Displaying publications 21 - 40 of 1834 in total

Abstract:
Sort:
  1. Lim SM, Yim HS
    Int J Med Mushrooms, 2012;14(6):593-602.
    PMID: 23510253
    A central composite design of response surface methodology (RSM) was employed to optimize the extraction time (X1: 266.4-393.6 min) and temperature (X2: 42.9-57.1°C) of Pleurotus ostreatus aqueous extract with high antioxidant activities, namely DPPH radical-scavenging activity, ABTS radical cation inhibition, and ferric reducing/antioxidant power, as well as total phenolic content (TPC). Results showed that the data were adequately fitted into four second-order polynomial models developed by RSM. The extraction time and temperature were found to have significant quadratic effects on antioxidant activities and TPC. The optimal extraction time and temperature were 282.3 min and 42.9°C (DPPH), 393.6 min and 42.9°C (ABTS), 340.4 min and 49.8°C (FRAP), and 347.6 min, 49.7°C (TPC), with corresponding yields of 53.32%, 73.20%, 37.14 mM Fe2+ equivalents/100 g, and 826.33 mg gallic acid equivalents/100 g, respectively. These experimental data were close to their predicted values. The establishment of such a model provides a good experimental basis for employing RSM to optimize the extraction time and temperature for high antioxidant activities from P. ostreatus.
    Matched MeSH terms: Antioxidants/pharmacology*; Antioxidants/chemistry
  2. Selby-Pham SNB, Siow LF, Bennett LE
    Food Funct, 2020 Jan 29;11(1):907-920.
    PMID: 31942898 DOI: 10.1039/c9fo01149h
    After oil extraction, palm fruit biomass contains abundant water-soluble phytochemicals (PCs) with proven bioactivity in regulating oxidative stress and inflammation (OSI). For optimal bioefficacy following oral consumption, the pharmacokinetic plasma peak (Tmax) should be bio-matched with the onset of OSI, which can be predicted from the Phytochemical Absorption Prediction (PCAP) model and methodology. Predicted absorption and potential for regulation of OSI by measures of total phenolic content, antioxidant capacity and hydrogen peroxide production capacity, were applied to characterise eight extracts from mesocarp fibre and kernel shells of oil-depleted palm fruits. Results indicated post-consumption absorption Tmax ranges of 0.5-12 h and 2-6 h for intake in liquid and solid forms, respectively, and generally high antioxidant activity of the extracts. The research supports that PC extracts of palm fruit biomass have broad potential uses for human health as dietary antioxidants in foods, supplements or functional beverages.
    Matched MeSH terms: Antioxidants/pharmacokinetics*; Antioxidants/chemistry
  3. Ahmad Mohd Zain MR, Abdul Kari Z, Dawood MAO, Nik Ahmad Ariff NS, Salmuna ZN, Ismail N, et al.
    Appl Biochem Biotechnol, 2022 Oct;194(10):4587-4624.
    PMID: 35579740 DOI: 10.1007/s12010-022-03952-2
    A novel coronavirus disease (COVID-19) or severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), transmitted from person to person, has quickly emerged as the pandemic responsible for the current global health crisis. This infection has been declared a global pandemic, resulting in a concerning number of deaths as well as complications post-infection, primarily among vulnerable groups particularly older people and those with multiple comorbidities. In this article, we review the most recent research on the role of date palm (Phoenix dactylifera L.) fruits (DPFs) to prevent or treat COVID-19 infection. The mechanisms underlying this preventive or therapeutic effect are also discussed in terms of bioactivity potentials in date palm, e.g., antimicrobial, antioxidant, anticancer, anti-diabetic, anti-inflammatory, neuroprotective, and hemolytic potential, as well as prospect against COVID-19 disease and the potential product development. Therefore, it can be concluded that regular consumption of DPFs may be associated with a lower risk of some chronic diseases. Indeed, DPFs have been widely used in folk medicine since ancient times to treat a variety of health conditions, demonstrating the importance of DPFs as a nutraceutical and source of functional nourishment. This comprehensive review aims to summarize the majority of the research on DPFs in terms of nutrient content and biologically active components such as phenolic compounds, with an emphasis on their roles in improving overall health as well as the potential product development to ensure consumers' satisfaction in a current pandemic situation. In conclusion, DPFs can be given to COVID-19 patients as a safe and effective add-on medication or supplement in addition to routine treatments.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/therapeutic use
  4. Alkhoori MA, Kong AS, Aljaafari MN, Abushelaibi A, Erin Lim SH, Cheng WH, et al.
    Biomolecules, 2022 Nov 03;12(11).
    PMID: 36358976 DOI: 10.3390/biom12111626
    Date palm (Phoenix dactylifera L.) is an essential agricultural crop in most Middle Eastern countries, and its fruit, known as dates, is consumed by millions of people. Date seeds, a by-product of the date fruit processing industry, are a waste product used as food for domestic farm animals. Date seeds contain abundant sources of carbohydrates, oil, dietary fiber, and protein; they also contain bioactive phenolic compounds that may possess potential biological properties. In addition, its rich chemical composition makes date seeds suitable for use in food product formulation, cosmetics, and medicinal supplements. This review aims to provide a discourse on the nutritional value of date seeds. The latest data on the cytotoxicity of date seed compounds against cancer cell lines, its ability to combat diabetes, antioxidant potential, antimicrobial effect, and anti-inflammatory activity will be provided, considering its potential to be a nutritional therapeutic agent for chronic diseases. Application of date seeds in the form of powder and oil will also be discussed.
    Matched MeSH terms: Antioxidants/analysis; Antioxidants/pharmacology
  5. El Omari N, Mrabti HN, Benali T, Ullah R, Alotaibi A, Abdullah ADI, et al.
    Front Biosci (Landmark Ed), 2023 Sep 27;28(9):229.
    PMID: 37796709 DOI: 10.31083/j.fbl2809229
    BACKGROUND: Screening new natural molecules with pharmacological and/or cosmetic properties remains a highly sought-after area of research. Moreover, essential oils and volatile compounds have recently garnered significant interest as natural substance candidates. In this study, the volatile components of Pistacia lentiscus L. essential oils (PLEOs) isolated from the fruit and its main compounds, alpha-pinene, and limonene, are investigated for antioxidant, antidiabetic, and dermatoprotective activities.

    METHODS: In vitro antioxidant activity was investigated using 2,2'-diphenyl-1-picrylhydrazyl (DPPH), fluorescence recovery after photobleaching (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. The antidiabetic and dermatoprotective effects were studied using enzyme inhibitory activities.

    RESULTS: Antioxidant tests showed that PLEO has the best activity (ranging from 29.64 ± 3.04 to 73.80 ± 3.96 µg/mL) compared to its main selected molecules (ranging from 74 ± 3.72 to 107.23 ± 5.03 µg/mL). The α-glucosidase and α-amylase assays demonstrated that the elements tested have a promising antidiabetic potential with IC50values ranging from 78.03 ± 2.31 to 116.03 ± 7.42 µg/mL and 74.39 ± 3.08 to 112.35 ± 4.92 µg/mL for the α-glucosidase and α-amylase assays, respectively, compared to the standard drug. For the tyrosinase test, we found that the EOs (IC50 = 57.72 ± 2.86 µg/mL) followed by limonene (IC50 = 74.24 ± 2.06 µg/mL) and α-pinene (IC50 = 97.45 ± 5.22 µg/mL) all exhibited greater inhibitory effects than quercetin (IC50 = 246.90 ± 2.54 µg/mL).

    CONCLUSIONS: Our results suggest that the biological activities of PLEO, as well as its main compounds, make them promising candidates for the development of new strategies aimed at improving dermatoprotection and treating diseases associated with diabetes mellitus and oxidative stress.

    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry
  6. Lim MW, Yow YY, Gew LT
    J Cosmet Dermatol, 2023 Oct;22(10):2810-2815.
    PMID: 37313630 DOI: 10.1111/jocd.15794
    BACKGROUND: Application of natural resources from the marine environment in the cosmeceutical industry is gaining great attention.

    AIM: This study pursues to discover the cosmeceutical potential of two Malaysian algae, Sargassum sp. and Kappaphycus sp. by determining their antioxidant capacity and assessing the presence of their secondary metabolites with cosmeceutical potential using non-targeted metabolite profiling.

    METHODS: Metabolite profiling using Quadrupole Time-of-Flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) in the Electrospray Ionization (ESI) mode resulted in 110 putative metabolites in Sargassum sp. and 47 putative metabolites in Kappaphycus sp. and were grouped according to their functions. To the best of our knowledge, the bioactive compounds of both algae have not been studied in any great detail. This is the first report to explore their cosmeceutical potential.

    RESULTS: Six antioxidants were detected in Sargassum sp., including fucoxanthin, (3S, 4R, 3'R)-4-Hydroxyalloxanthin, enzacamene N-stearoyl valine, 2-hydroxy-hexadecanoic acid, and metalloporphyrins. Meanwhile, three antioxidants detected in Kappahycus sp., namely Tanacetol A, 2-fluoro palmitic acid and idebenone metabolites. Three antioxidants are found in both algae species, namely, 3-tert-Butyl-5-methylcatechol, (-)-isoamijiol, and (6S)-dehydrovomifoliol. Anti-inflammatory metabolites such as 5(R)-HETE, protoverine, phytosphingosine, 4,5-Leukotriene-A4, and 5Z-octadecenoic acid were also found in both species. Sargassum sp. possesses higher antioxidant capacity as compared to Kappahycus sp. which may be linked to its number of antioxidant compounds found through LC-MS.

    CONCLUSIONS: Hence, our results conclude that Malaysian Sargassum sp. and Kappaphycus sp. are potential natural cosmeceutical ingredients as we aim to produce algae cosmeceutical products using native algae.

    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry
  7. Chua LS
    J Ethnopharmacol, 2013 Dec 12;150(3):805-17.
    PMID: 24184193 DOI: 10.1016/j.jep.2013.10.036
    Rutin is a common dietary flavonoid that is widely consumed from plant-derived beverages and foods as traditional and folkloric medicine worldwide. Rutin is believed to exhibit significant pharmacological activities, including anti-oxidation, anti-inflammation, anti-diabetic, anti-adipogenic, neuroprotective and hormone therapy. Till date, over 130 registered therapeutic medicinal preparations are containing rutin in their formulations. This article aims to critically review the extraction methods for plant-based rutin and its pharmacological activities. This review provides comprehensive data on the performance of rutin extraction methods and the extent of its pharmacological activities using various in vitro and in vivo experimental models.
    Matched MeSH terms: Antioxidants/isolation & purification; Antioxidants/pharmacology; Antioxidants/therapeutic use
  8. Anarjan N, Tan CP, Nehdi IA, Ling TC
    Food Chem, 2012 Dec 1;135(3):1303-9.
    PMID: 22953858 DOI: 10.1016/j.foodchem.2012.05.091
    Astaxanthin colloidal particles were produced using solvent-diffusion technique in the presence of different food grade surface active compounds, namely, Polysorbate 20 (PS20), sodium caseinate (SC), gum Arabic (GA) and the optimum combination of them (OPT). Particle size and surface charge characteristics, rheological behaviour, chemical stability, colour, in vitro cellular uptake, in vitro antioxidant activity and residual solvent concentration of prepared colloidal particles were evaluated. The results indicated that in most cases the mixture of surface active compounds lead to production of colloidal particles with more desirable physicochemical and biological properties, as compared to using them individually. The optimum combination of PS20, SC and GA could produce the astaxanthin colloidal particles with small particle size, polydispersity index (PDI), conductivity and higher zeta potential, mobility, cellular uptake, colour intensity and in vitro antioxidant activity. In addition, all prepared astaxanthin colloidal particles had significantly (p<0.05) higher cellular uptake than pure astaxanthin powder.
    Matched MeSH terms: Antioxidants/chemical synthesis; Antioxidants/metabolism; Antioxidants/chemistry*
  9. Yehye WA, Rahman NA, Ariffin A, Abd Hamid SB, Alhadi AA, Kadir FA, et al.
    Eur J Med Chem, 2015 Aug 28;101:295-312.
    PMID: 26150290 DOI: 10.1016/j.ejmech.2015.06.026
    Hindered phenols find a wide variety of applications across many different industry sectors. Butylated hydroxytoluene (BHT) is a most commonly used antioxidant recognized as safe for use in foods containing fats, pharmaceuticals, petroleum products, rubber and oil industries. In the past two decades, there has been growing interest in finding novel antioxidants to meet the requirements of these industries. To accelerate the antioxidant discovery process, researchers have designed and synthesized a series of BHT derivatives targeting to improve its antioxidant properties to be having a wide range of antioxidant activities markedly enhanced radical scavenging ability and other physical properties. Accordingly, some structure-activity relationships and rational design strategies for antioxidants based on BHT structure have been suggested and applied in practice. We have identified 14 very sensitive parameters, which may play a major role on the antioxidant performance of BHT. In this review, we attempt to summarize the current knowledge on this topic, which is of significance in selecting and designing novel antioxidants using a well-known antioxidant BHT as a building-block molecule. Our strategy involved investigation on understanding the chemistry behind the antioxidant activities of BHT, whether through hydrogen or electron transfer mechanism to enable promising anti-oxidant candidates to be synthesized.
    Matched MeSH terms: Antioxidants/chemical synthesis; Antioxidants/pharmacology*; Antioxidants/chemistry*
  10. Krishna Kishore, R.
    Compendium of Oral Science, 2014;1(1):13-23.
    MyJurnal
    Honey is a rich source of natural nutrients. Its production is a slow, natural process with the pace of which varies seasonally. However, based on recent reports, we hypothesize that the long-term storage of processed honey, even under the most appropriate storage conditions, results in a deterioration of its quality. To test our hypothesis, we collected Tualang honey samples harvested during the years 2005, 2008, 2009 and 2010 and tested various parameters including physicochemical properties and also performed comparative analyses of antioxidant capacities to assess its medicinal values. Our results indicate that, upon long-term storage, the quality of honey samples deteriorates, as observed in our TH 2008 and TH 2005 year honey samples, which showed unacceptable quality based on the recommended criteria of free acidity (71 .34±1.31 meq/kg), moisture (27.72%), diastase activity (3.38±0.34 Goth scale) and hydroxymethylfurfural (HMF) (449.89±3.23 mg/kg) by Codex and European Commission Regulation. A significant (p
    Matched MeSH terms: Antioxidants
  11. Hafzan, Y., Saw, J.W., Fadzilah, I.
    MyJurnal
    Previous studies proved the antioxidant properties of dates. However, studies on date byproducts especially date vinegar are still lacking. Hence, it is the aim of the present study to compare the physicochemical properties, total phenolic content, and antioxidant capacity between homemade and commercial date vinegar. Physicochemical properties such as total sugar content, pH, and total titratable acidity of homemade and commercial date vinegar were studied. Both homemade and commercial date vinegar showed significant difference in physicochemical properties including pH, sugar content and total titratable acidity (p
    Matched MeSH terms: Antioxidants
  12. Shamaruddin N, Tan ETT, Shin TY, Razali RM, Siva R
    Int J Med Mushrooms, 2021;23(7):41-49.
    PMID: 34375517 DOI: 10.1615/IntJMedMushrooms.2021038812
    Black jelly mushroom (Auricularia polytricha) is a well-known Chinese traditional food that has therapeutic effects. This study evaluated the effects of different cooking methods (boiling, steaming, microwaving, and stir-frying) on the physicochemical characteristics (i.e., total phenolic content, antioxidants, α,α-diphenyl-β-picryl-hydrazyl [DPPH] free radical scavenging, and ferric reducing antioxidant power [FRAP]) along with color, texture, moisture, and sensory properties of black jelly mushrooms. Lightness (L*) was significantly lower for the stir-frying method (29.93) compared to the control (34.62). Stir-fried mushrooms had significantly lower firmness force (texture) and moisture content (80.13 N and 61.98%, respectively) compared to the control (2000.37 N and 86.52%). The steaming method contributed significantly higher total phenolic content (11.23 mg gallic acid equivalents/g) and antioxidant activity measured using the FRAP (33.54 mg Trolox equivalents/g) and DPPH (90.41% inhibition) assays compared to the respective controls.
    Matched MeSH terms: Antioxidants
  13. Naguib AM, Apparoo Y, Xiong C, Phan CW
    Int J Med Mushrooms, 2023;25(2):11-22.
    PMID: 36749053 DOI: 10.1615/IntJMedMushrooms.2022046849
    Neurodegeneration is one of the most common manifestations in an aging population. The occurrence of oxidative stress and neuroinflammation are the main contributors to the phenomenon. Neurologic conditions such as Alzheimer's disease (AD) and Parkinson's disease (PD) are challenging to treat due to their irreversible manner as well as the lack of effective treatment. Grifola frondosa (Dicks.: Fr.) S.F. Gray, or maitake mushroom, is believed to be a potential choice as a therapeutic agent for neurodegenerative diseases. G. frondosa is known to be a functional food that has a wide variety of medicinal purposes. Thus, this review emphasizes the neuroprotective effects and the chemical composition of G. frondosa. Various studies have described that G. frondosa can protect and proliferate neuronal cells through neurogenesis, antioxidative, anti-inflammatory, and anti-β-amyloid activities. The mechanism of action behind these therapeutic findings in various in vitro and in vivo models has also been intensively studied. In this mini review, we also summarized the chemical composition of G. frondosa to provide a better understanding of the presence of nutritional compounds in G. frondosa.
    Matched MeSH terms: Antioxidants
  14. Rabiu Z, Hamzah MAAM, Hasham R, Zakaria ZA
    Environ Sci Pollut Res Int, 2021 Aug;28(30):40535-40543.
    PMID: 32418105 DOI: 10.1007/s11356-020-09209-x
    Pyroligneous acid (PA) obtained from slow pyrolysis of palm kernel shell (PKS) has high total phenolic contents and exhibits various biological activities including antioxidant, antibacterial and antifungal. In this study, PA obtained using slow pyrolysis method and fractionated using column chromatography was characterized (chemical and antioxidative properties) and investigated for its cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibition activities using the in vitro and in silico approaches. The F9 PA fraction exhibited highest total phenolic content of 181.75 ± 17.0 μg/mL. Fraction F21-25 showed ferric reducing antioxidant power (FRAP) (331.80 ± 4.60 mg TE/g) and IC50 of 18.56 ± 0.01 μg/mL towards COX-2 and 5.25 ± 0.03 μg/mL towards the 5-LOX enzymes, respectively. Molecular docking analysis suggested favourable binding energy for all chemical compounds present in fraction F21-25, notably 1-(2,4,6-trihydroxyphenyl)-2-pentanone, towards both COX-2 (- 6.9 kcal/mol) and 5-LOX (- 6.4 kcal/mol) enzymes. As a conclusion, PA from PKS has the potential to be used as an alternative antioxidant and antiinflammatory agents which is biodegradable and a more sustainable supply of raw materials.
    Matched MeSH terms: Antioxidants
  15. Phuah YQ, Chang SK, Ng WJ, Lam MQ, Ee KY
    Food Res Int, 2023 Aug;170:113007.
    PMID: 37316075 DOI: 10.1016/j.foodres.2023.113007
    This review discussed the origin, manufacturing process, chemical composition, factors affecting quality and health benefits of matcha (Camellia sinensis), and the application of chemometrics and multi-omics in the science of matcha. The discussion primarily distinguishes between matcha and regular green tea with processing and compositional factors, and demonstrates beneficial health effects of consuming matcha. Preferred Reporting Items for Systematic Reviews and Meta-Analyses was adopted to search for relevant information in this review. Boolean operators were incorporated to explore related sources in various databases. Notably, climate, cultivar, maturity of tea leaves, grinding process and brewing temperature impact on the overall quality of matcha. Besides, sufficient shading prior to harvesting significantly increases the contents of theanine and chlorophyll in the tea leaves. Furthermore, the ground whole tea leaf powder delivers matcha with the greatest benefits to the consumers. The health promoting benefits of matcha are mainly contributed by its micro-nutrients and the antioxidative phytochemicals, specifically epigallocatechin-gallate, theanine and caffeine. Collectively, the chemical composition of matcha affected its quality and health benefits significantly. To this end, more studies are required to elucidate the biological mechanisms of these compounds for human health. Chemometrics and multi-omics technologies are useful to fill up the research gaps identified in this review.
    Matched MeSH terms: Antioxidants
  16. Ng ZX, Chai JW, Kuppusamy UR
    Int J Food Sci Nutr, 2011 Mar;62(2):158-63.
    PMID: 21250903 DOI: 10.3109/09637486.2010.526931
    The present study compares water-soluble phenolic content (WPC) and antioxidant activities in Chinese long bean (Vigna unguiculata), bitter gourd (Momordica charantia), water convolvulus (Ipomoea aquatica) and broccoli (Brassica olearacea) prior to and after subjecting to boiling, microwaving and pressure cooking. The total antioxidant activity was increased in cooked water convolvulus, broccoli and bitter gourd, estimated based on the ferric reducing antioxidant power, the Trolox equivalent antioxidant capacity and 2,2-diphenyl-1-picryl-hydrazyl radical scavenging activity. Pressure cooking did not cause any significant decline in the antioxidant property. Boiling generally improved the overall antioxidant activity in all the vegetables. Correlation analysis suggests that WPC contributed to significant antioxidant activities in these vegetables. Thus, prudence in selecting an appropriate cooking method for different vegetables may improve or preserve their nutritional value.
    Matched MeSH terms: Antioxidants/analysis*
  17. Kaha M, Iwamoto K, Yahya NA, Suhaimi N, Sugiura N, Hara H, et al.
    Sci Rep, 2021 06 03;11(1):11708.
    PMID: 34083633 DOI: 10.1038/s41598-021-91128-z
    Microalgae are important microorganisms which produce potentially valuable compounds. Astaxanthin, a group of xanthophyll carotenoids, is one of the most powerful antioxidants mainly found in microalgae, yeasts, and crustaceans. Environmental stresses such as intense light, drought, high salinity, nutrient depletion, and high temperature can induce the accumulation of astaxanthin. Thus, this research aims to investigate the effect of black light, also known as long-wave ultraviolet radiation or UV-A, as a stressor on the accumulation of astaxanthin as well as to screen the antioxidant property in two tropical green algal strains isolated from Malaysia, Coelastrum sp. and Monoraphidium sp. SP03. Monoraphidium sp. SP03 showed a higher growth rate (0.66 day-1) compared to that of Coelastrum sp. (0.22 day-1). Coelastrum sp. showed significantly higher accumulation of astaxanthin in black light (0.999 g mL culture-1) compared to that in control condition (0.185 g mL-1). Similarly, Monoraphidium sp. SP03 showed higher astaxanthin content in black light (0.476 g mL culture-1) compared to that in control condition (0.363 g mL culture-1). Coelastrum sp. showed higher scavenging activity (30.19%) when cultured in black light condition, indicating a correlation between the antioxidant activity and accumulation of astaxanthin. In this study, black light was shown to possess great potential to enhance the production of astaxanthin in microalgae.
    Matched MeSH terms: Antioxidants/metabolism
  18. Morvaridzadeh M, Estêvão MD, Morvaridi M, Belančić A, Mohammadi S, Hassani M, et al.
    Prostaglandins Other Lipid Mediat, 2022 Dec;163:106666.
    PMID: 35914666 DOI: 10.1016/j.prostaglandins.2022.106666
    Conjugated Linoleic Acid (CLA) are thought to pose beneficial effects on inflammatory responses and oxidative stress (OS). Thus, the present systematic review and meta-analysis of randomized controlled trials (RCTs) aimed to assess the net effects of CLA supplementation on various OS parameters and antioxidant enzymes. PubMed/MEDLINE, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials databases were searched for publications on CLA supplementation effects on OS parameters up to March 2021. The data extracted from eligible studies were expressed as standardized mean difference with 95% confidence intervals and then combined into meta-analysis using the random-effects model. Overall, 11 RCTs (enrolling 586 participants) met the inclusion criteria and were included in meta-analysis; however, since those trials evaluated different OS parameters, meta-analysis was carried out considering different sets for each parameter separately. According to our results, CLA supplementation significantly increases 8-iso-PGF2α urinary concentration (SMD: 2; 95% CI: 0.74, 3.27; I2 = 87.7%). On contrary, the intervention does not seem to change 15-keto-dihydro-PGF2α urinary concentration, nor the serum levels of CAT, SOD, GPx and MDA. Taken all together, CLA supplementation does not appear to have substantial effects on OS markers in general; albeit due to relatively small sample size and high level of heterogeneity between studies, the obtained findings should be interpreted with caution. Further large well-designed RCTs, investigating the impact of CLA and including various groups of patients, are still needed.
    Matched MeSH terms: Antioxidants/pharmacology
  19. Naz S, Gul A, Zia M, Javed R
    Appl Microbiol Biotechnol, 2023 Feb;107(4):1039-1061.
    PMID: 36635395 DOI: 10.1007/s00253-023-12364-z
    Versatile nature of copper oxide nanoparticles (CuO NPs) has made them an imperative nanomaterial being employed in nanomedicine. Various physical, chemical, and biological methodologies are in use for the preparation of CuO NPs. The physicochemical and biological properties of CuO NPs are primarily affected by their method of fabrication; therefore, selectivity of a synthetic technique is immensely important that makes these NPs appropriate for a specific biomedical application. The deliberate use of CuO NPs in biomedicine questions their biocompatible nature. For this reason, the present review has been designed to focus on the approaches employed for the synthesis of CuO NPs; their biomedical applications highlighting antimicrobial, anticancer, and antioxidant studies; and most importantly, the in vitro and in vivo toxicity associated with these NPs. This comprehensive overview of CuO NPs is unique and novel as it emphasizes on biomedical applications of CuO NPs along with its toxicological assessments which would be useful in providing core knowledge to researchers working in these domains for planning and conducting futuristic studies. KEY POINTS: • The recent methods for fabrication of CuO nanoparticles have been discussed with emphasis on green synthesis methods for different biomedical approaches. • Antibacterial, antioxidant, anticancer, antiparasitic, antidiabetic, and antiviral properties of CuO nanoparticles have been explained. • In vitro and in vivo toxicological studies of CuO nanoparticles exploited along with their respective mechanisms.
    Matched MeSH terms: Antioxidants/pharmacology
  20. Ma ZF, Zhang H, Teh SS, Wang CW, Zhang Y, Hayford F, et al.
    Oxid Med Cell Longev, 2019;2019:2437397.
    PMID: 30728882 DOI: 10.1155/2019/2437397
    Goji berries (Lycium fruits) are usually found in Asia, particularly in northwest regions of China. Traditionally, dried goji berries are cooked before they are consumed. They are commonly used in Chinese soups and as herbal tea. Moreover, goji berries are used for the production of tincture, wine, and juice. Goji berries are high antioxidant potential fruits which alleviate oxidative stress to confer many health protective benefits such as preventing free radicals from damaging DNA, lipids, and proteins. Therefore, the aim of the review was to focus on the bioactive compounds and pharmacological properties of goji berries including their molecular mechanisms of action. The health benefits of goji berries include enhancing hemopoiesis, antiradiation, antiaging, anticancer, improvement of immunity, and antioxidation. There is a better protection through synergistic and additive effects in fruits and herbal products from a complex mixture of phytochemicals when compared to one single phytochemical.
    Matched MeSH terms: Antioxidants/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links