Displaying publications 21 - 26 of 26 in total

Abstract:
Sort:
  1. Yip E, Cacioli P
    J Allergy Clin Immunol, 2002 Aug;110(2 Suppl):S3-14.
    PMID: 12170237 DOI: 10.1067/mai.2002.124499
    Gloves that will provide a barrier of protection from infectious organisms are an essential feature of medical practice for the protection of both patients and medical personnel. Natural rubber latex has consistently been the most satisfactory raw material for the manufacture of gloves. Certain latex proteins, carried over into the finished product by inadequate manufacturing processes, may pose a risk of provoking allergic reactions in some patients and medical workers. As with any allergy, the risk depends on the route of exposure and dose. Hence, the method of manufacture, including the means used to coat gloves to make donning easy, can influence the eventual exposure of sensitive people to latex allergens. In this article, we describe the several processes in use and their effects on latex protein content.
  2. Czuppon AB, Chen Z, Rennert S, Engelke T, Meyer HE, Heber M, et al.
    J Allergy Clin Immunol, 1993 Nov;92(5):690-7.
    PMID: 8227860
    BACKGROUND: Allergy to latex-containing articles is becoming more and more important because it can result in unexpected life-threatening anaphylactic reactions in sensitized individuals.

    METHODS: A protein of 58 kd with an isoelectric point of 8.45 was purified from raw latex and from latex gloves and identified as the major allergen, completely blocking specific IgE antibodies in the serum of latex-sensitized subjects. The allergen is a noncovalent homotetramer molecule, in which the 14.6 kd monomer was identified, by amino acid composition and sequence homologies of tryptic peptides, to be the rubber elongation factor found in natural latex of the Malaysian rubber tree.

    RESULTS: Competitive immunoinhibition tests showed that the starch powder covering the finished gloves is the airborne carrier of the allergen, resulting in bronchial asthma on inhalation. The purified allergen can induce allergic reactions in the nanogram range.

    CONCLUSION: The identification of the allergen (Hev b I) may help to eliminate it during the production of latex-based articles in the future.

  3. Wilkie H, Das M, Pelovitz T, Bainter W, Woods B, Alasharee M, et al.
    PMID: 38185418 DOI: 10.1016/j.jaci.2023.12.020
    BACKGROUND: DOCK8-deficient patients have severe eczema, elevated IgE and eosinophilia, features of Atopic Dermatitis (AD).

    OBJECTIVE: To understand the mechanisms of eczema in DOCK8 deficiency.

    METHODS: Skin biopsies were characterized for histology, immuno-fluorescence microscopy, and gene expression. Skin barrier function was measured by trans-epidermal water loss. Allergic skin inflammation was elicited in mice by epicutaneous (EC) sensitization with ovalbumin (OVA) or cutaneous application of S. aureus.

    RESULTS: Skin lesions of DOCK8-deficient patients exhibited type-2 inflammation and the patients' skin was colonized by S. aureus, like in AD. Unlike in AD, DOCK8-deficient patients had a reduced FOXP3:CD4 ratio in their skin lesions, and their skin barrier function was intrinsically intact. Dock8-/- mice exhibited reduced numbers of cutaneous T regulatory cells (Tregs) and a normal skin barrier. Dock8-/- mice and mice with an inducible Dock8 deletion in Tregs exhibited increased allergic skin inflammation following EC sensitization with OVA. DOCK8 was shown to be important for Treg stability at sites of allergic inflammation and for the generation, survival, and suppressive activity of inducible Tregs (iTregs). Adoptive transfer of wild-type, but not DOCK8-deficient, OVA-specific iTregs suppressed allergic inflammation in OVA-sensitized skin of Dock8-/- mice. These mice developed severe allergic skin inflammation and elevated serum IgE levels following topical exposure to S. aureus. Both were attenuated following adoptive transfer of WT but not DOCK8 deficient Tregs CONCLUSION: Treg cell dysfunction increases susceptibility to allergic skin inflammation in DOCK8 deficiency and synergizes with cutaneous exposure to S. aureus to drive eczema in DOCK8 deficiency.

  4. Neva FA, Kaplan AP, Pacheco G, Gray L, Danaraj TJ
    J Allergy Clin Immunol, 1975 Jun;55(5):422-9.
    PMID: 1138016
    The diverse clinical syndromes characterized by asthmatic symptoms, transient pulmonary infiltrates, and eosinophilia have tended to obscure the specific association of one such entity with filarial infections. Serum IgE levels were determined before and after therapy in a group of well-characterized patients with tropical eosinophilia (TE), studied earlier in Singapore. The mean serum IgE level in 14 cases before treatment with diethylcarbamazine was 2,355 ng. per milliliter, with a trend but statistically nonsignificant decrease in levels to 600-1,000 ng. occurring 8 to 12 weeks after therapy. Leukocyte and eosinophil counts showed a rapid reduction after treatment, and although mean complement-fixing (cf) titers to Dirofilarial antigen tended to decrease, they were not significantly reduced until 5 to 6 weeks. The historical development of evidence supporting the filarial etiology of TE was reviewed. Many basic questions engendered by the clinical syndrome of tropical eosinophilia make it an excellent model for study of the immunopathology of parasitic infections.
  5. Mensa-Vilaró A, Bravo García-Morato M, de la Calle-Martin O, Franco-Jarava C, Martínez-Saavedra MT, González-Granado LI, et al.
    J Allergy Clin Immunol, 2019 Jan;143(1):359-368.
    PMID: 30273710 DOI: 10.1016/j.jaci.2018.09.009
    BACKGROUND: Postzygotic de novo mutations lead to the phenomenon of gene mosaicism. The 3 main types are called somatic, gonadal, and gonosomal mosaicism, which differ in terms of the body distribution of postzygotic mutations. Mosaicism has been reported occasionally in patients with primary immunodeficiency diseases (PIDs) since the early 1990s, but its real involvement has not been systematically addressed.

    OBJECTIVE: We sought to investigate the incidence of gene mosaicism in patients with PIDs.

    METHODS: The amplicon-based deep sequencing method was used in the 3 parts of the study that establish (1) the allele frequency of germline variants (n = 100), (2) the incidence of parental gonosomal mosaicism in families with PIDs with de novo mutations (n = 92), and (3) the incidence of mosaicism in families with PIDs with moderate-to-high suspicion of gene mosaicism (n = 36). Additional investigations evaluated body distribution of postzygotic mutations, their stability over time, and their characteristics.

    RESULTS: The range of allele frequency (44.1% to 55.6%) was established for germline variants. Those with minor allele frequencies of less than 44.1% were assumed to be postzygotic. Mosaicism was detected in 30 (23.4%) of 128 families with PIDs, with a variable minor allele frequency (0.8% to 40.5%). Parental gonosomal mosaicism was detected in 6 (6.5%) of 92 families with de novo mutations, and a high incidence of mosaicism (63.9%) was detected among families with moderate-to-high suspicion of gene mosaicism. In most analyzed cases mosaicism was found to be both uniformly distributed and stable over time.

    CONCLUSION: This study represents the largest performed to date to investigate mosaicism in patients with PIDs, revealing that it affects approximately 25% of enrolled families. Our results might have serious consequences regarding treatment and genetic counseling and reinforce the use of next-generation sequencing-based methods in the routine analyses of PIDs.

  6. Wang CW, Tassaneeyakul W, Chen CB, Chen WT, Teng YC, Huang CY, et al.
    J Allergy Clin Immunol, 2021 04;147(4):1402-1412.
    PMID: 32791162 DOI: 10.1016/j.jaci.2020.08.003
    BACKGROUND: Co-trimoxazole, a sulfonamide antibiotic, is used to treat a variety of infections worldwide, and it remains a common first-line medicine for prophylaxis against Pneumocystis jiroveci pneumonia. However, it can cause severe cutaneous adverse reaction (SCAR), including Stevens-Johnson syndrome, toxic epidermal necrolysis, and drug reaction with eosinophilia and systemic symptoms. The pathomechanism of co-trimoxazole-induced SCAR remains unclear.

    OBJECTIVE: We aimed to investigate the genetic predisposition of co-trimoxazole-induced SCAR.

    METHODS: We conducted a multicountry case-control association study that included 151 patients with of co-trimoxazole-induced SCAR and 4631 population controls from Taiwan, Thailand, and Malaysia, as well as 138 tolerant controls from Taiwan. Whole-genome sequencing was performed for the patients and population controls from Taiwan; it further validated the results from Thailand and Malaysia.

    RESULTS: The whole-genome sequencing study (43 case patients vs 507 controls) discovered that the single-nucleotide polymorphism rs41554616, which is located between the HLA-B and MICA loci, had the strongest association with co-trimoxazole-induced SCAR (P = 8.2 × 10-9; odds ratio [OR] = 7.7). There were weak associations of variants in co-trimoxazole-related metabolizing enzymes (CYP2D6, GSTP1, GCLC, N-acetyltransferase [NAT2], and CYP2C8). A replication study using HLA genotyping revealed that HLA-B∗13:01 was strongly associated with co-trimoxazole-induced SCAR (the combined sample comprised 91 case patients vs 2545 controls [P = 7.2 × 10-21; OR = 8.7]). A strong HLA association was also observed in the case patients from Thailand (P = 3.2 × 10-5; OR = 3.6) and Malaysia (P = .002; OR = 12.8), respectively. A meta-analysis and phenotype stratification study further indicated a strong association between HLA-B∗13:01 and co-trimoxazole-induced drug reaction with eosinophilia and systemic symptoms (P = 4.2 × 10-23; OR = 40.1).

    CONCLUSION: This study identified HLA-B∗13:01 as an important genetic factor associated with co-trimoxazole-induced SCAR in Asians.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links