Displaying publications 21 - 40 of 147 in total

Abstract:
Sort:
  1. Lai NM, Lai NA, O'Riordan E, Chaiyakunapruk N, Taylor JE, Tan K
    Cochrane Database Syst Rev, 2016 Jul 13;7:CD010140.
    PMID: 27410189 DOI: 10.1002/14651858.CD010140.pub2
    BACKGROUND: The central venous catheter (CVC) is a device used for many functions, including monitoring haemodynamic indicators and administering intravenous medications, fluids, blood products and parenteral nutrition. However, as a foreign object, it is susceptible to colonisation by micro-organisms, which may lead to catheter-related blood stream infection (BSI) and in turn, increased mortality, morbidities and health care costs.

    OBJECTIVES: To assess the effects of skin antisepsis as part of CVC care for reducing catheter-related BSIs, catheter colonisation, and patient mortality and morbidities.

    SEARCH METHODS: In May 2016 we searched: The Cochrane Wounds Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Ovid MEDLINE (including In-Process & Other Non-Indexed Citations and Epub Ahead of Print); Ovid EMBASE and EBSCO CINAHL Plus. We also searched clinical trial registries for ongoing and unpublished studies. There were no restrictions with respect to language, date of publication or study setting.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) that assessed any type of skin antiseptic agent used either alone or in combination, compared with one or more other skin antiseptic agent(s), placebo or no skin antisepsis in patients with a CVC in place.

    DATA COLLECTION AND ANALYSIS: Two authors independently assessed the studies for their eligibility, extracted data and assessed risk of bias. We expressed our results in terms of risk ratio (RR), absolute risk reduction (ARR) and number need to treat for an additional beneficial outcome (NNTB) for dichotomous data, and mean difference (MD) for continuous data, with 95% confidence intervals (CIs).

    MAIN RESULTS: Thirteen studies were eligible for inclusion, but only 12 studies contributed data, with a total of 3446 CVCs assessed. The total number of participants enrolled was unclear as some studies did not provide such information. The participants were mainly adults admitted to intensive care units, haematology oncology units or general wards. Most studies assessed skin antisepsis prior to insertion and regularly thereafter during the in-dwelling period of the CVC, ranging from every 24 h to every 72 h. The methodological quality of the included studies was mixed due to wide variation in their risk of bias. Most trials did not adequately blind the participants or personnel, and four of the 12 studies had a high risk of bias for incomplete outcome data.Three studies compared different antisepsis regimens with no antisepsis. There was no clear evidence of a difference in all outcomes examined, including catheter-related BSI, septicaemia, catheter colonisation and number of patients who required systemic antibiotics for any of the three comparisons involving three different antisepsis regimens (aqueous povidone-iodine, aqueous chlorhexidine and alcohol compared with no skin antisepsis). However, there were great uncertainties in all estimates due to underpowered analyses and the overall very low quality of evidence presented.There were multiple head-to-head comparisons between different skin antiseptic agents, with different combinations of active substance and base solutions. The most frequent comparison was chlorhexidine solution versus povidone-iodine solution (any base). There was very low quality evidence (downgraded for risk of bias and imprecision) that chlorhexidine may reduce catheter-related BSI compared with povidone-iodine (RR of 0.64, 95% CI 0.41 to 0.99; ARR 2.30%, 95% CI 0.06 to 3.70%). This evidence came from four studies involving 1436 catheters. None of the individual subgroup comparisons of aqueous chlorhexidine versus aqueous povidone-iodine, alcoholic chlorhexidine versus aqueous povidone-iodine and alcoholic chlorhexidine versus alcoholic povidone-iodine showed clear differences for catheter-related BSI or mortality (and were generally underpowered). Mortality was only reported in a single study.There was very low quality evidence that skin antisepsis with chlorhexidine may also reduce catheter colonisation relative to povidone-iodine (RR of 0.68, 95% CI 0.56 to 0.84; ARR 8%, 95% CI 3% to 12%; ; five studies, 1533 catheters, downgraded for risk of bias, indirectness and inconsistency).Evaluations of other skin antiseptic agents were generally in single, small studies, many of which did not report the primary outcome of catheter-related BSI. Trials also poorly reported other outcomes, such as skin infections and adverse events.

    AUTHORS' CONCLUSIONS: It is not clear whether cleaning the skin around CVC insertion sites with antiseptic reduces catheter related blood stream infection compared with no skin cleansing. Skin cleansing with chlorhexidine solution may reduce rates of CRBSI and catheter colonisation compared with cleaning with povidone iodine. These results are based on very low quality evidence, which means the true effects may be very different. Moreover these results may be influenced by the nature of the antiseptic solution (i.e. aqueous or alcohol-based). Further RCTs are needed to assess the effectiveness and safety of different skin antisepsis regimens in CVC care; these should measure and report critical clinical outcomes such as sepsis, catheter-related BSI and mortality.

  2. Lai NM, Foong SC, Foong WC, Tan K
    Cochrane Database Syst Rev, 2016 Apr 14;4(4):CD008313.
    PMID: 27075527 DOI: 10.1002/14651858.CD008313.pub3
    BACKGROUND: The increased birth rate of twins during recent decades and the improved prognosis of preterm infants have resulted in the need to explore measures that could optimize their growth and neurodevelopmental outcomes. It has been postulated that co-bedding simulates twins' intrauterine experiences in which co-regulatory behaviors between them are observed. These behaviors are proposed to benefit twins by reducing their stress, which may promote growth and development. However, in practice, uncertainty surrounds the benefit-risk profile of co-bedding.

    OBJECTIVES: We aimed to assess the effectiveness of co-bedding compared with separate (individual) care for stable preterm twins in the neonatal nursery in promoting growth and neurodevelopment and reducing short- and long-term morbidities, and to determine whether co-bedding is associated with significant adverse effects.As secondary objectives, we sought to evaluate effects of co-bedding via the following subgroup analyses: twin pairs with different weight ranges (very low birth weight [VLBW] < 1500 grams vs non-VLBW), twins with versus without significant growth discordance at birth, preterm versus borderline preterm twins, twins co-bedded in incubator versus cot at study entry, and twins randomized by twin pair versus neonatal unit.

    SEARCH METHODS: We used the standard search strategy of the Cochrane Neonatal Review Group (CNRG). We used keywords and medical subject headings (MeSH) to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 2), MEDLINE (via PubMed), EMBASE (hosted by EBSCOHOST), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), and references cited in our short-listed articles, up to February 29, 2016.

    SELECTION CRITERIA: We included randomized controlled trials with randomization by twin pair and/or by neonatal unit. We excluded cross-over studies.

    DATA COLLECTION AND ANALYSIS: We extracted data using standard methods of the CNRG. Two review authors independently assessed the relevance and risk of bias of retrieved records. We contacted the authors of included studies to request important information missing from their published papers. We expressed our results using risk ratios (RRs) and mean differences (MDs) when appropriate, along with 95% confidence intervals (95% CIs). We adjusted the unit of analysis from individual infants to twin pairs by averaging measurements for each twin pair (continuous outcomes) or by counting outcomes as positive if developed by either twin (dichotomous outcomes).

    MAIN RESULTS: Six studies met the inclusion criteria; however, only five studies provided data for analysis. Four of the six included studies were small and had significant limitations in design. As each study reported outcomes differently, data for most outcomes were effectively contributed by a single study. Study authors reported no differences between co-bedded twins and twins receiving separate care in terms of rate of weight gain (MD 0.20 grams/kg/d, 95% CI -1.60 to 2.00; one study; 18 pairs of twins; evidence of low quality); apnea, bradycardia, and desaturation (A/B/D) episodes (RR 0.85, 95% CI 0.18 to 4.05; one study; 62 pairs of twins; evidence of low quality); episodes in co-regulated states (MD 0.96, 95% CI -3.44 to 5.36; one study; three pairs of twins; evidence of very low quality); suspected or proven infection (RR 0.84, 95% CI 0.30 to 2.31; three studies; 65 pairs of twins; evidence of very low quality); length of hospital stay (MD -4.90 days, 95% CI -35.23 to 25.43; one study; three pairs of twins; evidence of very low quality); and parental satisfaction measured on a scale of 0 to 55 (MD -0.38, 95% CI -4.49 to 3.73; one study; nine pairs of twins; evidence of moderate quality). Although co-bedded twins appeared to have lower pain scores 30 seconds after heel lance on a scale of 0 to 21 (MD -0.96, 95% CI -1.68 to -0.23; two studies; 117 pairs of twins; I(2) = 75%; evidence of low quality), they had higher pain scores 90 seconds after the procedure (MD 1.00, 95% CI 0.14 to 1.86; one study; 62 pairs of twins). Substantial heterogeneity in the outcome of infant pain response after heel prick at 30 seconds post procedure and conflicting results at 30 and 90 seconds post procedure precluded clear conclusions.

    AUTHORS' CONCLUSIONS: Evidence on the benefits and harms of co-bedding for stable preterm twins was insufficient to permit recommendations for practice. Future studies must be adequately powered to detect clinically important differences in growth and neurodevelopment. Researchers should assess harms such as infection, along with medication errors and caregiver satisfaction.

  3. Stafford IG, Lai NM, Tan K
    Cochrane Database Syst Rev, 2023 Nov 30;11(11):CD013294.
    PMID: 38032241 DOI: 10.1002/14651858.CD013294.pub2
    BACKGROUND: Many preterm infants require respiratory support to maintain an optimal level of oxygenation, as oxygen levels both below and above the optimal range are associated with adverse outcomes. Optimal titration of oxygen therapy for these infants presents a major challenge, especially in neonatal intensive care units (NICUs) with suboptimal staffing. Devices that offer automated oxygen delivery during respiratory support of neonates have been developed since the 1970s, and individual trials have evaluated their effectiveness.

    OBJECTIVES: To assess the benefits and harms of automated oxygen delivery systems, embedded within a ventilator or oxygen delivery device, for preterm infants with respiratory dysfunction who require respiratory support or supplemental oxygen therapy.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, CINAHL, and clinical trials databases without language or publication date restrictions on 23 January 2023. We also checked the reference lists of retrieved articles for other potentially eligible trials.

    SELECTION CRITERIA: We included randomised controlled trials and randomised cross-over trials that compared automated oxygen delivery versus manual oxygen delivery, or that compared different automated oxygen delivery systems head-to-head, in preterm infants (born before 37 weeks' gestation).

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our main outcomes were time (%) in desired oxygen saturation (SpO2) range, all-cause in-hospital mortality by 36 weeks' postmenstrual age, severe retinopathy of prematurity (ROP), and neurodevelopmental outcomes at approximately two years' corrected age. We expressed our results using mean difference (MD), standardised mean difference (SMD), and risk ratio (RR) with 95% confidence intervals (CIs). We used GRADE to assess the certainty of evidence.

    MAIN RESULTS: We included 18 studies (27 reports, 457 infants), of which 13 (339 infants) contributed data to meta-analyses. We identified 13 ongoing studies. We evaluated three comparisons: automated oxygen delivery versus routine manual oxygen delivery (16 studies), automated oxygen delivery versus enhanced manual oxygen delivery with increased staffing (three studies), and one automated system versus another (two studies). Most studies were at low risk of bias for blinding of personnel and outcome assessment, incomplete outcome data, and selective outcome reporting; and half of studies were at low risk of bias for random sequence generation and allocation concealment. However, most were at high risk of bias in an important domain specific to cross-over trials, as only two of 16 cross-over trials provided separate outcome data for each period of the intervention (before and after cross-over). Automated oxygen delivery versus routine manual oxygen delivery Automated delivery compared with routine manual oxygen delivery probably increases time (%) in the desired SpO2 range (MD 13.54%, 95% CI 11.69 to 15.39; I2 = 80%; 11 studies, 284 infants; moderate-certainty evidence). No studies assessed in-hospital mortality. Automated oxygen delivery compared to routine manual oxygen delivery may have little or no effect on risk of severe ROP (RR 0.24, 95% CI 0.03 to 1.94; 1 study, 39 infants; low-certainty evidence). No studies assessed neurodevelopmental outcomes. Automated oxygen delivery versus enhanced manual oxygen delivery There may be no clear difference in time (%) in the desired SpO2 range between infants who receive automated oxygen delivery and infants who receive manual oxygen delivery (MD 7.28%, 95% CI -1.63 to 16.19; I2 = 0%; 2 studies, 19 infants; low-certainty evidence). No studies assessed in-hospital mortality, severe ROP, or neurodevelopmental outcomes. Revised closed-loop automatic control algorithm (CLACfast) versus original closed-loop automatic control algorithm (CLACslow) CLACfast allowed up to 120 automated adjustments per hour, whereas CLACslow allowed up to 20 automated adjustments per hour. CLACfast may result in little or no difference in time (%) in the desired SpO2 range compared to CLACslow (MD 3.00%, 95% CI -3.99 to 9.99; 1 study, 19 infants; low-certainty evidence). No studies assessed in-hospital mortality, severe ROP, or neurodevelopmental outcomes. OxyGenie compared to CLiO2 Data from a single small study were presented as medians and interquartile ranges and were not suitable for meta-analysis.

    AUTHORS' CONCLUSIONS: Automated oxygen delivery compared to routine manual oxygen delivery probably increases time in desired SpO2 ranges in preterm infants on respiratory support. However, it is unclear whether this translates into important clinical benefits. The evidence on clinical outcomes such as severe retinopathy of prematurity are of low certainty, with little or no differences between groups. There is insufficient evidence to reach any firm conclusions on the effectiveness of automated oxygen delivery compared to enhanced manual oxygen delivery or CLACfast compared to CLACslow. Future studies should include important short- and long-term clinical outcomes such as mortality, severe ROP, bronchopulmonary dysplasia/chronic lung disease, intraventricular haemorrhage, periventricular leukomalacia, patent ductus arteriosus, necrotising enterocolitis, and long-term neurodevelopmental outcomes. The ideal study design for this evaluation is a parallel-group randomised controlled trial. Studies should clearly describe staffing levels, especially in the manual arm, to enable an assessment of reproducibility according to resources in various settings. The data of the 13 ongoing studies, when made available, may change our conclusions, including the implications for practice and research.

  4. Dixit R, Nettem S, Madan SS, Soe HH, Abas AB, Vance LD, et al.
    Cochrane Database Syst Rev, 2016 Feb 16;2:CD011130.
    PMID: 26880182 DOI: 10.1002/14651858.CD011130.pub2
    BACKGROUND: Sickle cell disease is a group of disorders that affects haemoglobin, which causes distorted sickle- or crescent-shaped red blood cells. It is characterized by anaemia, increased susceptibility to infections and episodes of pain. The disease is acquired by inheriting abnormal genes from both parents, the combination giving rise to different forms of the disease. Due to increased erythropoiesis in people with sickle cell disease, it is hypothesized that they are at an increased risk for folate deficiency. For this reason, children and adults with sickle cell disease, particularly those with sickle cell anaemia, commonly take 1 mg of folic acid orally every day on the premise that this will replace depleted folate stores and reduce the symptoms of anaemia. It is thus important to evaluate the role of folate supplementation in treating sickle cell disease.

    OBJECTIVES: To analyse the efficacy and possible adverse effects of folate supplementation (folate occurring naturally in foods, provided as fortified foods or additional supplements such as tablets) in people with sickle cell disease.

    SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also conducted additional searches in both electronic databases and clinical trial registries.Date of last search: 07 December 2015.

    SELECTION CRITERIA: Randomised, placebo-controlled trials of folate supplementation for sickle cell disease.

    DATA COLLECTION AND ANALYSIS: Four review authors assessed the eligibility and risk of bias of the included trials and extracted and analysed the data included in the review. We used the standard Cochrane-defined methodological procedures.

    MAIN RESULTS: One trial, undertaken in 1983, was eligible for inclusion in the review. This was a double-blind placebo-controlled quasi-randomised triaI of supplementation of folic acid in people with sickle cell disease. A total of 117 children with homozygous sickle cell (SS) disease aged six months to four years of age participated over a one-year period (analysis was restricted to 115 children).Serum folate measures, obtained after trial entry at six and 12 months, were available in 80 of 115 (70%) participants. There were significant differences between the folic acid and placebo groups with regards to serum folate values above 18 µg/l and values below 5 µg/l. In the folic acid group, values above 18 µg/l were observed in 33 of 41 (81 %) compared to six of 39 (15%) participants in the placebo (calcium lactate) group. Additionally, there were no participants in the folic acid group with serum folate levels below 5 µg/l, whereas in the placebo group, 15 of 39 (39%) participants had levels below this threshold. Haematological indices were measured in 100 of 115 (87%) participants at baseline and at one year. After adjusting for sex and age group, the investigators reported no significant differences between the trial groups with regards to total haemoglobin concentrations, either at baseline or at one year. It is important to note that none of the raw data for the outcomes listed above were available for analysis.The proportions of participants who experienced certain clinical events were analysed in all 115 participants, for which raw data were available. There were no statistically significant differences noted; however, the trial was not powered to investigate differences between the folic acid and placebo groups with regards to: minor infections, risk ratio 0.99 (95% confidence interval 0.85 to 1.15); major infections, risk ratio 0.89 (95% confidence interval 0.47 to 1.66); dactylitis, risk ratio 0.67 (95% confidence interval 0.35 to 1.27); acute splenic sequestration, risk ratio 1.07 (95% confidence interval 0.44 to 2.57); or episodes of pain, risk ratio 1.16 (95% confidence interval 0.70 to 1.92). However, the investigators reported a higher proportion of repeat dactylitis episodes in the placebo group, with two or more attacks occurring in 10 of 56 participants compared to two of 59 in the folic acid group (P < 0.05).Growth, determined by height-for-age and weight-for-age, as well as height and growth velocity, was measured in 103 of the 115 participants (90%), for which raw data were not available. The investigators reported no significant differences in growth between the two groups.The trial had a high risk of bias with regards to random sequence generation and incomplete outcome data. There was an unclear risk of bias in relation to allocation concealment, outcome assessment, and selective reporting. Finally, There was a low risk of bias with regards to blinding of participants and personnel. Overall the quality of the evidence in the review was low.There were no trials identified for other eligible comparisons, namely: folate supplementation (fortified foods and physical supplementation with tablets) versus placebo; folate supplementation (naturally occurring in diet) versus placebo; folate supplementation (fortified foods and physical supplementation with tablets) versus folate supplementation (naturally occurring in diet).

    AUTHORS' CONCLUSIONS: One doubIe-blind, placebo-controlled triaI on folic acid supplementation in children with sickle cell disease was included in the review. Overall, the trial presented mixed evidence on the review's outcomes. No trials in adults were identified. With the limited evidence provided, we conclude that, while it is possible that folic acid supplementation may increase serum folate levels, the effect of supplementation on anaemia and any symptoms of anaemia remains unclear.Further trials may add evidence regarding the efficacy of folate supplementation. Future trials should assess clinical outcomes such as folate concentration, haemoglobin concentration, adverse effects and benefits of the intervention, especially with regards to sickle cell disease-related morbidity. Trials should include people with sickle cell disease of all ages and both sexes, in any setting. To investigate the effects of folate supplementation, trials should recruit more participants and be of longer duration, with long-term follow up, than the trial currently included in this review.

  5. Dixit R, Nettem S, Madan SS, Soe HHK, Abas AB, Vance LD, et al.
    Cochrane Database Syst Rev, 2018 Mar 16;3(3):CD011130.
    PMID: 29546732 DOI: 10.1002/14651858.CD011130.pub3
    BACKGROUND: Sickle cell disease (SCD) is a group of disorders that affects haemoglobin, which causes distorted sickle- or crescent-shaped red blood cells. It is characterized by anaemia, increased susceptibility to infections and episodes of pain. The disease is acquired by inheriting abnormal genes from both parents, the combination giving rise to different forms of the disease. Due to increased erythropoiesis in people with SCD, it is hypothesized that they are at an increased risk for folate deficiency. For this reason, children and adults with SCD, particularly those with sickle cell anaemia, commonly take 1 mg of folic acid orally every day on the premise that this will replace depleted folate stores and reduce the symptoms of anaemia. It is thus important to evaluate the role of folate supplementation in treating SCD.

    OBJECTIVES: To analyse the efficacy and possible adverse effects of folate supplementation (folate occurring naturally in foods, provided as fortified foods or additional supplements such as tablets) in people with SCD.

    SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also conducted additional searches in both electronic databases and clinical trial registries.Date of last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register: 17 November 2017.

    SELECTION CRITERIA: Randomised, placebo-controlled trials of folate supplementation for SCD.

    DATA COLLECTION AND ANALYSIS: Four review authors assessed We used the standard Cochrane-defined methodological procedures.Four review authors independently assessed the eligibility and risk of bias of the included trials and extracted and analysed the data included in the review. The quality of the evidence was assessed using GRADE.

    MAIN RESULTS: One trial, undertaken in 1983, was eligible for inclusion in the review. This was a double-blind placebo-controlled quasi-randomised triaI of supplementation of folic acid in people with SCD. A total of 117 children with homozygous sickle cell (SS) disease aged six months to four years of age participated over a one-year period (analysis was restricted to 115 children).Serum folate measures, obtained after trial entry at six and 12 months, were available in 80 of 115 (70%) participants. There were significant differences between the folic acid and placebo groups with regards to serum folate values above 18 µg/L and values below 5 µg/L (low-quality evidence). In the folic acid group, values above 18 µg/L were observed in 33 of 41 (81%) compared to six of 39 (15%) participants in the placebo (calcium lactate) group. Additionally, there were no participants in the folic acid group with serum folate levels below 5 µg/L, whereas in the placebo group, 15 of 39 (39%) participants had levels below this threshold. Haematological indices were measured in 100 of 115 (87%) participants at baseline and at one year. After adjusting for sex and age group, the investigators reported no significant differences between the trial groups with regards to total haemoglobin concentrations, either at baseline or at one year (low-quality evidence). It is important to note that none of the raw data for the outcomes listed above were available for analysis.The proportions of participants who experienced certain clinical events were analysed in all 115 participants, for which raw data were available. There were no statistically significant differences noted; however, the trial was not powered to investigate differences between the folic acid and placebo groups with regards to: minor infections, risk ratio (RR) 0.99 (95% confidence interval (CI) 0.85 to 1.15) (low-quality evidence); major infections, RR 0.89 (95% CI 0.47 to 1.66) (low-quality evidence); dactylitis, RR 0.67 (95% CI 0.35 to 1.27) (low-quality evidence); acute splenic sequestration, RR 1.07 (95% CI 0.44 to 2.57) (low-quality evidence); or episodes of pain, RR 1.16 (95% CI 0.70 to 1.92) (low-quality evidence). However, the investigators reported a higher proportion of repeat dactylitis episodes in the placebo group, with two or more attacks occurring in 10 of 56 participants compared to two of 59 in the folic acid group (P < 0.05).Growth, determined by height-for-age and weight-for-age, as well as height and growth velocity, was measured in 103 of the 115 participants (90%), for which raw data were not available. The investigators reported no significant differences in growth between the two groups.The trial had a high risk of bias with regards to random sequence generation and incomplete outcome data. There was an unclear risk of bias in relation to allocation concealment, outcome assessment, and selective reporting. Finally, There was a low risk of bias with regards to blinding of participants and personnel. Overall the quality of the evidence in the review was low.There were no trials identified for other eligible comparisons, namely: folate supplementation (fortified foods and physical supplementation with tablets) versus placebo; folate supplementation (naturally occurring in diet) versus placebo; folate supplementation (fortified foods and physical supplementation with tablets) versus folate supplementation (naturally occurring in diet).

    AUTHORS' CONCLUSIONS: One doubIe-blind, placebo-controlled triaI on folic acid supplementation in children with SCD was included in the review. Overall, the trial presented mixed evidence on the review's outcomes. No trials in adults were identified. With the limited evidence provided, we conclude that, while it is possible that folic acid supplementation may increase serum folate levels, the effect of supplementation on anaemia and any symptoms of anaemia remains unclear.If further trials were conducted, these may add evidence regarding the efficacy of folate supplementation. Future trials should assess clinical outcomes such as folate concentration, haemoglobin concentration, adverse effects and benefits of the intervention, especially with regards to SCD-related morbidity. Such trials should include people with SCD of all ages and both sexes, in any setting. To investigate the effects of folate supplementation, trials should recruit more participants and be of longer duration, with long-term follow-up, than the trial currently included in this review. However, we do not envisage further trials of this intervention will be conducted, and hence the review will no longer be regularly updated.

  6. Lai NM, Chang SMW, Ng SS, Tan SL, Chaiyakunapruk N, Stanaway F
    Cochrane Database Syst Rev, 2019 11 25;2019(11).
    PMID: 31763689 DOI: 10.1002/14651858.CD013243.pub2
    BACKGROUND: Dementia is a chronic condition which progressively affects memory and other cognitive functions, social behaviour, and ability to carry out daily activities. To date, no treatment is clearly effective in preventing progression of the disease, and most treatments are symptomatic, often aiming to improve people's psychological symptoms or behaviours which are challenging for carers. A range of new therapeutic strategies has been evaluated in research, and the use of trained animals in therapy sessions, termed animal-assisted therapy (AAT), is receiving increasing attention.

    OBJECTIVES: To evaluate the efficacy and safety of animal-assisted therapy for people with dementia.

    SEARCH METHODS: We searched ALOIS: the Cochrane Dementia and Cognitive Improvement Group's Specialised Register on 5 September 2019. ALOIS contains records of clinical trials identified from monthly searches of major healthcare databases, trial registries, and grey literature sources. We also searched MEDLINE (OvidSP), Embase (OvidSP), PsycINFO (OvidSP), CINAHL (EBSCOhost), ISI Web of Science, ClinicalTrials.gov, and the WHO's trial registry portal.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs), cluster-randomised trials, and randomised cross-over trials that compared AAT versus no AAT, AAT using live animals versus alternatives such as robots or toys, or AAT versus any other active intervention.

    DATA COLLECTION AND ANALYSIS: We extracted data using the standard methods of Cochrane Dementia. Two review authors independently assessed the eligibility and risk of bias of the retrieved records. We expressed our results using mean difference (MD), standardised mean difference (SMD), and risk ratio (RR) with their 95% confidence intervals (CIs) where appropriate.

    MAIN RESULTS: We included nine RCTs from 10 reports. All nine studies were conducted in Europe and the US. Six studies were parallel-group, individually randomised RCTs; one was a randomised cross-over trial; and two were cluster-RCTs that were possibly related where randomisation took place at the level of the day care and nursing home. We identified two ongoing trials from trial registries. There were three comparisons: AAT versus no AAT (standard care or various non-animal-related activities), AAT using live animals versus robotic animals, and AAT using live animals versus the use of a soft animal toy. The studies evaluated 305 participants with dementia. One study used horses and the remainder used dogs as the therapy animal. The duration of the intervention ranged from six weeks to six months, and the therapy sessions lasted between 10 and 90 minutes each, with a frequency ranging from one session every two weeks to two sessions per week. There was a wide variety of instruments used to measure the outcomes. All studies were at high risk of performance bias and unclear risk of selection bias. Our certainty about the results for all major outcomes was very low to moderate. Comparing AAT versus no AAT, participants who received AAT may be slightly less depressed after the intervention (MD -2.87, 95% CI -5.24 to -0.50; 2 studies, 83 participants; low-certainty evidence), but they did not appear to have improved quality of life (MD 0.45, 95% CI -1.28 to 2.18; 3 studies, 164 participants; moderate-certainty evidence). There were no clear differences in all other major outcomes, including social functioning (MD -0.40, 95% CI -3.41 to 2.61; 1 study, 58 participants; low-certainty evidence), problematic behaviour (SMD -0.34, 95% CI -0.98 to 0.30; 3 studies, 142 participants; very-low-certainty evidence), agitation (SMD -0.39, 95% CI -0.89 to 0.10; 3 studies, 143 participants; very-low-certainty evidence), activities of daily living (MD 4.65, 95% CI -16.05 to 25.35; 1 study, 37 participants; low-certainty evidence), and self-care ability (MD 2.20, 95% CI -1.23 to 5.63; 1 study, 58 participants; low-certainty evidence). There were no data on adverse events. Comparing AAT using live animals versus robotic animals, one study (68 participants) found mixed effects on social function, with longer duration of physical contact but shorter duration of talking in participants who received AAT using live animals versus robotic animals (median: 93 seconds with live versus 28 seconds with robotic for physical contact; 164 seconds with live versus 206 seconds with robotic for talk directed at a person; 263 seconds with live versus 307 seconds with robotic for talk in total). Another study showed no clear differences between groups in behaviour measured using the Neuropsychiatric Inventory (MD -6.96, 95% CI -14.58 to 0.66; 78 participants; low-certainty evidence) or quality of life (MD -2.42, 95% CI -5.71 to 0.87; 78 participants; low-certainty evidence). There were no data on the other outcomes. Comparing AAT using live animals versus a soft toy cat, one study (64 participants) evaluated only social functioning, in the form of duration of contact and talking. The data were expressed as median and interquartile ranges. Duration of contact was slightly longer in participants in the AAT group and duration of talking slightly longer in those exposed to the toy cat. This was low-certainty evidence.

    AUTHORS' CONCLUSIONS: We found low-certainty evidence that AAT may slightly reduce depressive symptoms in people with dementia. We found no clear evidence that AAT affects other outcomes in this population, with our certainty in the evidence ranging from very-low to moderate depending on the outcome. We found no evidence on safety or effects on the animals. Therefore, clear conclusions cannot yet be drawn about the overall benefits and risks of AAT in people with dementia. Further well-conducted RCTs are needed to improve the certainty of the evidence. In view of the difficulty in achieving blinding of participants and personnel in such trials, future RCTs should work on blinding outcome assessors, document allocation methods clearly, and include major patient-important outcomes such as affect, emotional and social functioning, quality of life, adverse events, and outcomes for animals.

  7. Ziganshina LE, Vizel AA, Squire SB
    PMID: 16034951
    Fluoroquinolones are sometimes used to treat multiple-drug-resistant and drug-sensitive tuberculosis. The effects of fluoroquinolones in tuberculosis regimens need to be assessed.
  8. Prashanti E, Sumanth KN, Renjith George P, Karanth L, Soe HH
    PMID: 26423025 DOI: 10.1002/14651858.CD011116.pub2
    Gag reflex is an involuntary defence mechanism to protect the pharynx and throat from foreign objects. Gagging is a common problem encountered during dental treatment, which makes therapeutic procedures distressing and often difficult or even impossible to perform. Various interventions can be used to control the gag reflex; for example, anti-nausea medicines, sedatives, local and general anaesthetics, herbal remedies, behavioural therapies, acupressure, acupuncture, and prosthetic devices.
  9. Robert Peter J, Ho JJ, Valliapan J, Sivasangari S
    PMID: 26346107 DOI: 10.1002/14651858.CD008136.pub3
    BACKGROUND: Symphysis fundal height (SFH) measurement is commonly practiced primarily to detect fetal intrauterine growth restriction (IUGR). Undiagnosed IUGR may lead to fetal death as well as increase perinatal mortality and morbidity.

    OBJECTIVES: The objective of this review is to compare SFH measurement with serial ultrasound measurement of fetal parameters or clinical palpation to detect abnormal fetal growth (IUGR and large-for-gestational age), and improving perinatal outcome.

    SEARCH METHODS: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (14 July 2015) and reference lists of retrieved articles.

    SELECTION CRITERIA: Randomised controlled trials including quasi-randomised and cluster-randomised trials involving pregnant women with singleton fetuses at 20 weeks' gestation and above comparing tape measurement of SFH with serial ultrasound measurement of fetal parameters or clinical palpation using anatomical landmarks.

    DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy.

    MAIN RESULTS: One trial involving 1639 women was included. It compared SFH measurement with clinical abdominal palpation.There was no difference in the two reported primary outcomes of incidence of small-for-gestational age (risk ratio (RR) 1.32; 95% confidence interval (CI) 0.92 to 1.90, low quality evidence) or perinatal death.(RR 1.25, 95% CI 0.38 to 4.07; participants = 1639, low quality evidence). There were no data on the neonatal detection of large-for-gestational age (variously defined by authors). There was no difference in the reported secondary outcomes of neonatal hypoglycaemia, admission to neonatal nursery, admission to the neonatal nursery for IUGR (low quality evidence), induction of labour and caesarean section (very low quality evidence). The trial did not address the other outcomes specified in the 'Summary of findings' table (intrauterine death; neurodevelopmental outcome in childhood). GRADEpro software was used to assess the quality of evidence, downgrading of evidence was based on including a small single study with unclear risk of bias and a wide confidence interval crossing the line of no effect.

    AUTHORS' CONCLUSIONS: There is insufficient evidence to determine whether SFH measurement is effective in detecting IUGR. We cannot therefore recommended any change of current practice. Further trials are needed.

  10. Bhardwaj A, Swe KMM, Sinha NK
    Cochrane Database Syst Rev, 2023 May 09;5(5):CD010429.
    PMID: 37159055 DOI: 10.1002/14651858.CD010429.pub3
    BACKGROUND: Osteoporosis is characterized by low bone mass and micro-architectural deterioration of bone tissue leading to increased bone fragility. In people with beta-thalassaemia, osteoporosis represents an important cause of morbidity and is due to a number of factors. First, ineffective erythropoiesis causes bone marrow expansion, leading to reduced trabecular bone tissue with cortical thinning. Second, excessive iron loading causes endocrine dysfunction, leading to increased bone turnover. Lastly, disease complications can result in physical inactivity, with a subsequent reduction in optimal bone mineralization. Treatments for osteoporosis in people with beta-thalassaemia include bisphosphonates (e.g. clodronate, pamidronate, alendronate; with or without hormone replacement therapy (HRT)), calcitonin, calcium, zinc supplementation, hydroxyurea, and HRT alone (for preventing hypogonadism). Denosumab, a fully human monoclonal antibody, inhibits bone resorption and increases bone mineral density (BMD). Finally, strontium ranelate simultaneously promotes bone formation and inhibits bone resorption, thus contributing to a net gain in BMD, increased bone strength, and reduced fracture risk. This is an update of a previously published Cochrane Review.

    OBJECTIVES: To review the evidence on the efficacy and safety of treatment for osteoporosis in people with beta-thalassaemia.

    SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register, which includes references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also searched online trial registries. Date of most recent search: 4 August 2022.

    SELECTION CRITERIA: Randomized controlled trials (RCTs) in people with beta-thalassaemia with: a BMD Z score below -2 standard deviations (SDs) for children aged under 15 years, adult males (aged 15 to 50 years) and premenopausal females aged over 15 years; or a BMD T score below -2.5 SDs for postmenopausal females and males aged over 50 years.

    DATA COLLECTION AND ANALYSIS: Two review authors assessed the eligibility and risk of bias of the included RCTs, and extracted and analysed data. We assessed the certainty of the evidence using GRADE.

    MAIN RESULTS: We included six RCTs (298 participants). Active interventions included bisphosphonates (3 trials, 169 participants), zinc supplementation (1 trial, 42 participants), denosumab (1 trial, 63 participants), and strontium ranelate (1 trial, 24 participants). The certainty of the evidence ranged from moderate to very low and was downgraded mainly due to concerns surrounding imprecision (low participant numbers), but also risk of bias issues related to randomization, allocation concealment, and blinding. Bisphosphonates versus placebo or no treatment Two RCTs compared bisphosphonates to placebo or no treatment. After two years, one trial (25 participants) found that alendronate and clodronate may increase BMD Z score compared to placebo at the femoral neck (mean difference (MD) 0.40, 95% confidence interval (CI) 0.22 to 0.58) and the lumbar spine (MD 0.14, 95% CI 0.05 to 0.23). One trial (118 participants) reported that neridronate compared to no treatment may increase BMD at the lumbar spine and total hip at six and 12 months; for the femoral neck, the study found increased BMD in the neridronate group at 12 months only. All results were of very low-certainty. There were no major adverse effects of treatment. Participants in the neridronate group reported less back pain; we considered this representative of improved quality of life (QoL), though the certainty of the evidence was very low. One participant in the neridronate trial (116 participants) sustained multiple fractures as a result of a traffic accident. No trials reported BMD at the wrist or mobility. Different doses of bisphosphonate compared One 12-month trial (26 participants) assessed different doses of pamidronate (60 mg versus 30 mg) and found a difference in BMD Z score favouring the 60 mg dose at the lumbar spine (MD 0.43, 95% CI 0.10 to 0.76) and forearm (MD 0.87, 95% CI 0.23 to 1.51), but no difference at the femoral neck (very low-certainty evidence). This trial did not report fracture incidence, mobility, QoL, or adverse effects of treatment. Zinc versus placebo One trial (42 participants) showed zinc supplementation probably increased BMD Z score compared to placebo at the lumbar spine after 12 months (MD 0.15, 95% CI 0.10 to 0.20; 37 participants) and 18 months (MD 0.34, 95% CI 0.28 to 0.40; 32 participants); the same was true for BMD at the hip after 12 months (MD 0.15, 95% CI 0.11 to 0.19; 37 participants) and 18 months (MD 0.26, 95% CI 0.21 to 0.31; 32 participants). The evidence for these results was of moderate certainty. The trial did not report BMD at the wrist, fracture incidence, mobility, QoL, or adverse effects of treatment. Denosumab versus placebo Based on one trial (63 participants), we are unsure about the effect of denosumab on BMD Z score at the lumbar spine, femoral neck, and wrist joint after 12 months compared to placebo (low-certainty evidence). This trial did not report fracture incidence, mobility, QoL, or adverse effects of treatment, but the investigators reported a reduction in bone pain measured on a visual analogue scale in the denosumab group after 12 months of treatment compared to placebo (MD -2.40 cm, 95% CI -3.80 to -1.00). Strontium ranelate One trial (24 participants) only narratively reported an increase in BMD Z score at the lumbar spine in the intervention group and no corresponding change in the control group (very low-certainty evidence). This trial also found a reduction in back pain measured on a visual analogue scale after 24 months in the strontium ranelate group compared to the placebo group (MD -0.70 cm (95% CI -1.30 to -0.10); we considered this measure representative of improved quality of life.

    AUTHORS' CONCLUSIONS: Bisphosphonates may increase BMD at the femoral neck, lumbar spine, and forearm compared to placebo after two years' therapy. Zinc supplementation probably increases BMD at the lumbar spine and hip after 12 months. Denosumab may make little or no difference to BMD, and we are uncertain about the effect of strontium on BMD. We recommend further long-term RCTs on different bisphosphonates and zinc supplementation therapies in people with beta-thalassaemia-associated osteoporosis.

  11. Hoe VC, Urquhart DM, Kelsall HL, Sim MR
    PMID: 22895977 DOI: 10.1002/14651858.CD008570.pub2
    BACKGROUND: Work-related upper limb and neck musculoskeletal disorders (MSDs) are one of the most common occupational disorders around the world. Although ergonomic design and training are likely to reduce the risk of workers developing work-related upper limb and neck MSDs, the evidence is unclear.

    OBJECTIVES: To assess the effects of workplace ergonomic design or training interventions, or both, for the prevention of work-related upper limb and neck MSDs in adults.

    SEARCH METHODS: We searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL, AMED, Web of Science (Science Citation Index), SPORTDiscus, Cochrane Occupational Safety and Health Review Group Database and Cochrane Bone, Joint and Muscle Trauma Group Specialised Register to July 2010, and Physiotherapy Evidence Database, US Centers for Disease Control and Prevention, the National Institute for Occupational Safety and Health database, and International Occupational Safety and Health Information Centre database to November 2010.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) of ergonomic workplace interventions for preventing work-related upper limb and neck MSDs. We included only studies with a baseline prevalence of MSDs of the upper limb or neck, or both, of less than 25%.

    DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed risk of bias. We included studies with relevant data that we judged to be sufficiently homogeneous regarding the intervention and outcome in the meta-analysis. We assessed the overall quality of the evidence for each comparison using the GRADE approach.

    MAIN RESULTS: We included 13 RCTs (2397 workers). Eleven studies were conducted in an office environment and two in a healthcare setting. We judged one study to have a low risk of bias. The 13 studies evaluated effectiveness of ergonomic equipment, supplementary breaks or reduced work hours, ergonomic training, a combination of ergonomic training and equipment, and patient lifting interventions for preventing work-related MSDs of the upper limb and neck in adults.Overall, there was moderate-quality evidence that arm support with alternative mouse reduced the incidence of neck/shoulder disorders (risk ratio (RR) 0.52; 95% confidence interval (CI) 0.27 to 0.99) but not the incidence of right upper limb MSDs (RR 0.73; 95% CI 0.32 to 1.66); and low-quality evidence that this intervention reduced neck/shoulder discomfort (standardised mean difference (SMD) -0.41; 95% CI -0.69 to -0.12) and right upper limb discomfort (SMD -0.34; 95% CI -0.63 to -0.06).There was also moderate-quality evidence that the incidence of neck/shoulder and right upper limb disorders were not reduced when comparing alternative mouse and conventional mouse (neck/shoulder RR 0.62; 95% CI 0.19 to 2.00; right upper limb RR 0.91; 95% CI 0.48 to 1.72), arm support and no arm support with conventional mouse (neck/shoulder RR 0.67; 95% CI 0.36 to 1.24; right upper limb RR 1.09; 95% CI 0.51 to 2.29), and alternative mouse with arm support and conventional mouse with arm support (neck/shoulder RR 0.58; 95% CI 0.30 to 1.12; right upper limb RR 0.92; 95% CI 0.36 to 2.36).There was low-quality evidence that using an alternative mouse with arm support compared to conventional mouse with arm support reduced neck/shoulder discomfort (SMD -0.39; 95% CI -0.67 to -0.10). There was low- to very low-quality evidence that other interventions were not effective in reducing work-related upper limb and neck MSDs in adults.

    AUTHORS' CONCLUSIONS: We found moderate-quality evidence to suggest that the use of arm support with alternative mouse may reduce the incidence of neck/shoulder MSDs, but not right upper limb MSDs. Moreover, we found moderate-quality evidence to suggest that the incidence of neck/shoulder and right upper limb MSDs is not reduced when comparing alternative and conventional mouse with and without arm support. However, given there were multiple comparisons made involving a number of interventions and outcomes, high-quality evidence is needed to determine the effectiveness of these interventions clearly. While we found very-low- to low-quality evidence to suggest that other ergonomic interventions do not prevent work-related MSDs of the upper limb and neck, this was limited by the paucity and heterogeneity of available studies. This review highlights the need for high-quality RCTs examining the prevention of MSDs of the upper limb and neck.

  12. Hoe VC, Urquhart DM, Kelsall HL, Zamri EN, Sim MR
    Cochrane Database Syst Rev, 2018 10 23;10:CD008570.
    PMID: 30350850 DOI: 10.1002/14651858.CD008570.pub3
    BACKGROUND: Work-related upper limb and neck musculoskeletal disorders (MSDs) are one of the most common occupational disorders worldwide. Studies have shown that the percentage of office workers that suffer from MSDs ranges from 20 to 60 per cent. The direct and indirect costs of work-related upper limb MSDs have been reported to be high in Europe, Australia, and the United States. Although ergonomic interventions are likely to reduce the risk of office workers developing work-related upper limb and neck MSDs, the evidence is unclear. This is an update of a Cochrane Review which was last published in 2012.

    OBJECTIVES: To assess the effects of physical, cognitive and organisational ergonomic interventions, or combinations of those interventions for the prevention of work-related upper limb and neck MSDs among office workers.

    SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, CINAHL, Web of Science (Science Citation Index), SPORTDiscus, Embase, the US Centers for Disease Control and Prevention, the National Institute for Occupational Safety and Health database, and the World Health Organization's International Clinical Trials Registry Platform, to 10 October 2018.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) of ergonomic interventions for preventing work-related upper limb or neck MSDs (or both) among office workers. We only included studies where the baseline prevalence of MSDs of the upper limb or neck, or both, was less than 25%.

    DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed risk of bias. We included studies with relevant data that we judged to be sufficiently homogeneous regarding the interventions and outcomes in the meta-analysis. We assessed the overall quality of the evidence for each comparison using the GRADE approach.

    MAIN RESULTS: We included 15 RCTs (2165 workers). We judged one study to have a low risk of bias and the remaining 14 studies to have a high risk of bias due to small numbers of participants and the potential for selection bias.Physical ergonomic interventionsThere is inconsistent evidence for arm supports and alternative computer mouse designs. There is moderate-quality evidence that an arm support with an alternative computer mouse (two studies) reduced the incidence of neck or shoulder MSDs (risk ratio (RR) 0.52; 95% confidence interval (CI) 0.27 to 0.99), but not the incidence of right upper limb MSDs (RR 0.73; 95% CI 0.32 to 1.66); and low-quality evidence that this intervention reduced neck or shoulder discomfort (standardised mean difference (SMD) -0.41; 95% CI -0.69 to -0.12) and right upper limb discomfort (SMD -0.34; 95% CI -0.63 to -0.06).There is moderate-quality evidence that the incidence of neck or shoulder and right upper limb disorders were not considerably reduced when comparing an alternative computer mouse and a conventional mouse (two studies; neck or shoulder: RR 0.62; 95% CI 0.19 to 2.00; right upper limb: RR 0.91; 95% CI 0.48 to 1.72), and also when comparing an arm support with a conventional mouse and a conventional mouse alone (two studies) (neck or shoulder: RR 0.91; 95% CI 0.12 to 6.98; right upper limb: RR 1.07; 95% CI 0.58 to 1.96).Workstation adjustment (one study) and sit-stand desks (one study) did not have an effect on upper limb pain or discomfort, compared to no intervention.Organisational ergonomic interventionsThere is very low-quality evidence that supplementary breaks (two studies) reduce discomfort of the neck (MD -0.25; 95% CI -0.40 to -0.11), right shoulder or upper arm (MD -0.33; 95% CI -0.46 to -0.19), and right forearm or wrist or hand (MD -0.18; 95% CI -0.29 to -0.08) among data entry workers.Training in ergonomic interventionsThere is low to very low-quality evidence in five studies that participatory and active training interventions may or may not prevent work-related MSDs of the upper limb or neck or both.Multifaceted ergonomic interventionsFor multifaceted interventions there is one study (very low-quality evidence) that showed no effect on any of the six upper limb pain outcomes measured in that study.

    AUTHORS' CONCLUSIONS: We found inconsistent evidence that the use of an arm support or an alternative mouse may or may not reduce the incidence of neck or shoulder MSDs. For other physical ergonomic interventions there is no evidence of an effect. For organisational interventions, in the form of supplementary breaks, there is very low-quality evidence of an effect on upper limb discomfort. For training and multifaceted interventions there is no evidence of an effect on upper limb pain or discomfort. Further high-quality studies are needed to determine the effectiveness of these interventions among office workers.

  13. Kumbargere Nagraj S, George RP, Shetty N, Levenson D, Ferraiolo DM, Shrestha A
    Cochrane Database Syst Rev, 2017 12 20;12:CD010470.
    PMID: 29260510 DOI: 10.1002/14651858.CD010470.pub3
    BACKGROUND: The sense of taste is very much essential to the overall health of an individual. It is a necessary component to enjoy one's food, which in turn provides nutrition to an individual. Any disturbance in taste perception can hamper quality of life in such patients by influencing their appetite, body weight and psychological well-being. Taste disorders have been treated using different modalities of treatment and there is no consensus for the best intervention. Hence this Cochrane Review was undertaken. This is an update of the Cochrane Review first published in November 2014.

    OBJECTIVES: To assess the effects of interventions for the management of patients with taste disturbances.

    SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 4 July 2017); the Cochrane Central Register of Controlled Trials (CENTRAL; 2017 Issue 6) in the Cochrane Library (searched 4 July 2017); MEDLINE Ovid (1946 to 4 July 2017); Embase Ovid (1980 to 4 July 2017); CINAHL EBSCO (1937 to 4 July 2017); and AMED Ovid (1985 to 4 July 2017). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for trials. Abstracts from scientific meetings and conferences were searched on 25 September 2017. No restrictions were placed on the language or date of publication when searching the electronic databases.

    SELECTION CRITERIA: We included all randomised controlled trials (RCTs) comparing any pharmacological agent with a control intervention or any non-pharmacological agent with a control intervention. We also included cross-over trials in the review.

    DATA COLLECTION AND ANALYSIS: Two pairs of review authors independently, and in duplicate, assessed the quality of trials and extracted data. Wherever possible, we contacted trial authors for additional information. We collected adverse events information from the trials.

    MAIN RESULTS: We included 10 trials (581 participants), nine of which we were able to include in the quantitative analyses (566 participants). We assessed three trials (30%) as having a low risk of bias, four trials (40%) at high risk of bias and three trials (30%) as having an unclear risk of bias. We only included studies on taste disorders in this review that were either idiopathic, or resulting from zinc deficiency or chronic renal failure.Of these, nine trials with 544 people compared zinc supplements to placebo for patients with taste disorders. The participants in two trials were children and adolescents with respective mean ages of 10 and 11.2 years and the other seven trials had adult participants. Out of these nine, two trials assessed the patient-reported outcome for improvement in taste acuity using zinc supplements (risk ratio (RR) 1.40, 95% confidence interval (CI) 0.94 to 2.09; 119 participants, very low-quality evidence). We meta-analysed for taste acuity improvement using objective outcome (continuous data) in idiopathic and zinc-deficient taste disorder patients (standardised mean difference (SMD) 0.44, 95% CI 0.23 to 0.65; 366 participants, three trials, very low-quality evidence). We also analysed one cross-over trial separately using the first half of the results for taste detection (mean difference (MD) 2.50, 95% CI 0.93 to 4.07; 14 participants, very low-quality evidence), and taste recognition (MD 3.00, 95% CI 0.66 to 5.34; 14 participants, very low-quality evidence). We meta-analysed taste acuity improvement using objective outcome (dichotomous data) in idiopathic and zinc-deficient taste disorder patients (RR 1.42, 95% 1.09 to 1.84; 292 participants, two trials, very low-quality evidence). Out of the nine trials using zinc supplementation, four reported adverse events like eczema, nausea, abdominal pain, diarrhoea, constipation, decrease in blood iron, increase in blood alkaline phosphatase, and minor increase in blood triglycerides.One trial tested taste discrimination using acupuncture (MD 2.80, 95% CI -1.18 to 6.78; 37 participants, very low-quality evidence). No adverse events were reported in the acupuncture trial.None of the included trials could be included in the meta-analysis for health-related quality of life in taste disorder patients.

    AUTHORS' CONCLUSIONS: We found very low-quality evidence that was insufficient to conclude on the role of zinc supplements to improve taste acuity reported by patients and very low-quality evidence that zinc supplements improve taste acuity in patients with zinc deficiency/idiopathic taste disorders. We did not find any evidence to conclude the role of zinc supplements for improving taste discrimination, or any evidence addressing health-related quality of life due to taste disorders.We found very low-quality evidence that is not sufficient to conclude on the role of acupuncture for improving taste discrimination in cases of idiopathic dysgeusia (distortion of taste) and hypogeusia (reduced ability to taste). We were unable to draw any conclusions regarding the superiority of zinc supplements or acupuncture as none of the trials compared these interventions.

  14. Jahanfar S, Sharifah H
    PMID: 19370665 DOI: 10.1002/14651858.CD006965.pub2
    BACKGROUND: Maternal caffeine consumption during pregnancy may have adverse effects on fetal, neonatal and maternal outcomes.
    OBJECTIVES: This review investigates the effects of restricting caffeine intake by mothers on fetal, neonatal and pregnancy outcomes.
    SEARCH STRATEGY: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (December 2008), scanned bibliographies of published studies and corresponded with investigators.
    SELECTION CRITERIA: Randomised controlled trials including quasi-randomised controlled trials (RCTs) investigating the effect of caffeine and/or supplementary caffeine versus restricted caffeine intake or placebo on pregnancy outcome.
    DATA COLLECTION AND ANALYSIS: The two review authors independently assessed trial quality and extracted data.
    MAIN RESULTS: One study met the inclusion criteria. Caffeinated instant coffee (568 women) was compared with decaffeinated instant coffee (629 women) and it was found that reducing the caffeine intake of regular coffee drinkers (3+ cups/day) during the second and third trimester by an average of 182 mg/day did not affect birthweight or length of gestation.
    AUTHORS' CONCLUSIONS: There is insufficient evidence to confirm or refute the effectiveness of caffeine avoidance on birthweight or other pregnancy outcomes. There is a need to conduct high-quality, double-blinded RCTs to determine whether caffeine has any effect on pregnancy outcome.
  15. Yeo KT, Kong JY, Sasi A, Tan K, Lai NM, Schindler T
    Cochrane Database Syst Rev, 2019 10 28;2019(10).
    PMID: 31684689 DOI: 10.1002/14651858.CD012888.pub2
    BACKGROUND: Feeding practices around the time of packed red blood cell transfusion have been implicated in the subsequent development of necrotising enterocolitis (NEC) in preterm infants. Specifically, it has been suggested that withholding feeds around the time of transfusion may reduce the risk of subsequent NEC. It is important to determine if withholding feeds around transfusion reduces the risk of subsequent NEC and associated mortality.

    OBJECTIVES: • To assess the benefits and risks of stopping compared to continuing feed management before, during, and after blood transfusion in preterm infants • To assess the effects of stopping versus continuing feeds in the following subgroups of infants: infants of different gestations; infants with symptomatic and asymptomatic anaemia; infants who received different feeding schedules, types of feed, and methods of feed delivery; infants who were transfused with different blood products, at different blood volumes, via different routes of delivery; and those who received blood transfusion with and without co-interventions such as use of diuretics • To determine the effectiveness and safety of stopping feeds around the time of a blood transfusion in reducing the risk of subsequent necrotising enterocolitis (NEC) in preterm infants SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 11), in the Cochrane Library; MEDLINE (1966 to 14 November 2018); Embase (1980 to 14 November 2018); and the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1982 to 14 November 2018). We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomised controlled trials (RCTs), cluster-RCTs, and quasi-RCTs.

    SELECTION CRITERIA: Randomised and quasi-randomised controlled trials that compared stopping feeds versus continuing feeds around the time of blood transfusion in preterm infants.

    DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials, assessed trial quality, and extracted data from the included studies.

    MAIN RESULTS: The search revealed seven studies that assessed effects of stopping feeds during blood transfusion. However, only one RCT involving 22 preterm infants was eligible for inclusion in the review. This RCT had low risk of selection bias but high risk of performance bias, as care personnel were not blinded to the study allocation. The primary objective of this trial was to investigate changes in mesenteric blood flow, and no cases of NEC were reported in any of the infants included in the trial. We were unable to draw any conclusions from this single study. The overall GRADE rating for quality of evidence was very low.

    AUTHORS' CONCLUSIONS: Randomised controlled trial evidence is insufficient to show whether stopping feeds has an effect on the incidence of subsequent NEC or death. Large, adequately powered RCTs are needed to address this issue.

  16. Lai NM, Chaiyakunapruk N, Lai NA, O'Riordan E, Pau WS, Saint S
    Cochrane Database Syst Rev, 2016 Mar 16;3(3):CD007878.
    PMID: 26982376 DOI: 10.1002/14651858.CD007878.pub3
    BACKGROUND: The central venous catheter (CVC) is essential in managing acutely ill patients in hospitals. Bloodstream infection is a major complication in patients with a CVC. Several infection control measures have been developed to reduce bloodstream infections, one of which is impregnation of CVCs with various forms of antimicrobials (either with an antiseptic or with antibiotics). This review was originally published in June 2013 and updated in 2016.

    OBJECTIVES: Our main objective was to assess the effectiveness of antimicrobial impregnation, coating or bonding on CVCs in reducing clinically-diagnosed sepsis, catheter-related blood stream infection (CRBSI), all-cause mortality, catheter colonization and other catheter-related infections in adult participants who required central venous catheterization, along with their safety and cost effectiveness where data were available. We undertook the following comparisons: 1) catheters with antimicrobial modifications in the form of antimicrobial impregnation, coating or bonding, against catheters without antimicrobial modifications and 2) catheters with one type of antimicrobial impregnation against catheters with another type of antimicrobial impregnation. We planned to analyse the comparison of catheters with any type of antimicrobial impregnation against catheters with other antimicrobial modifications, e.g. antiseptic dressings, hubs, tunnelling, needleless connectors or antiseptic lock solutions, but did not find any relevant studies. Additionally, we planned to conduct subgroup analyses based on the length of catheter use, settings or levels of care (e.g. intensive care unit, standard ward and oncology unit), baseline risks, definition of sepsis, presence or absence of co-interventions and cost-effectiveness in different currencies.

    SEARCH METHODS: We used the standard search strategy of the Cochrane Anaesthesia, Critical and Emergency Care Review Group (ACE). In the updated review, we searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 3), MEDLINE (OVID SP; 1950 to March 2015), EMBASE (1980 to March 2015), CINAHL (1982 to March 2015), and other Internet resources using a combination of keywords and MeSH headings. The original search was run in March 2012.

    SELECTION CRITERIA: We included randomized controlled trials (RCTs) that assessed any type of impregnated catheter against either non-impregnated catheters or catheters with another type of impregnation in adult patients cared for in the hospital setting who required CVCs. We planned to include quasi-RCT and cluster-RCTs, but we identified none. We excluded cross-over studies.

    DATA COLLECTION AND ANALYSIS: We extracted data using the standard methodological procedures expected by Cochrane. Two authors independently assessed the relevance and risk of bias of the retrieved records. We expressed our results using risk ratio (RR), absolute risk reduction (ARR) and number need to treat to benefit (NNTB) for categorical data and mean difference (MD) for continuous data, where appropriate, with their 95% confidence intervals (CIs).

    MAIN RESULTS: We included one new study (338 participants/catheters) in this update, which brought the total included to 57 studies with 16,784 catheters and 11 types of impregnations. The total number of participants enrolled was unclear, as some studies did not provide this information. Most studies enrolled participants from the age of 18, including patients in intensive care units (ICU), oncology units and patients receiving long-term total parenteral nutrition. There were low or unclear risks of bias in the included studies, except for blinding, which was impossible in most studies due to the catheters that were being assessed having different appearances. Overall, catheter impregnation significantly reduced catheter-related blood stream infection (CRBSI), with an ARR of 2% (95% CI 3% to 1%), RR of 0.62 (95% CI 0.52 to 0.74) and NNTB of 50 (high-quality evidence). Catheter impregnation also reduced catheter colonization, with an ARR of 9% (95% CI 12% to 7%), RR of 0.67 (95% CI 0.59 to 0.76) and NNTB of 11 (moderate-quality evidence, downgraded due to substantial heterogeneity). However, catheter impregnation made no significant difference to the rates of clinically diagnosed sepsis (RR 1.0, 95% CI 0.88 to 1.13; moderate-quality evidence, downgraded due to a suspicion of publication bias), all-cause mortality (RR 0.92, 95% CI 0.80 to 1.07; high-quality evidence) and catheter-related local infections (RR 0.84, 95% CI 0.66 to 1.07; 2688 catheters, moderate quality evidence, downgraded due to wide 95% CI).In our subgroup analyses, we found that the magnitudes of benefits for impregnated CVCs varied between studies that enrolled different types of participants. For the outcome of catheter colonization, catheter impregnation conferred significant benefit in studies conducted in ICUs (RR 0.70;95% CI 0.61 to 0.80) but not in studies conducted in haematological and oncological units (RR 0.75; 95% CI 0.51 to 1.11) or studies that assessed predominantly patients who required CVCs for long-term total parenteral nutrition (RR 0.99; 95% CI 0.74 to 1.34). However, there was no such variation for the outcome of CRBSI. The magnitude of the effects was also not affected by the participants' baseline risks.There were no significant differences between the impregnated and non-impregnated groups in the rates of adverse effects, including thrombosis/thrombophlebitis, bleeding, erythema and/or tenderness at the insertion site.

    AUTHORS' CONCLUSIONS: This review confirms the effectiveness of antimicrobial CVCs in reducing rates of CRBSI and catheter colonization. However, the magnitude of benefits regarding catheter colonization varied according to setting, with significant benefits only in studies conducted in ICUs. A comparatively smaller body of evidence suggests that antimicrobial CVCs do not appear to reduce clinically diagnosed sepsis or mortality significantly. Our findings call for caution in routinely recommending the use of antimicrobial-impregnated CVCs across all settings. Further randomized controlled trials assessing antimicrobial CVCs should include important clinical outcomes like the overall rates of sepsis and mortality.

  17. Chew BH, Vos RC, Metzendorf MI, Scholten RJ, Rutten GE
    Cochrane Database Syst Rev, 2017 Sep 27;9(9):CD011469.
    PMID: 28954185 DOI: 10.1002/14651858.CD011469.pub2
    BACKGROUND: Many adults with type 2 diabetes mellitus (T2DM) experience a psychosocial burden and mental health problems associated with the disease. Diabetes-related distress (DRD) has distinct effects on self-care behaviours and disease control. Improving DRD in adults with T2DM could enhance psychological well-being, health-related quality of life, self-care abilities and disease control, also reducing depressive symptoms.

    OBJECTIVES: To assess the effects of psychological interventions for diabetes-related distress in adults with T2DM.

    SEARCH METHODS: We searched the Cochrane Library, MEDLINE, Embase, PsycINFO, CINAHL, BASE, WHO ICTRP Search Portal and ClinicalTrials.gov. The date of the last search was December 2014 for BASE and 21 September 2016 for all other databases.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) on the effects of psychological interventions for DRD in adults (18 years and older) with T2DM. We included trials if they compared different psychological interventions or compared a psychological intervention with usual care. Primary outcomes were DRD, health-related quality of life (HRQoL) and adverse events. Secondary outcomes were self-efficacy, glycosylated haemoglobin A1c (HbA1c), blood pressure, diabetes-related complications, all-cause mortality and socioeconomic effects.

    DATA COLLECTION AND ANALYSIS: Two review authors independently identified publications for inclusion and extracted data. We classified interventions according to their focus on emotion, cognition or emotion-cognition. We performed random-effects meta-analyses to compute overall estimates.

    MAIN RESULTS: We identified 30 RCTs with 9177 participants. Sixteen trials were parallel two-arm RCTs, and seven were three-arm parallel trials. There were also seven cluster-randomised trials: two had four arms, and the remaining five had two arms. The median duration of the intervention was six months (range 1 week to 24 months), and the median follow-up period was 12 months (range 0 to 12 months). The trials included a wide spectrum of interventions and were both individual- and group-based.A meta-analysis of all psychological interventions combined versus usual care showed no firm effect on DRD (standardised mean difference (SMD) -0.07; 95% CI -0.16 to 0.03; P = 0.17; 3315 participants; 12 trials; low-quality evidence), HRQoL (SMD 0.01; 95% CI -0.09 to 0.11; P = 0.87; 1932 participants; 5 trials; low-quality evidence), all-cause mortality (11 per 1000 versus 11 per 1000; risk ratio (RR) 1.01; 95% CI 0.17 to 6.03; P = 0.99; 1376 participants; 3 trials; low-quality evidence) or adverse events (17 per 1000 versus 41 per 1000; RR 2.40; 95% CI 0.78 to 7.39; P = 0.13; 438 participants; 3 trials; low-quality evidence). We saw small beneficial effects on self-efficacy and HbA1c at medium-term follow-up (6 to 12 months): on self-efficacy the SMD was 0.15 (95% CI 0.00 to 0.30; P = 0.05; 2675 participants; 6 trials; low-quality evidence) in favour of psychological interventions; on HbA1c there was a mean difference (MD) of -0.14% (95% CI -0.27 to 0.00; P = 0.05; 3165 participants; 11 trials; low-quality evidence) in favour of psychological interventions. Our included trials did not report diabetes-related complications or socioeconomic effects.Many trials were small and were at high risk of bias for incomplete outcome data as well as possible performance and detection biases in the subjective questionnaire-based outcomes assessment, and some appeared to be at risk of selective reporting. There are four trials awaiting further classification. These are parallel RCTs with cognition-focused and emotion-cognition focused interventions. There are another 18 ongoing trials, likely focusing on emotion-cognition or cognition, assessing interventions such as diabetes self-management support, telephone-based cognitive behavioural therapy, stress management and a web application for problem solving in diabetes management. Most of these trials have a community setting and are based in the USA.

    AUTHORS' CONCLUSIONS: Low-quality evidence showed that none of the psychological interventions would improve DRD more than usual care. Low-quality evidence is available for improved self-efficacy and HbA1c after psychological interventions. This means that we are uncertain about the effects of psychological interventions on these outcomes. However, psychological interventions probably have no substantial adverse events compared to usual care. More high-quality research with emotion-focused programmes, in non-US and non-European settings and in low- and middle-income countries, is needed.

  18. Korula P, Alexander H, John JS, Kirubakaran R, Singh B, Tharyan P, et al.
    Cochrane Database Syst Rev, 2024 Feb 05;2(2):CD015219.
    PMID: 38314855 DOI: 10.1002/14651858.CD015219.pub2
    BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to challenge the health workforce and societies worldwide. Favipiravir was suggested by some experts to be effective and safe to use in COVID-19. Although this drug has been evaluated in randomized controlled trials (RCTs), it is still unclear if it has a definite role in the treatment of COVID-19.

    OBJECTIVES: To assess the effects of favipiravir compared to no treatment, supportive treatment, or other experimental antiviral treatment in people with acute COVID-19.

    SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, MEDLINE, Embase, the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease, and three other databases, up to 18 July 2023.

    SELECTION CRITERIA: We searched for RCTs evaluating the efficacy of favipiravir in treating people with COVID-19.

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures for data collection and analysis. We used the GRADE approach to assess the certainty of evidence for each outcome.

    MAIN RESULTS: We included 25 trials that randomized 5750 adults (most under 60 years of age). The trials were conducted in Bahrain, Brazil, China, India, Iran, Kuwait, Malaysia, Mexico, Russia, Saudi Arabia, Thailand, the UK, and the USA. Most participants were hospitalized with mild to moderate disease (89%). Twenty-two of the 25 trials investigated the role of favipiravir compared to placebo or standard of care, whilst lopinavir/ritonavir was the comparator in two trials, and umifenovir in one trial. Most trials (24 of 25) initiated favipiravir at 1600 mg or 1800 mg twice daily for the first day, followed by 600 mg to 800 mg twice a day. The duration of treatment varied from five to 14 days. We do not know whether favipiravir reduces all-cause mortality at 28 to 30 days, or in-hospital (risk ratio (RR) 0.84, 95% confidence interval (CI) 0.49 to 1.46; 11 trials, 3459 participants; very low-certainty evidence). We do not know if favipiravir reduces the progression to invasive mechanical ventilation (RR 0.86, 95% CI 0.68 to 1.09; 8 trials, 1383 participants; very low-certainty evidence). Favipiravir may make little to no difference in the need for admission to hospital (if ambulatory) (RR 1.04, 95% CI 0.44 to 2.46; 4 trials, 670 participants; low-certainty evidence). We do not know if favipiravir reduces the time to clinical improvement (defined as time to a 2-point reduction in patients' admission status on the WHO's ordinal scale) (hazard ratio (HR) 1.13, 95% CI 0.69 to 1.83; 4 trials, 721 participants; very low-certainty evidence). Favipiravir may make little to no difference to the progression to oxygen therapy (RR 1.20, 95% CI 0.83 to 1.75; 2 trials, 543 participants; low-certainty evidence). Favipiravir may lead to an overall increased incidence of adverse events (RR 1.27, 95% CI 1.05 to 1.54; 18 trials, 4699 participants; low-certainty evidence), but may result in little to no difference inserious adverse eventsattributable to the drug (RR 1.04, 95% CI 0.76 to 1.42; 12 trials, 3317 participants; low-certainty evidence).

    AUTHORS' CONCLUSIONS: The low- to very low-certainty evidence means that we do not know whether favipiravir is efficacious in people with COVID-19 illness, irrespective of severity or admission status. Treatment with favipiravir may result in an overall increase in the incidence of adverse events but may not result in serious adverse events.

  19. Ho JJ, Rasa G
    PMID: 17636807
    Persistent pulmonary hypertension of the newborn (PPHN) occurs in approximately 1.9 per 1000 newborns and may be more frequent in developing countries. There is strong evidence for the use of inhaled nitric oxide (iNO) and extra corporeal membrane oxygenation (ECMO) in the treatment of PPHN. However, many developing countries do not have access or the technical expertise required for these expensive therapies. Magnesium sulfate is a potent vasodilator and hence has the potential to reduce the high pulmonary arterial pressures associated with PPHN. If magnesium sulfate were found to be effective in the treatment of PPHN, this could be a cost effective and potentially life-saving therapy.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links