Displaying publications 21 - 40 of 56 in total

Abstract:
Sort:
  1. Kumar CS, Loh WS, Ooi CW, Quah CK, Fun HK
    Molecules, 2013 Oct 15;18(10):12707-24.
    PMID: 24132195 DOI: 10.3390/molecules181012707
    Chalcone derivatives have attracted increasing attention due to their numerous pharmacological activities. Changes in their structures have displayed high degree of diversity that has proven to result in a broad spectrum of biological activities. The present study highlights the synthesis of some halogen substituted chalcones 3(a-i) containing the 5-chlorothiophene moiety, their X-ray crystal structures and the evaluation of possible biological activities such as antibacterial, antifungal and reducing power abilities. The results indicate the tested compounds show a varied range of inhibition values against all the tested microbial strains. Compound 3c with a p-fluoro substituent on the phenyl ring exhibits elevated antimicrobial activity, whereas the compounds 3e and 3f displayed the least antimicrobial activities. The compounds 3d, 3e, 3f and 3i showed good ferric and cupric reducing abilities, and the compounds 3b and 3c showed the weakest reducing power in the series.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  2. Al-Adiwish WM, Tahir MI, Siti-Noor-Adnalizawati A, Hashim SF, Ibrahim N, Yaacob WA
    Eur J Med Chem, 2013 Jun;64:464-76.
    PMID: 23669354 DOI: 10.1016/j.ejmech.2013.04.029
    New 5-aminopyrazoles 2a-c were prepared in high yields from the reaction of known α,α-dicyanoketene-N,S-acetals 1a-c with hydrazine hydrate under reflux in ethanol. These compounds were utilized as intermediates to synthesize pyrazolo[1,5-a]-pyrimidines 3a-c, 4a-d, 5a-c, and 6a-c, as well as pyrazolo[5,1-c][1,2,4]triazines 7a-c and 8a-c, by the reaction of 2-[bis(methylthio)methylene]malononitrile, α,α-dicyanoketene-N,S-acetals 1a-b, acetylacetone, acetoacetanilide as well as acetylacetone, and malononitrile, respectively. Furthermore, cyclization of 2a-c with pentan-2,5-dione yielded the corresponding 5-pyrrolylpyrazoles 9a-c. Moreover, fusion of 2a-c with acetic anhydride resulted in the corresponding 1-acetyl-1H-pyrazoles 10a-c. The antibacterial activity and cytotoxicity against Vero cells of several selected compounds are also reported.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  3. Tarafder MT, Kasbollah A, Saravanan N, Crouse KA, Ali AM, Tin Oo K
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):85-91.
    PMID: 12186762
    Eight selective nitrogen-sulfur donor ligands have been synthesized from the condensation of S-methyldithiocarbazate (SMDTC) with aldehydes and ketones with a view to evaluating their antimicrobial and cytotoxic activities, and also to correlate the biological properties with the structure of the ligands. The compounds were all characterized by elemental analyses and other physicochemical techniques. SMDTC and the Schiff bases were screened for antimicrobial and cytotoxic activities. SMDTC showed very large inhibition zones (24-44 mm) against bacteria and fungi with a minimum inhibitory concentration (MIC) of 390-25,000 and 1562-6250 microg ml(-1), against different bacteria and fungi, respectively. Streptomycin and nystatin were used as the internal standards against bacteria and fungi, respectively. SMDTC along with its Schiff bases with pyridine-2-carboxaldehyde, acetylacetone and 2,3-butanedione were strongly antifungal and the MIC values were comparable to nystatin. Most of the Schiff bases were strongly cytotoxic. In particular, those with pyridine-2-carboxaldehyde and 2,3-butanedione have CD(50) values of 5.5, 1.9-2.0 microg ml(-1), respectively, against leukemic cells, while against colon cancer cells, the values were 3.7 and 2.0 microg ml(-1), respectively. The glyoxal Schiff base was strongly active only against leukemic cell with CD(50) value of 4.0 microg ml(-1). The present findings have been compared with standard drugs.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  4. Mohammed AAM, Suaifan GARY, Shehadeh MB, Okechukwu PN
    Eur J Med Chem, 2020 Sep 15;202:112513.
    PMID: 32623216 DOI: 10.1016/j.ejmech.2020.112513
    Herein we report the design, synthesis and biological evaluation of structurally modified ciprofloxacin, norfloxacin and moxifloxacin standard drugs, featuring amide functional groups at C-3 of the fluoroquinolone scaffold. In vitro antimicrobial testing against various Gram-positive bacteria, Gram-negative bacteria and fungi revealed potential antibacterial and antifungal activity. Hybrid compounds 9 (MIC 0.2668 ± 0.0001 mM), 10 (MIC 0.1358 ± 00025 mM) and 13 (MIC 0.0898 ± 0.0014 mM) had potential antimicrobial activity against a fluoroquinolone-resistant Escherichia coli clinical isolate, compared to ciprofloxacin (MIC 0.5098 ± 0.0024 mM) and norfloxacin (MIC 0.2937 ± 0.0021 mM) standard drugs. Interestingly, compound 10 also exerted potential antifungal activity against Candida albicans (MIC 0.0056 ± 0.0014 mM) and Penicillium chrysogenum (MIC 0.0453 ± 0.0156 mM). Novel derivatives and standard fluoroquinolone drugs exhibited near-identical cytotoxicity levels against L6 muscle cell-line, when measured using the MTT assay.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  5. Supramaniam J, Low DYS, Wong SK, Tan LTH, Leo BF, Goh BH, et al.
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071337 DOI: 10.3390/ijms22115781
    Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  6. El-Sayed NN, Alafeefy AM, Bakht MA, Masand VH, Aldalbahi A, Chen N, et al.
    Molecules, 2016 Dec 02;21(12).
    PMID: 27918459
    Some novel hydrazone derivatives 6a-o were synthesized from the key intermediate 4-Chloro-N-(2-hydrazinocarbonyl-phenyl)-benzamide 5 and characterized using IR, ¹H-NMR, 13C-NMR, mass spectroscopy and elemental analysis. The inhibitory potential against two secretory phospholipase A₂ (sPLA₂), three protease enzymes and eleven bacterial strains were evaluated. The results revealed that all compounds showed preferential inhibition towards hGIIA isoform of sPLA₂ rather than DrG-IB with compounds 6l and 6e being the most active. The tested compounds exhibited excellent antiprotease activity against proteinase K and protease from Bacillus sp. with compound 6l being the most active against both enzymes. Furthermore, the maximum zones of inhibition against bacterial growth were exhibited by compounds; 6a, 6m, and 6o against P. aeruginosa; 6a, 6b, 6d, 6f, 6l, 6m, 6n, and 6o against Serratia; 6k against S. mutans; and compounds 6a, 6d, 6e, 6m, and 6n against E. feacalis. The docking simulations of hydrazones 6a-o with GIIA sPLA₂, proteinase K and hydrazones 6a-e with glutamine-fructose-6-phosphate transaminase were performed to obtain information regarding the mechanism of action.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  7. Azizi S, Mohamad R, Abdul Rahim R, Mohammadinejad R, Bin Ariff A
    Int J Biol Macromol, 2017 Nov;104(Pt A):423-431.
    PMID: 28591593 DOI: 10.1016/j.ijbiomac.2017.06.010
    This paper describes the fabrication and characterization of bio-nanocomposite hydrogel beads based on Kappa-Carrageenan (κ-Carrageenan) and bio-synthesized silver nanoparticles (Ag-NPs). The silver nanoparticles were prepared in aqueous Citrullus colocynthis seed extract as both reducing and capping agent. Cross-linked κ-Carrageenan/Ag-NPs hydrogel beads were prepared using potassium chloride as the cross-linker. The hydrogel beads were characterized using XRD and FESEM. Moreover, swelling property of the hydrogel beads was investigated. The Ag release profile of the hydrogels was obtained by fitting the experimental data to power law equation. The direct visualization of the green synthesized Ag-NPs using TEM shows particle size in the range of 23±2nm. The bio-nanocomposite hydrogels showed lesser swelling behavior in comparison with pure κ-Carrageenan hydrogel. Regardless the slow Ag release, κ-Carrageenan/Ag-NPs presented good antibacterial activities against Staphylococcus aureus, Methicilin Resistant Staphylococcus aurous, Peseudomonas aeruginosa and Escherichia coli with maximum zones of inhibition 11±2mm. Cytotoxicity study showed that the bio-nanocomposite hydrogels with non-toxic effect of concentration below 1000μg/mL have great pharmacological potential and a suitable level of safety for use in the biological systems.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  8. Ngaini Z, Mortadza NA
    Nat Prod Res, 2019 Dec;33(24):3507-3514.
    PMID: 29911437 DOI: 10.1080/14786419.2018.1486310
    Chemical modification of medicines from natural product-based molecules has become of interest in recent years. In this study, a series of halogenated azo derivatives 1a-d were synthesised via coupling reaction, followed by Steglich esterification with aspirin (a natural product derivative) to form azo derivatives 2a-d. While, halogenated azo-aspirin 3a-d were synthesised via direct coupling reaction of aspirin and diazonium salt. Bacteriostatic activity was demonstrated against E. coli and S. aureus via turbidimetric kinetic method. Compound 3a-d showed excellent antibacterial activities against E. coli (MIC 75-94 ppm) and S. aureus (MIC 64-89 ppm) compared to ampicillin (MIC 93 and 124 ppm respectively), followed by 1a-d and 2a-d. The presence of reactive groups of -OH, N=N, C=O and halogens significantly contribute excellent interaction towards E. coli and S. aureus. Molecular dockings analysis of 3a against MIaC protein showed binding free energy of -7.2 kcal/mol (E. coli) and -6.6 kcal/mol (S. aureus).
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  9. Rehman A, Abbasi MA, Siddiqui SZ, Mohyuddin A, Nadeem S, Shah SA
    Pak J Pharm Sci, 2016 Sep;29(5):1489-1496.
    PMID: 27731801
    New potent organic compounds were synthesized with an aim of good biological activities such as antibacterial and anti-enzymatic. Three series of sulfonamide derivatives were synthesized by treating N-alkyl/aryl substituted amines (2a-f) with 4-chlorobenzensulfonyl chloride (1) to yield N-alkyl/aryl-4-chlorobenzenesulfonamide(3af) that was then derivatized by gearing up with ethyl iodide (4), benzyl chloride (5) and 4-chlorobenzyl chloride (6) using sodium hydride as base to initialize the reaction in a polar aprotic solvent (DMF) to synthesize the derivatives, 7a-f, 8af and 9a-f respectively. Structure elucidation was brought about by IR, 1H-NMR and EIMS spectra for all the synthesized molecules which were evaluated for their antibacterial activities and inhibitory potentials for certain enzymes.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  10. Isaac IO, Al-Rashida M, Rahman SU, Alharthy RD, Asari A, Hameed A, et al.
    Bioorg Chem, 2019 02;82:6-16.
    PMID: 30267972 DOI: 10.1016/j.bioorg.2018.09.032
    Urease is a bacterial enzyme that is responsible for virulence of various pathogenic bacteria such as Staphylococcus aureus, Proteus mirabilis, Klebsiella pneumoniae, Ureaplasma urealyticum, Helicobacter pylori and Mycobacterium tuberculosis. Increased urease activity aids in survival and colonization of pathogenic bacteria causing several disorders especially gastric ulceration. Hence, urease inhibitors are used for treatment of such diseases. In search of new molecules with better urease inhibitory activity, herein we report a series of acridine derived (thio)semicarbazones (4a-4e, 6a-6l) that were found to be active against urease enzyme. Molecular docking studies were carried out to better comprehend the preferential mode of binding of these compounds against urease enzyme. Docking against urease from pathogenic bacterium S. pasteurii was also carried out with favorable results. In silico ADME evaluation was done to determine drug likeness of synthesized compounds.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  11. Abbasi MA, Nazeer MM, Rehman A, Siddiqui SZ, Hussain G, Shah SA, et al.
    Pak J Pharm Sci, 2018 Nov;31(6):2477-2485.
    PMID: 30473521
    The aim of the present research work was synthesis of some 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives and to ascertain their antibacterial potential. The cytotoxicity of these molecules was also checked to find out their utility as possible therapeutic agents. The synthesis was initiated by reacting furyl(-1-piperazinyl)methanone (1) in N,N-dimethylformamide (DMF) and lithium hydride with different aralkyl halides (2a-j) to afford 2-furyl[(4-aralkyl)-1-piperazinyl]methanone derivatives (3a-j). The structural confirmation of all the synthesized compounds was done by IR, EI-MS, 1H-NMR and 13C-NMR spectral techniques and through elemental analysis. The results of in vitro antibacterial activity of all the synthesized compounds were screened against Gram-negative (S. typhi, E. coli, P. aeruginosa) and Gram-positive (B. subtilis, S. aureus) bacteria and were found to be decent inhibitors. Amongst the synthesized molecules, 3e showed lowest minimum inhibitory concentration MIC = 7.52±0.μg/mL against S. Typhi, credibly due to the presence of 2-bromobenzyl group, relative to the reference standard, ciprofloxacin, having MIC = 7.45±0.58μg/mL.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  12. Bayrami A, Alioghli S, Rahim Pouran S, Habibi-Yangjeh A, Khataee A, Ramesh S
    Ultrason Sonochem, 2019 Jul;55:57-66.
    PMID: 31084791 DOI: 10.1016/j.ultsonch.2019.03.010
    The synthesis of nanoparticles often result in the generation of harmful chemical pollutants. As such, many researchers have focused on developing green processes, which include the biosynthesis. In this research, ZnO nanoparticles were prepared using the leaf extract of whortleberry (Vaccinium arctostaphylos L.) via a simple ultrasonic-assisted method. The morphology, crystal size and structure, surface, thermal, and optical properties of the bio-mediated ZnO sample (ZnOext) were analyzed and compared with that produced without incorporating the extract (ZnOchem). The ZnO samples were evaluated for their antidiabetic, antibacterial, as well as their sono- and photo-catalytic performances. Initially, the samples were intraperitoneal injected to alloxan-diabetic rats to examine their treatment efficiency in terms of effects on fasting blood glucose, insulin, cholesterol, high-density lipoprotein, and total triglyceride levels. The ZnOext showed significantly higher efficiency for improving the health status of alloxan-diabetic rats in contrast with other tested treatments, vis. ZnOchem, insulin, and only leaf extract. In addition, both the ZnO samples were assessed against gram-negative and gram-positive bacteria and through sono- and photo-catalytic processes for removing rhodamine B, respectively. The results of this study indicated that not only the ZnOext sample was pollution free, it also exhibited higher potentials for treating diabetic rats, bacterial decontamination, and also oxidative removal of organic compounds under the influences of ultrasound and UV irradiations when compared with ZnOchem sample.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  13. Pulingam T, Thong KL, Ali ME, Appaturi JN, Dinshaw IJ, Ong ZY, et al.
    Colloids Surf B Biointerfaces, 2019 Sep 01;181:6-15.
    PMID: 31103799 DOI: 10.1016/j.colsurfb.2019.05.023
    The antibacterial nature of graphene oxide (GO) has stimulated wide interest in the medical field. Although the antibacterial activity of GO towards bacteria has been well studied, a deeper understanding of the mechanism of action of GO is still lacking. The objective of the study was to elucidate the difference in the interactions of GO towards Gram-positive and Gram-negative bacteria. The synthesized GO was characterized by Ultraviolet-visible spectroscopy (UV-vis), Raman and Attenuated Total Reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR). Viability, time-kill and Lactose Dehydrogenase (LDH) release assays were carried out along with FESEM, TEM and ATR-FTIR analysis of GO treated bacterial cells. Characterizations of synthesized GO confirmed the transition of graphene to GO and the antibacterial activity of GO was concentration and time-dependent. Loss of membrane integrity in bacteria was enhanced with increasing GO concentrations and this corresponded to the elevated release of LDH in the reaction medium. Surface morphology of GO treated bacterial culture showed apparent differences in the mechanism of action of GO towards Gram-positive and Gram-negative bacteria where cell entrapment was mainly observed for Gram-positive Staphylococcus aureus and Enterococcus faecalis whereas membrane disruption due to physical contact was noted for Gram-negative Escherichia coli and Pseudomonas aeruginosa. ATR-FTIR characterizations of the GO treated bacterial cells showed changes in the fatty acids, amide I and amide II of proteins, peptides and amino acid regions compared to untreated bacterial cells. Therefore, the data generated further enhance our understanding of the antibacterial activity of GO towards bacteria.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  14. Rajeshkumar S, Menon S, Venkat Kumar S, Tambuwala MM, Bakshi HA, Mehta M, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Aug;197:111531.
    PMID: 31212244 DOI: 10.1016/j.jphotobiol.2019.111531
    Environment friendly methods for the synthesis of copper nanoparticles have become a valuable trend in the current scenario. The utilization of phytochemicals from plant extracts has become a unique technology for the synthesis of nanoparticles, as they possess dual nature of reducing and capping agents to the nanoparticles. In the present investigation we have synthesized copper nanoparticles (CuNPs) using a rare medicinal plant Cissus arnotiana and evaluated their antibacterial activity against gram negative and gram positive bacteria. The morphology and characterization of the synthesized CuNPs were studied and done using UV-Visible spectroscopy at a wavelength range of 350-380 nm. XRD studies were performed for analyzing the crystalline nature; SEM and TEM for evaluating the spherical shape within the size range of 60-90 nm and AFM was performed to check the surface roughness. The biosynthesized CuNPs showed better antibacterial activity against the gram-negative bacteria, E. coli with an inhibition zone of 22.20 ± 0.16 mm at 75 μg/ml. The antioxidant property observed was comparatively equal with the standard antioxidant agent ascorbic acid at a maximum concentration of 40 μg/ ml. This is the first study reported on C. arnotiana mediated biosynthesis of copper nanoparticles, where we believe that the findings can pave way for a new direction in the field of nanotechnology and nanomedicine where there is a significant potential for antibacterial and antioxidant activities. We predict that, these could lead to an exponential increase in the field of biomedical applications, with the utilization of green synthesized CuNPs, due to its remarkable properties. The highest antibacterial property was observed with gram-negative strains mainly, E. coli, due to its thin peptidoglycan layer and electrostatic interactions between the bacterial cell wall and CuNPs surfaces. Hence, CuNPs can be potent therapeutic agents in several biomedical applications, which are yet to be explored in the near future.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  15. Nazir M, Abbasi MA, Aziz-Ur-Rehman -, Siddiqui SZ, Ali Shah SA, Shahid M, et al.
    Pak J Pharm Sci, 2019 Nov;32(6):2585-2597.
    PMID: 31969290
    In the study presented here, the nucleophilic substitution reaction of 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazol-2-ylhydrosulfide was carried out with different alkyl/aralkyl halides (5a-r) to form its different S-substituted derivatives (6a-r), as depicted in scheme 1. The structural confirmation of all the synthesized compounds was done by IR, 1H-NMR, 13C-NMR and CHN analysis data. Bacterial biofilm inhibitory activity of all the synthesized compounds was carried out against Bacillus subtilis and Escherichia coli. The anticancer activity of these molecules was ascertained using anti-proliferation (SRB) assay on HCT 116 Colon Cancer Cell lines while the cytotoxicity of these molecules was profiled for their haemolytic potential. From this investigation it was rational that most of the compounds exhibited suitable antibacterial and anticancer potential along with a temperate cytotoxicity.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  16. Abbasi MA, Irshad M, Aziz-Ur-Rehman -, Siddiqui SZ, Nazir M, Ali Shah SA, et al.
    Pak J Pharm Sci, 2020 Sep;33(5):2161-2170.
    PMID: 33824125
    In the presented work, 2,3-dihydro-1,4-benzodioxin-6-amine (1) was reacted with 4-chlorobenzenesulfonyl chloride (2) in presence of aqueous basic aqueous medium to obtain 4-chloro-N-(2,3-dihydro-1,4-benzodioxin-6-yl)benzenesulfonamide (3). In parallel, various un/substituted anilines (4a-l) were treated with bromoacetyl bromide (5) in basified aqueous medium to obtain corresponding 2-bromo-N-(un/substituted)phenylacetamides (6a-l) as electrophiles. Then the compound 3 was finally reacted with these electrophiles, 6a-l, in dimethylformamide (DMF) as solvent and lithium hydride as base and activator to synthesize a variety of 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(un/substituted)phenylacetamides (7a-l). The synthesized compounds were corroborated by IR, 1H-NMR and EI-MS spectral data for structural confirmations. These molecules were then evaluated for their antimicrobial and antifungal activities along with their %age hemolytic activity. Some compounds were found to have suitable antibacterial and antifungal potential, especially the compound 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(3,5-dimethylphenyl)acetamide (7l) exhibited good antimicrobial potential with low value of % hemolytic activity.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis*
  17. Rajasekaran A, Murugesan S, AnandaRajagopal K
    Arch Pharm Res, 2006 Jul;29(7):535-40.
    PMID: 16903071
    Several novel 1-[2-(1H-tetrazol-5-yl) ethyl]-1H-benzo[d][1,2,3]triazoles (3a-h) have been synthesized by the condensation of 1-[2-(1H-tetrazol-5-yl)-ethyl]-1H-benzotriazole (2) and appropriate acid chlorides. 1-[2-(1H-tetrazol-5-yl)-ethyl]-1H-benzotriazole (2) was synthesized by reacting 3-(1H-benzo[d][1,2,3]triazol-1-yl)propanenitrile with sodium azide and ammonium chloride in the presence of dimethylformamide. The synthesized compounds were characterized by IR and PMR analysis. The titled compounds were evaluated for their in-vitro antibacterial and antifungal activity by the cup plate method and anticonvulsant activity evaluated by the maximal electroshock induced convulsion method in mice. All synthesized compounds exhibited moderate antibacterial activity against Bacillus subtilis and moderate antifungal activity against Candida albicans. Compounds 5-(2-(1H-benzo[d][1,2,3]triazo-1-yl)ethyl)-1H-tetrazol-1-yl)(4-aminophenyl)methanone 3d and 5-(2-(1 H-benzo[d][1,2,3]triazo-1-yl)ethyl)-1H-tetrazol-1-yl)(2-aminophenyl)methanone 3e elicited excellent anticonvulsant activity.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  18. Li Y, Ouyang Y, Wu H, Wang P, Huang Y, Li X, et al.
    Eur J Med Chem, 2022 Jan 15;228:113979.
    PMID: 34802838 DOI: 10.1016/j.ejmech.2021.113979
    The shortage of new antibiotics makes infections caused by gram-negative (G-) bacteria a significant clinical problem. The key enzymes involved in folate biosynthesis represent important targets for drug discovery, and new antifolates with novel mechanisms are urgently needed. By targeting to dihydrofolate reductase (DHFR), a series of 1,3-diamino-7H-pyrrol[3,2-f]quinazoline (PQZ) compounds were designed, and exhibited potent antibacterial activities in vitro, especially against multi-drug resistant G- strains. Multiple experiments indicated that PQZ compounds contain a different molecular mechanism against the typical DHFR inhibitor, trimethoprim (TMP), and the thymidylate synthase (TS) was identified as another potential but a relatively weak target. A significant synergism between the representative compound, OYYF-175, and sulfamethoxazole (SMZ) was observed with a strong cumulative and significantly bactericidal effect at extremely low concentrations (2 μg/mL for SMZ and 0.03 pg/mL for OYYF-175), which could be resulted from the simultaneous inhibition of dihydropteroate synthase (DHPS), DHFR and TS. PQZ compounds exhibited therapeutic effects in a mouse model of intraperitoneal infections caused by Escherichia coli (E. coli). The co-crystal structure of OYYF-175-DHFR was solved and the detailed interactions were provided. The inhibitors reported represent innovative chemical structures with novel molecular mechanism of action, which will benefit the generation of new, efficacious bactericidal compounds.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  19. Ur-Rehman A, Khan SG, Naqvi SAR, Ahmad M, Akhtar N, Bokhari TH, et al.
    Pak J Pharm Sci, 2021 Jan;34(1(Special)):441-446.
    PMID: 34275792
    A series of new derivatives of 4-(2-chloroethyl)morpholine hydrochloride (5) were efficiently synthesized. Briefly, different aromatic organic acids (1a-f) were refluxed to acquire respective esters (2a-f) using conc. H2SO4 as catalyst. The esters were subjected to nucleophillic substitution by monohydrated hydrazine to acquire hydrazides (3a-f). The hydrazides were cyclized with CS2 in the presence of KOH to yield corresponding oxadiazoles (4a-f). Finally, the derivatives, 6a-f, were prepared by reacting oxadiazoles (4a-f) with 5 using NaH as activator. Structures of all the derivatives were elucidated through 1D-NMR EI-MS and IR spectral data. All these molecules were subjected to antibacterial and hemolytic activities and showed good antibacterial and hemolytic potential relative to the reference standards.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
  20. Safdar MH, Hasan H, Afzal S, Hussain Z
    Mini Rev Med Chem, 2018;18(12):1047-1063.
    PMID: 29173165 DOI: 10.2174/1389557517666171123212039
    The immune system is an intricate and coordinated nexus serving as a natural defense to preclude internal and external pathogenic insults. The deregulation in the natural balance of immunological functions as a consequence of either over expression or under expression of immune cells tends to cause disruption of homeostasis in the body and may lead to development of numerous immune system disorders. Chalcone moieties (1,3-diphenyl-2-propen-1-one) have been well-documented as ideal lead compounds or precursors to design a wide range of pharmacologically active agents to down-regulate various immune disorders. Owing to their unique structural and molecular framework, these α, β-unsaturated carbonyl-based moieties have also gained remarkable recognition due to their other multifarious pharmacological properties including antifungal, anti-inflammatory, anti-malarial, antibacterial, anti-tuberculosis, and anticancer potential. Though a great number of methodologies are currently being employed for their synthesis, this review mainly focuses on the natural and synthetic chalcone derivatives that are exclusively synthesized via Claisen-Schmidt condensation reaction and their immunomodulatory prospects. We have critically reviewed the literature and provided convincing evidence for the promising efficacy of chalcone derivatives to modulate functioning of various innate and adaptive immune players including granulocytes, mast cells, monocytes, macrophages, platelets, dendritic cells, natural killer cells, and T-lymphocytes.
    Matched MeSH terms: Anti-Bacterial Agents/chemical synthesis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links