Displaying publications 21 - 40 of 108 in total

Abstract:
Sort:
  1. Lau YL, Thiruvengadam G, Lee WW, Fong MY
    Parasitol Res, 2011 Sep;109(3):871-8.
    PMID: 21455621 DOI: 10.1007/s00436-011-2315-6
    In this study, we successfully expressed a chimerical surface antigen 1 and 2 (SAG1/2) of Toxoplasma gondii in Pichia pastoris. Eighty human serum samples, including 60 from confirmed cases of toxoplasmosis, were tested against the purified recombinant SAG1/2 in Western blots. Results of Western blots targeted at Toxoplasma IgG and IgM showed that the recombinant SAG1/2 reacted with all sera from the toxoplasmosis cases but none with the Toxoplasma-negative serum samples. These results showed that the P. pastoris-derived recombinant SAG1/2 was sensitive and specific and suitable for use as antigen for detecting anti-Toxoplasma antibodies. To further investigate the immunological characteristic of the recombinant protein, the recombinant SAG1/2 was injected subcutaneously into BALB/c mice, and their serum was tested against total protein lysate of T. gondii. Mice immunized with the recombinant SAG1/2 reacted specifically with the native SAG1 and SAG2 of T. gondii. Significant proliferation of splenocytes stimulated with tachyzoite total protein lysate was observed in vaccinated BALB/c mice but not in those from negative control mice. Specific production of IFN-γ, the Th1-type cytokines, was also found in stimulated splenocytes from vaccinated mice. These results show that the chimeric protein recombinant SAG1/2 can elicit a Th1-associated protection against T. gondii infections in mice. Finally, vaccinated mice were significantly protected against lethal challenge with live T. gondii RH strain tachyzoites (P 
  2. Azlan UK, Cheong FW, Lau YL, Fong MY
    Parasitol Res, 2022 Dec;121(12):3443-3454.
    PMID: 36152079 DOI: 10.1007/s00436-022-07665-7
    Plasmodium knowlesi utilizes the Duffy binding protein alpha (PkDBPα) to facilitate its invasion into human erythrocytes. PkDBPα region II (PkDBPαII) from Peninsular Malaysia and Malaysian Borneo has been shown to occur as distinct haplotypes, and the predominant haplotypes from these geographical areas demonstrated differences in binding activity to human erythrocytes in erythrocyte binding assays. This study aimed to determine the effects of genetic polymorphisms in PkDBPαII to immune responses in animal models. The recombinant PkDBPαII (~ 45 kDa) of Peninsular Malaysia (PkDBPαII-H) and Malaysian Borneo (PkDBPαII-S) were expressed in a bacterial expression system, purified, and used in mice and rabbit immunization. The profile of cytokines IL-1ra, IL-2, IL-6, IL-10, TNF-α, and IFN-γ in immunized mice spleen was determined via ELISA. The titer and IgG subtype distribution of raised antibodies was characterized. Immunized rabbit sera were purified and used to perform an in vitro merozoite invasion inhibition assay. The PkDBPαII-immunized mice sera of both groups showed high antibody titer and a similar IgG subtype distribution pattern: IgG2b > IgG1 > IgG2a > IgG3. The PkDBPαII-H group was shown to have higher IL-1ra (P = 0.141) and IL-6 (P = 0.049) concentrations, with IL-6 levels significantly higher than that of the PkDBPαII-S group (P ≤ 0.05). Merozoite invasion inhibition assay using purified anti-PkDBPαII antibodies showed a significantly higher inhibition rate in the PkDBPαII-H group than the PkDBPαII-S group (P ≤ 0.05). Besides, anti-PkDBPαII-H antibodies were able to exhibit inhibition activity at a lower concentration than anti-PkDBPαII-S antibodies. PkDBPαII was shown to be immunogenic, and the PkDBPαII haplotype from Peninsular Malaysia exhibited higher responses in cytokines IL-1ra and IL-6, antibody IgM level, and merozoite invasion inhibition assay than the Malaysian Borneo haplotype. This suggests that polymorphisms in the PkDBPαII affect the level of immune responses in the host.
  3. Ng YL, Lau YL, Hamid MHA, Jelip J, Ooi CH, Mudin RN, et al.
    Parasitol Res, 2023 Jan;122(1):195-200.
    PMID: 36378331 DOI: 10.1007/s00436-022-07716-z
    Plasmodium knowlesi is a simian malaria parasite that causes significant zoonotic infections in Southeast Asia, particularly in Malaysia. The Plasmodium thrombospondin-related apical merozoite protein (TRAMP) plays an essential role in the invasion of the parasite into its host erythrocyte. The present study investigated the genetic polymorphism and natural selection of the full length PkTRAMP from P. knowlesi clinical isolates from Malaysia. Blood samples (n = 40) were collected from P. knowlesi malaria patients from Peninsular Malaysia and Malaysian Borneo. The PkTRAMP gene was amplified using PCR, followed by cloning into a plasmid vector and sequenced. Results showed that the nucleotide diversity of PkTRAMP was low (π: 0.009). Z-test results indicated negative (purifying) selection of PkTRAMP. The alignment of the deduced amino acid sequences of PkTRAMP of Peninsular Malaysia and Malaysian Borneo revealed 38 dimorphic sites. A total of 27 haplotypes were identified from the amino acid sequence alignment. Haplotype analysis revealed that there was no clustering of PkTRAMP from Peninsular Malaysia and Malaysian Borneo.
  4. Latif ENM, Noordin NR, Shahari S, Amir A, Lau YL, Cheong FW, et al.
    Parasitol Res, 2024 Jan 19;123(1):105.
    PMID: 38240877 DOI: 10.1007/s00436-024-08125-0
    Plasmodium cynomolgi is a simian malaria parasite that has been increasingly infecting humans. It is naturally present in the long-tailed and pig-tailed macaques in Southeast Asia. The P. cynomolgi Duffy binding protein 1 region II [PcDBP1(II)] plays an essential role in the invasion of the parasite into host erythrocytes. This study investigated the genetic polymorphism, natural selection and haplotype clustering of PcDBP1(II) from wild macaque isolates in Peninsular Malaysia. The genomic DNA of 50 P. cynomolgi isolates was extracted from the macaque blood samples. Their PcDBP1(II) gene was amplified using a semi-nested PCR, cloned into a plasmid vector and subsequently sequenced. The polymorphism, natural selection and haplotypes of PcDBP1(II) were analysed using MEGA X and DnaSP ver.6.12.03 programmes. The analyses revealed high genetic polymorphism of PcDBP1(II) (π = 0.026 ± 0.004; Hd = 0.996 ± 0.001), and it was under purifying (negative) selection. A total of 106 haplotypes of PcDBP1(II) were identified. Phylogenetic and haplotype analyses revealed two groups of PcDBP1(II). Amino acid length polymorphism was observed between the groups, which may lead to possible phenotypic difference between them.
  5. Ragavan AD, Govind SK
    Parasitol Res, 2015 Mar;114(3):1163-6.
    PMID: 25614298 DOI: 10.1007/s00436-014-4296-8
    Dientamoeba fragilis, a trichomonad parasite is usually found in the gastrointestinal tract of human, and it is known to be the cause for gastrointestinal disease. The parasite is globally distributed and mostly found in rural and urban areas. The parasite is found in humans and nonhuman primates such as the macaques, baboons, and gorillas. Often, the parasite is confused with another largely found organism in stools called Blastocystis sp. especially when seen directly under light microscopy on culture samples containing both parasites. Both sometimes are seen with two nuclei with sizes tending to be similar which complicates identification. Stools were collected fresh from nine previously diagnosed persons infected with D. fragilis who also were found to be positive for Blastocystis sp. Samples were then cultured in Loeffler's medium and were stained with Giemsa, iron hematoxylin, and modified Fields' (MF) stain, respectively. D. fragilis was differentiated from Blastocystis sp. when stained with MF stain by the presence of a thinner outer membrane with clearly demarcated nuclei in the center of the cell whilst Blastocystis sp. had a darker and thicker stained outer membrane with the presence of two nuclei. The staining contrast was more evident with modified Fields' stain when compared with the other two. The simplicity in preparing the stain as well as the speed of the staining procedure make MF stain an ideal alternate. The modified Fields' stain is faster and easier to prepare when compared to the other two stains. MF stain provides a better contrast differentiating the two organisms and therefore provides a more reliable diagnostic method to precisely identify one from the other especially when cultures show mixed infections.
  6. Fang F, Chang Q, Sheng Z, Zhang Y, Yin Z, Guillot J
    Parasitol Res, 2019 Dec;118(12):3237-3240.
    PMID: 31655903 DOI: 10.1007/s00436-019-06464-x
    Chrysomya bezziana is an obligate, myiasis-causing fly in humans and warm-blooded animals throughout the tropical and subtropical Old World. We report a case of cutaneous myiasis due to C. bezziana in a dog from Guangxi province in China. A total of 35 maggots were removed from the lesions. Direct sequencing of the mitochondrial cytochrome b gene showed that the specimen belonged to haplotype CB_bezz02, which was previously reported in Malaysia and the Gulf region. This paper also reviews reported cases of screwworm myiasis from humans and animals in China. Geographical records indicate that the distribution of C. bezziana is expanding, suggesting that an integrated pest management control should be taken into consideration in China.
  7. Wong KT, Clarke G, Pathmanathan R, Hamilton PW
    Parasitol Res, 1994;80(2):138-40.
    PMID: 8202453
    Established criteria for morphological typing of sarcocysts was applied to a large series of cases of human skeletal muscle sarcocystosis in Malaysia to determine the type of sarcocyst present. We also wanted to test the general usefulness of this classification and to determine if there are any new cyst types. Three-dimensional (3-D) reconstruction was done to see if the sarcocyst has a distinct 3-D morphology. A total of 66 sarcocysts from 21 cases of human muscle sarcocystosis obtained from a previous prevalence study were examined. Tissue sections (5 microns thick) were stained with haematoxylin and eosin and studied under the light microscope. For 3-D reconstruction, an image analyser was used to align and reconstruct the sarcocyst after microscopic images had been captured with a charge-coupled device (CCD) camera. All the cysts best fit into the type 4 category. This classification is generally useful, although cyst wall characteristics and zoite size appear to be the most reliable criteria for classification. The cyst width averaged 77 microns (range, 30-137.5 microns). Cyst walls were smooth, had no cytophaneres and were less than 1 micron thick. No secondary cyst wall or surrounding inflammation was evident. Numerous cyst merozoites with diameters averaging 1 micron filled the cyst lumen. Although septa were not apparent, in many cysts, zoites were arranged in a unique, curvilinear fashion that suggested their presence. 3-D reconstruction showed the sarcocyst to be a long, tortuous "cylinder" with no branching or other distinguishing feature.
  8. Mazhar R, Shazili NA, Harrison FS
    Parasitol Res, 2014 Oct;113(10):3737-43.
    PMID: 25115732 DOI: 10.1007/s00436-014-4039-x
    In February 2013, forty-seven Notched threadfin bream, the Nemipterus peronii, were sampled from the eastern coastal waters of the South China Sea. The concentration of various elements, namely cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), strontium (Sr), manganese (Mn), selenium (Se), Lead (Pb), nickel (Ni), aluminum (Al), arsenic (As), iron (Fe), and Zinc (Zn) were analyzed in the liver, muscle, and kidney organs of the host, as well as in their parasites Hysterothalycium reliquens (nematode) and the Paraphilometroides nemipteri (nematode), using inductively coupled plasma mass spectrometry (ICP-MS). The former group of parasites showed highest accumulation capacity for Cr, Cu, Fe, Mn, Se, Ni, and Zn while the latter group had high accumulation potential of As, Hg, Cd, Al, Pb, and Sr. The divergence in heavy-metal accumulation profiles of both nematodes is linked with the specificity of microhabitats, cuticle morphology, and interspecific competition. The outcome of this study indicates that both parasite models can be used for biomonitoring of metal pollution in marine ecosystems.
  9. Alimin AWF, Yusoff NAH, Kadriah IAK, Anshary H, Abdullah F, Jabir N, et al.
    Parasitol Res, 2023 Dec 14;123(1):49.
    PMID: 38095702 DOI: 10.1007/s00436-023-08067-z
    Parasitic dinoflagellates of the genus Hematodinium are known to infect various marine crustaceans worldwide, especially crabs and several species of shrimp and lobster. Some of these species are new host species and components of commercial fishery products. These parasitic species are predominantly found in the hemolymph of the host and cause pathological changes and functional damage to organs and tissues, leading to death. In recent years, these parasites have infected important commercially valuable species, particularly in European waters, US waters, Australian waters, and recently in Shandong Peninsula in China. These Hematodinium pathogens were also reported to affect wild shrimp in Chinese waters and in the English North Sea. These rapid spreads affect crustacean aquaculture industries, where they are indeed a significant threat to the sustainability of the aquaculture of important crustaceans. The fishery products industries are also under pressure from the invasion of this pathogen, as the crab meat produced has a bitter taste, which may reduce its marketability. In response to these threats, this review was aimed at providing a broader understanding of the development of parasite distribution and ecological aspects of Hematodinium. In addition, the interaction of these pathogens with their hosts, the environmental drivers of Hematodinium disease, and future research perspectives were discussed.
  10. Trujillo-González A, Becker JA, Vaughan DB, Hutson KS
    Parasitol Res, 2018 Apr;117(4):995-1011.
    PMID: 29427156 DOI: 10.1007/s00436-018-5776-z
    The ornamental fish trade provides a pathway for the global translocation of aquatic parasites. We examined a total of 1020 fish imported from Singapore, Malaysia, Thailand, or Sri Lanka to Australia (including freshwater and marine fish species) for monogenean ectoparasites. Fish were received following veterinary certification that they showed no clinical signs of pests and diseases from the exporting country and visual inspection at Australian border control. Australian import conditions require mandatory treatment for goldfish with parasiticides (e.g. trichlorfon, formaldehyde, sodium chloride) for the presence of gill flukes (Dactylogyrus vastator Nybelin, 1924 and Dactylogyrus extensus Mueller and Van Cleave, 1932) prior to export. Over 950 individual parasites were detected in five imported fish species, representing 14 monogenean species. Seven Dactylogyrus spp. including D. vastator and three Gyrodactylus spp. infected goldfish, Carassius auratus Linnaeus, 1758, from Malaysia, Singapore, and Thailand. Dactylogyrus ostraviensis Řehulka, 1988, infected rosy barb, Pethia conchonius Hamilton, 1822, from Singapore, Sri Lanka, and Thailand while two Trianchoratus spp. infected three spot gourami, Trichopodus trichopterus Pallas, 1970 and pearl gourami Trichopodus leerii Bleeker, 1852, from Sri Lanka. Urocleidoides reticulatus Mizelle & Price, 1964, infected guppy, Poecilia reticulata Peters, 1859, from Sri Lanka. The discovery of D. vastator in goldfish, as well as 13 other monogenean species, shows that pre-export health requirements, which include chemical treatment of goldfish, and inspection of all ornamental fish species did not prevent infection by monogeneans. Inspection prior to exportation and at border control must account for the highly cryptic nature of monogenean parasites and consider alternatives to current pre-export conditions and visual inspection at border control.
  11. Kamis AB, Ibrahim JB
    Parasitol Res, 1989;75(8):611-3.
    PMID: 2671986
    Gonadectomized male mice aged 5 weeks were given 5 mg testosterone propionate daily for 14 days. The treatment significantly decreased the number of blood leukocytes. The number of all individual types of leukocytes except basophils in vehicle-treated gonadectomized mice was increased. Testosterone-treated mice consistently had a lower number of leukocytes after being infected with Plasmodium berghei than did vehicle-treated mice. The results suggest that testosterone suppresses the production of leukocytes and that testosterone-treated mice become more susceptible to parasite infection.
  12. Suresh K, Mak JW, Chuong LS, Ragunathan T, Init I
    Parasitol Res, 1997;83(6):523-5.
    PMID: 9211501
  13. Cheah SX, Tay JW, Chan LK, Jaal Z
    Parasitol Res, 2013 Sep;112(9):3275-82.
    PMID: 23835922 DOI: 10.1007/s00436-013-3506-0
    This study focuses on the larvicidal, oviposition, and ovicidal effects of a crude extract of Artemisia annua against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus. Dried cells of Artemisia annua from cell suspension cultures were extracted using hexane. The extract showed moderate larvicidal effects against mosquitoes. At 24-h post treatment, the LC50 values for Anopheles sinensis, Aedes aegypti, and Culex quinquefasciatus were recorded as 244.55, 276.14, and 374.99 ppm, respectively. The percentage mortality of larvae was directly proportional to the tested concentration. Anopheles sinensis was found to be the most susceptible species, whereas Culex quinquefasciatus was the most tolerant to the Artemisia annua extract. The results indicated that the Artemisia annua extract showed concentration-dependent oviposition deterrent activity and had a strong deterrent effect. At 500 ppm, the percentage effective repellency was more than 85% compared with the control group for all the species, with oviposition activity index values of -0.94, -0.95, and -0.78 for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. In the ovicidal assay, the percentage hatchability of eggs after treatment with 500 ppm of Artemisia annua extract was significantly lower than the control, with values of 48.84 ± 4.08, 38.42 ± 3.67, and 79.35 ± 2.09% for Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus, respectively. Artemisia annua was found to be more effective against Aedes aegypti and Anopheles sinensis compared with Culex quinquefasciatus. This study indicated that crude extract of A. annua could be a potential alternative for use in vector management programs.
  14. Li MW, Zhu XQ, Gasser RB, Lin RQ, Sani RA, Lun ZR, et al.
    Parasitol Res, 2006 Oct;99(5):554-7.
    PMID: 16636846
    Non-isotopic polymerase chain reaction (PCR)-based single-strand conformation polymorphism and sequence analyses of the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA) were utilized to genetically characterise ascaridoids from dogs and cats from China by comparison with those from other countries. The study showed that Toxocara canis, Toxocara cati, and Toxascaris leonina from China were genetically the same as those from other geographical origins. Specimens from cats from Guangzhou, China, which were morphologically consistent with Toxocara malaysiensis, were the same genetically as those from Malaysia, with the exception of a polymorphism in the ITS-2 but no unequivocal sequence difference. This is the first report of T. malaysiensis in cats outside of Malaysia (from where it was originally described), supporting the proposal that this species has a broader geographical distribution. The molecular approach employed provides a powerful tool for elucidating the biology, epidemiology, and zoonotic significance of T. malaysiensis.
  15. Azuma H, Okamoto M, Oku Y, Kamiya M
    Parasitol Res, 1995;81(2):103-8.
    PMID: 7731915
    The intraspecific variation of four laboratory-reared isolates of Taenia taeniaformis the SRN and KRN isolates from Norway rats, Rattus norvegicus, captured in Japan and Malaysia, respectively; the BMM isolated from a house mouse, Mus musculus, captured in Belgium; and the ACR isolate from a gray red-backed vole, Clethrionomys rufocanus bedfordiae, captured in Japan was examined by various criteria. Eggs of each of the four isolates were orally inoculated into several species of intermediate host. They were most infective to the rodent species from which the original metacestode of each isolate had been isolated in the field, and only the ACR isolate was infective to the gray red-backed vole. Although little difference was found between the SRN, KRN, and BMM isolates by the other criteria, including the morphology of rostellar hooks, the protein composition of the metacestode, and restriction endonuclease analysis of DNA, the ACR isolate was clearly different from the others. It was considered that the ACR isolate was independent as a strain distinct from the other three isolates.
  16. Kaur CP, Yong CC, Rajamanikam A, Samudi C, Kumar S, Bhassu S, et al.
    Parasitol Res, 2023 Jul;122(7):1463-1474.
    PMID: 37162590 DOI: 10.1007/s00436-023-07842-2
    Blastocystis sp. is an enteric protistan parasite that affects individuals worldwide with gastrointestinal symptoms such as abdominal discomfort, diarrhea, and flatulence. However, its pathogenicity is controversial due to its presence among asymptomatic individuals. Blastocystis sp. subtype 3 (ST3) is the most prevalent subtype among humans that have been associated with irritable bowel syndrome (IBS), Crohn's disease, ulcerative colitis, and colorectal cancer. Axenization of the parasite has been shown to impede its growth thus revealing the importance of accompanying bacteria in ensuring Blastocystis sp. survival. This study aims to identify the influence of accompanying bacteria on the growth of Blastocystis sp. ST3. Blastocystis sp. cultures were treated with Meropenem, Vancomycin, and Amoxicillin-Clavulanic acid (Augmentin). Bacteria-containing supernatant of antibiotic-treated and control cultures were isolated and identified through 16 s rRNA sequencing. Morphological changes of antibiotic-treated Blastocystis sp. ST3 were also observed. The cultures treated with meropenem and augmentin exhibited opposing effects with reduced growth of isolates from symptomatic patients and a significant increase in asymptomatic isolates. Whereas, vancomycin-treated cultures had no difference in the growth of Blastocystis sp. ST3 isolates from symptomatic and asymptomatic patients. Isolates from symptomatic and asymtomatic patients had 6 and 2 distinct bacterial species identified with Proteus mirabilis as the common bacteria among both types of isolates. Morphologically, Blastocystis sp. ST3 cultures exposed to meropenem and augmentin demonstrated an increase in pre-cystic forms. These findings demonstrate the effects of accompanying bacteria on the growth of Blastocystis sp. ST3 that could translate into clinical manifestations observed among Blastocystis sp.-infected patients.
  17. Suresh K, Init I, Reuel PA, Rajah S, Lokman H, Khairul Anuar A
    Parasitol Res, 1998;84(4):321-2.
    PMID: 9569099
  18. Gabriel S, Rasheed AK, Siddiqui R, Appaturi JN, Fen LB, Khan NA
    Parasitol Res, 2018 Jun;117(6):1801-1811.
    PMID: 29675682 DOI: 10.1007/s00436-018-5864-0
    Brain-eating amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) have gained increasing attention owing to their capacity to produce severe human and animal infections involving the brain. Early detection is a pre-requisite in successful prognosis. Here, we developed a nanoPCR assay for the rapid detection of brain-eating amoebae using various nanoparticles. Graphene oxide, copper and alumina nanoparticles used in this study were characterized using Raman spectroscopy measurements through excitation with a He-Ne laser, while powder X-ray diffraction patterns were taken on a PANanalytical, X'Pert HighScore diffractometer and the morphology of the materials was confirmed using high-resolution transmission electron microscopy (HRTEM). Using nanoparticle-assisted PCR, the results revealed that graphene oxide, copper oxide and alumina nanoparticles significantly enhanced PCR efficiency in the detection of pathogenic free-living amoebae using genus-specific probes. The optimal concentration of graphene oxide, copper oxide and alumina nanoparticles for Acanthamoeba spp. was determined at 0.4, 0.04 and 0.4 μg per mL respectively. For B. mandrillaris, the optimal concentration was determined at 0.4 μg per mL for graphene oxide, copper oxide and alumina nanoparticles, and for Naegleria, the optimal concentration was 0.04, 4.0 and 0.04 μg per mL respectively. Moreover, combinations of these nanoparticles proved to further enhance PCR efficiency. The addition of metal oxide nanoparticles leads to excellent surface effect, while thermal conductivity property of the nanoparticles enhances PCR productivity. These findings suggest that nanoPCR assay has tremendous potential in the clinical diagnosis of parasitic infections as well as for studying epidemiology and pathology and environmental monitoring of other microbes.
  19. Anwar A, Abdalla SAO, Aslam Z, Shah MR, Siddiqui R, Khan NA
    Parasitol Res, 2019 Jul;118(7):2295-2304.
    PMID: 31093751 DOI: 10.1007/s00436-019-06329-3
    Acanthamoeba castellanii belonging to the T4 genotype is an opportunistic pathogen which is associated with blinding eye keratitis and rare but fatal central nervous system infection. A. castellanii pose serious challenges in antimicrobial chemotherapy due to its ability to convert into resistant, hardy shell-protected cyst form that leads to infection recurrence. The fatty acid composition of A. castellanii trophozoites is known to be most abundant in oleic acid which chemically is an unsaturated cis-9-Octadecanoic acid and naturally found in animal and vegetable fats and oils. This study was designed to evaluate antiacanthamoebic effects of oleic acid against trophozoites, cysts as well as parasite-mediated host cell cytotoxicity. Moreover, oleic acid-conjugated silver nanoparticles (AgNPs) were also synthesized and tested against A. castellanii. Oleic acid-AgNPs were synthesized by chemical reduction method and characterized by ultraviolet-visible spectrophotometry, atomic force microscopy, dynamic light scattering analysis, and Fourier transform infrared spectroscopy. Viability, growth inhibition, encystation, and excystation assays were performed with 10 and 5 μM concentration of oleic acid alone and oleic acid-conjugated AgNPs. Bioassays revealed that oleic acid alone and oleic acid-conjugated AgNPs exhibited significant antiamoebic properties, whereas nanoparticle conjugation further enhanced the efficacy of oleic acid. Phenotype differentiation assays also showed significant inhibition of encystation and excystation at 5 μM. Furthermore, oleic acid and oleic acid-conjugated AgNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release. These findings for the first time suggest that oleic acid-conjugated AgNPs exhibit antiacanthamoebic activity that hold potential for therapeutic applications against A. castellanii.
  20. Siddiqui R, Rajendran K, Abdella B, Ayub Q, Lim SY, Khan NA
    Parasitol Res, 2020 Jul;119(7):2351-2358.
    PMID: 32451717 DOI: 10.1007/s00436-020-06711-6
    Naegleria fowleri causes a deadly infection known as primary amoebic meningoencephalitis (PAM). To our knowledge, there are very few transcriptome studies conducted on these brain-eating amoebae, despite rise in the number of cases. Although the Naegleria genome has been sequenced, currently, it is not well annotated. Transcriptome level studies are needed to help understand the pathology and biology of this fatal parasitic infection. Recently, we showed that nanoparticles loaded with the flavonoid Hesperidin (HDN) are potential novel antimicrobial agents. N. fowleri trophozoites were treated with and without HDN-conjugated with silver nanoparticles (AgNPs) and silver only, and then, 50% minimum inhibitory concentration (MIC) was determined. The results revealed that the MIC of HDN-conjugated AgNPs was 12.5 microg/mL when treated for 3 h. As no reference genome exists for N. fowleri, de novo RNA transcriptome analysis using RNA-Seq and differential gene expression analysis was performed using the Trinity software. Analysis revealed that more than 2000 genes were differentially expressed in response to N. fowleri treatment with HDN-conjugated AgNPs. Some of the genes were linked to oxidative stress response, DNA repair, cell division, cell signalling and protein synthesis. The downregulated genes were linked with processes such as protein modification, synthesis of aromatic amino acids, when compared with untreated N. fowleri. Further transcriptome studies will lead to understanding of genetic mechanisms of the biology and pathogenesis and/or the identification of much needed drug candidates.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links