93 in Arabidopsis cultures was quantified using reverse transcription quantitative real-time PCR (RT-qPCR). The results supported the overexpression of this gene in transgenic Arabidopsis cultures, with 6 and 10 times higher expression of EgENOD93 in callus at Day 9 and Day 20, respectively. Overall, the results support the role of EgENOD93 in the enhancement of shoot regeneration in transgenic Arabidopsis. This together with the previous results observed in oil palm and Medicago truncatula suggests that ENOD93 plays a key role in the induction of somatic embryogenesis. A similarity to early nodulation-like ontogeny is possible.
  7. Hasan H, Abd Rahim MH, Campbell L, Carter D, Abbas A, Montoya A
    Mol Biotechnol, 2022 Jan;64(1):90-99.
    PMID: 34546548 DOI: 10.1007/s12033-021-00393-w
    Lovastatin is an anti-cholesterol medicine that is commonly prescribed to manage cholesterol levels, and minimise the risk of suffering from heart-related diseases. Aspergillus terreus (ATCC 20542) supplied with carbohydrates or sugar alcohols can produce lovastatin. The present work explored the application of metabolic engineering in A. terreus to re-route the precursor flow towards the lovastatin biosynthetic pathway by simultaneously overexpressing the gene for acetyl-CoA carboxylase (acc) to increase the precursor flux, and eliminate ( +)-geodin biosynthesis (a competing secondary metabolite) by removing the gene for emodin anthrone polyketide synthase (gedC). Alterations to metabolic flux in the double mutant (gedCΔ*accox) strain and the effects of using two different substrate formulations were examined. The gedCΔ*accox strain, when cultivated with a mixture of glycerol and lactose, significantly (p 
  8. Sani HA, Shariff FM, Rahman RNZRA, Leow TC, Salleh AB
    Mol Biotechnol, 2018 Jan;60(1):1-11.
    PMID: 29058211 DOI: 10.1007/s12033-017-0038-3
    The substitutions of the amino acid at the predetermined critical point at the C-terminal of L2 lipase may increase its thermostability and enzymatic activity, or even otherwise speed up the unfolding of the protein structure. The C-terminal of most proteins is often flexible and disordered. However, some protein functions are directly related to flexibility and play significant role in enzyme reaction. The critical point for mutation of L2 lipase structure was predicted at the position 385 of the L2 sequence, and the best three mutants were determined based on I-Mutant2.0 software. The best three mutants were S385E, S385I and S385V. The effects of the substitution of the amino acids at the critical point were analysed with molecular dynamics simulation by using Yet Another Scientific Artificial Reality Application software. The predicted mutant L2 lipases were found to have lower root mean square deviation value as compared to L2 lipase. It was indicated that all the three mutants had higher compactness in the structure, consequently enhanced the stability. Root mean square fluctuation analysis showed that the flexibility of L2 lipase was reduced by mutations. Purified S385E lipase had an optimum temperature of 80 °C in Tris-HCl pH 8. The highest enzymatic activity of purified S385E lipase was obtained at 80 °C temperature in Tris-HCl pH 8, while for L2 lipase it was at 70 °C in Glycine-NaOH pH 9. The thermal stability of S385V lipase was enhanced as compared to other protein since that the melting point (T m) value was at 85.96 °C. S385I lipase was more thermostable compared to recombinant L2 lipase and other mutants at temperature 60 °C within 16 h preincubation.
  9. Hadi N, Nakhaeitazreji S, Kakian F, Hashemizadeh Z, Ebrahiminezhad A, Chong JWR, et al.
    Mol Biotechnol, 2023 Nov 13.
    PMID: 37957480 DOI: 10.1007/s12033-023-00957-y
    The synergistic effects of antimicrobial nanostructures with antibiotics present a promising solution for overcoming resistance in methicillin-resistant Staphylococcus aureus (MRSA). Previous studies have introduced iron as a novel coating for silver nanoparticles (AgNPs) to enhance both economic efficiency and potency against S. aureus. However, there are currently no available data on the potential of these novel nanostructures to reverse MRSA resistance. To address this gap, a population study was conducted within the MRSA community, collecting a total of 48 S. aureus isolates from skin lesions. Among these, 21 isolates (43.75%) exhibited cefoxitin resistance as determined by agar disk diffusion assay. Subsequently, a PCR test confirmed the presence of the mecA gene in 20 isolates, verifying them as MRSA. These results highlight the cefoxitin disk diffusion susceptibility test as an accurate screening method for predicting mecA-mediated resistance in MRSA. Synergy tests were performed on cefoxitin, serving as a marker antibiotic, and iron-coated AgNPs (Fe@AgNPs) in a combination study using the checkerboard assay. The average minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of cefoxitin were calculated as 11.55 mg/mL and 3.61 mg/mL, respectively. The findings indicated a synergistic effect (FIC index 
  10. Rawindran H, Lim JW, Lam MK, Supramaniam U, Tong WY, Ng HS, et al.
    Mol Biotechnol, 2023 Nov 14.
    PMID: 37964101 DOI: 10.1007/s12033-023-00955-0
    Conventionally, increasing the yield of microalgal biomass has been the primary focus of research, while the significant protein reserve within this biomass has remained largely unexplored. This protein reserve possesses substantial value and versatility, offering a wide range of prospective applications and presenting an enticing chance for innovation and value enhancement for various sectors. Current study employed an innovative research approach that focused solely on the LCA of protein production potential from microalgal biomass, a lesser-explored aspects within this domain. Most environmental impact categories were shown to be significantly affected by cultivation phase because of the electrical obligation, followed by the harvesting and protein extraction phase. Still, the environmental aspect was seen to yield a minimal impact on global warming potential, i.e., 4 × 10-3 kg CO2, underscoring the ecologically favorable nature of the process. Conversely, the overall energy impact was seen to intensify with NEB of - 39.33 MJ and NER of 0.49, drawing attention to the importance of addressing the energy aspect to harness the full potential of microalgal protein production.
  11. Kumar DSRS, Puthiran SH, Selvaraju GD, Matthew PA, Senthilkumar P, Kuppusamy S, et al.
    Mol Biotechnol, 2023 Oct 31.
    PMID: 37907811 DOI: 10.1007/s12033-023-00903-y
    The present study focused on preparing and characterizing magnetite-polyvinyl alcohol (PVA) hybrid nanoparticles using Acanthophora spicifera marine algae extract as a reducing agent. Various analytical techniques, including UV-Visible spectrometry, Fourier-transform infrared (FTIR) analysis, energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis, were used to characterize the nanoparticles. The results showed the successful synthesis of nanoparticles with a characteristic color change and absorption peak at 400 nm in UV-Visible spectrometry. FTIR analysis indicated an interaction between the carboxyl group and magnetite-polyvinyl alcohol hybrid ions. SEM analysis revealed spherical nanoparticles with sizes ranging from 20 to 100 nm. EDX analysis confirmed the presence of strong magnetite peaks in Acanthophora spicifera, validating successful preparation. XRD analysis indicated the crystalline nature of the nanoparticles. Furthermore, the antimicrobial potential of As-PVA-MNPs was evaluated, demonstrating a significant zone of inhibition against tested bacterial and fungal samples at a concentration of 100 µg. These findings suggest the promising antimicrobial activity of the synthesized nanoparticles for potential applications in combating pathogenic microorganisms.
  12. Gul R, Hanif MU, Gul F, Rehman HM, Saleem M, Ahmad MS, et al.
    Mol Biotechnol, 2023 Jul;65(7):1062-1075.
    PMID: 36437440 DOI: 10.1007/s12033-022-00612-y
    The current study focuses on molecular cloning, expression and structural characterization of growth hormone-receptor (GHR) and its extracellular domain as growth hormone binding protein (GHBP) from the liver of Nili-Ravi buffalo (Bubalus bubalis; Bb). RNA was isolated, genes were amplified by reverse transcriptase-polymerase chain reaction and sequence was characterized. The BbGHR sequence showed three amino acid variations in the extracellular domain when compared with Indian BbGHR. For the production of full length BbGHR and BbGHBP in Escherichia coli (E. coli) BL21 (RIPL) Codon Plus, expression plasmids were constructed under the control of T7lac promoter and isopropyl β-D thiogalactopyranoside was used as an inducer. BbGHR and BbGHBP were expressed as inclusion bodies at ~ 40% and > 30% of the total E. coli proteins, respectively. The BbGHBP was solubilized and refolded by dilution method using cysteine-cystine redox potential. The recombinant BbGHBP was purified and biological activity was checked on HeLa cell lines showing increase cell proliferation in the presence of ovine GH (oGH), hence justifying the increase in the half-life of GH in the presence of BbGHBP. For the molecular interactions of oGH-BbGHBP multiple docking programs were employed to explore the subsequent interactions which showed high binding affinity and presence of large number of hydrogen bonds. Molecular Dynamics studies performed to examine the stability of proteins and exhibited stable structures along with favorable molecular interactions. This study has described the sequence characterization of BbGHR in Nili-Ravi buffaloes and hence provided the basis for the assessment of GH-GHR binding in other Bovidae species.
  13. Mohd Rasid NH, Abdul Halid N, Song AA, Sabri S, Saari N, Hasan H
    Mol Biotechnol, 2023 Jun;65(6):861-870.
    PMID: 36273370 DOI: 10.1007/s12033-022-00584-z
    There is an increasing demand for natural food preservatives due to consumers' concern on the negative effects of chemical preservatives in food products. Nisin (bacteriocin) is an effective food biopreservative that has been approved globally. However, its low yield proves to be a limiting factor and must be addressed to meet the increasingly high demand from the food industry. The present work thus investigated the effects of individual and combined fermentation factors on Lactococcus lactis ATCC 11454 growth and nisin activity using the one-factor-at-a-time (OFAT) method. The level of each factor that gave the highest nisin production was then selected and combined to further improve its activity. The best combined conditions for highest cell growth and nisin activity were 30 °C, pH 6.0, and mild agitation with the addition of 1.0% w/v glucose, 1.0% w/v skim milk, and 0.5% v/v Tween 20. This increased nisin production by 22.7% as compared to control (basic condition). The present work provided critical information on the relationship between fermentation conditions, growth, and nisin activity of L. lactis ATCC 11454 that could be explored to understand the potential and limitation of the strain. This fermentation strategy can also serve as a benchmark to further enhance the production of bacteriocin or other biopreservative compounds.
  14. Patil RV, Hadawale KN, Ramli ANM, Wadkar SS, Bhuyar P
    Mol Biotechnol, 2023 Jun;65(6):833-848.
    PMID: 36544065 DOI: 10.1007/s12033-022-00633-7
    In plant development, flowering is the most widely studied process. Floral forms show large diversity in different species due to simple variations in basic architecture. To determine the floral gene expression during the past decade, MADS-box genes have identified as key regulators in both reproductive and vegetative plant development. Traditional genetics and functional genomics tools are now available to elucidate the expression and function of this complex gene family on a much larger scale. Moreover, comparative analysis of the MADS-box genes in diverse flowering and non-flowering plants, boosted by various molecular technologies such as ChIP and next-generation DNA sequencing, contributes to our understanding of how this important gene family has expanded during the evolution of land plants. Likewise, the big data analysis revealed combined activity of transcriptional regulators and floral organ identity factors regulate the flower developmental programs. Thus, with the help of cutting-edge technologies like RNA-Sequencing, sex determination is now better understood in few non-model plants Therefore, the recent advances in next-generation sequencing (NGS) should enable researchers to identify the full range of floral gene functions, which will significantly help to understand plant development and evolution. This review summarizes the floral homeotic genes in model and non-model species to understand the flower development genes and dioecy evolution.
  15. Nayana RUK, Nakkeeran S, Saranya N, Saravanan R, Mahendra K, Ashraf S, et al.
    Mol Biotechnol, 2023 Aug 09.
    PMID: 37556108 DOI: 10.1007/s12033-023-00797-w
    Fusarium oxysporum f. sp. cubense is one of the most severe and threatening pathogens of bananas, causing "Panama wilt" worldwide. Confrontation assay of Foc antagonistic bacterial endophyte, Bacillus velezensis YEBBR6, with the Foc and GC-MS profiling of excised agar from the zone of inhibition, led to the unveiling of secondary metabolites produced by the endophyte. To refine the probable antifungal compounds among the numerous biomolecules formed during their di-trophic interaction with the pathogen, fungal protein targets were modeled, and docking studies (AutoDock Vina module of the PyRx 0.8 server) were done with all the compounds. Triamcinolone acetonide exhibited the most excellent affinity for the protein targets among the compounds studied. It had a maximum binding affinity of 11.2 kcal/mol for XRN2 (5' → 3'). Further, the protein-ligand complex formation kinetics was done through Molecular Dynamic Simulation studies. Graphs for the RMSD, RMSF, Rg, potential energy, and SASA were generated, and the values during the simulation period suggested the stability of the biomolecule as a complex with the protein. This indicated Triamcinolone acetonide's potential ability to act as a functional disrupter of the target protein and likely an antifungal molecule. Further, the biomolecule was tested for its activity against Foc by screening in the wet lab through the poisoned plate technique, and it was found to be fully inhibitory to the growth of the pathogen at 1000 ppm.
  16. Ng YS, Chan DJC
    Mol Biotechnol, 2023 Aug 31.
    PMID: 37651079 DOI: 10.1007/s12033-023-00853-5
    Membrane distillation (MD) has lower operating temperature and potential to recycle waste heat for desalination which catches much attention of the researchers in the recent years. However, the biofouling is still a challenging hurdle to be overcome for such applications. The microbial growth rate, secretion and biofilm formation are sensitive to heat. Membrane distillation is a thermally driven separation, so the increase of temperature in the seawater feed could influence the extent of biofouling on the unit parts. In this review, we present the effect of temperature on algal growth, the range of temperature the microbes, marine algae and planktons able to survive and the changes to those planktons once exceed the critical temperature. Thermal effect on the biofilm, its composition and properties are discussed as well, with association of the biofilm secreting microbes, but the study related to membrane distillation unit seems to be lacking and MD biofouling factors are not fully understood. Characterization of the algae, biofilm and EPS that govern biofouling are discussed. This information not only will help in designing future studies to fill up the knowledge gaps in biofouling of membrane distillation, but also to some extent, assist in pointing out possible fouling factors and predicting the degree of biofouling in the membrane distillation unit.
  17. Ng CL, Lim TS, Choong YS
    Mol Biotechnol, 2023 Sep 24.
    PMID: 37742298 DOI: 10.1007/s12033-023-00885-x
    Since the advent of hybridoma technology in the year 1975, it took a decade to witness the first approved monoclonal antibody Orthoclone OKT39 (muromonab-CD3) in the year 1986. Since then, continuous strides have been made to engineer antibodies for specific desired effects. The engineering efforts were not confined to only the variable domains of the antibody but also included the fragment crystallizable (Fc) region that influences the immune response and serum half-life. Engineering of the Fc fragment would have a profound effect on the therapeutic dose, antibody-dependent cell-mediated cytotoxicity as well as antibody-dependent cellular phagocytosis. The integration of computational techniques into antibody engineering designs has allowed for the generation of testable hypotheses and guided the rational antibody design framework prior to further experimental evaluations. In this article, we discuss the recent works in the Fc-fused molecule design that involves computational techniques. We also summarize the usefulness of in silico techniques to aid Fc-fused molecule design and analysis for the therapeutics application.
  18. Alias FL, Nezhad NG, Normi YM, Ali MSM, Budiman C, Leow TC
    Mol Biotechnol, 2023 Nov;65(11):1737-1749.
    PMID: 36971996 DOI: 10.1007/s12033-023-00725-y
    Heterologous functional expression of the recombinant lipases is typically a bottleneck due to the expression in the insoluble fraction as inclusion bodies (IBs) which are in inactive form. Due to the importance of lipases in various industrial applications, many investigations have been conducted to discover suitable approaches to obtain functional lipase or increase the expressed yield in the soluble fraction. The utilization of the appropriate prokaryotic and eukaryotic expression systems, along with the suitable vectors, promoters, and tags, has been recognized as a practical approach. One of the most powerful strategies to produce bioactive lipases is using the molecular chaperones co-expressed along with the target protein's genes into the expression host to produce the lipase in soluble fraction as a bioactive form. The refolding of expressed lipase from IBs (inactive) is another practical strategy which is usually carried out through chemical and physical methods. Based on recent investigations, the current review simultaneously highlights strategies to express the bioactive lipases and recover the bioactive lipases from the IBs in insoluble form.
  19. Kee PE, Phang SM, Lan JC, Tan JS, Khoo KS, Chang JS, et al.
    Mol Biotechnol, 2023 Nov 08.
    PMID: 37938536 DOI: 10.1007/s12033-023-00940-7
    Seaweeds are photosynthetic marine macroalgae known for their rapid biomass growth and their significant contributions to global food and feed production. Seaweeds play a crucial role in mitigating various environmental issues, including greenhouse gases, ocean acidification, hypoxia, and eutrophication. Tropical seaweeds are typically found in tropical and subtropical coastal zones with warmer water temperatures and abundant sunlight. These tropical seaweeds are rich sources of proteins, vitamins, minerals, fibers, polysaccharides, and bioactive compounds, contributing to their health-promoting properties and their diverse applications across a range of industries. The productivity, cultivability, nutritional quality, and edibility of tropical seaweeds have been well-documented. This review article begins with an introduction to the growth conditions of selected tropical seaweeds. Subsequently, the multifunctional properties of tropical seaweeds including antioxidant and anti-inflammatory, anti-coagulant, anti-carcinogenic and anti-proliferative, anti-viral, therapeutic and preventive properties were comprehensively evaluated. The potential application of tropical seaweeds as functional foods and feeds, as well as their contributions to sustainable cosmetics, bioenergy, and biofertilizer production were also highlighted. This review serves as a valuable resource for researchers involved in seaweed farming as it provides current knowledge and insights into the cultivation and utilization of seaweeds.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links