Displaying publications 21 - 40 of 261 in total

Abstract:
Sort:
  1. Hai T, Ma X, Singh Chauhan B, Mahmoud S, Al-Kouz W, Tong J, et al.
    Chemosphere, 2023 Oct;338:139398.
    PMID: 37406939 DOI: 10.1016/j.chemosphere.2023.139398
    A newly developed waste-to-energy system using a biomass combined energy system designed and taken into account for electricity generation, cooling, and freshwater production has been investigated and modeled in this project. The investigated system incorporates several different cycles, such as a biomass waste integrated gasifier-gas turbine cycle, a high-temperature fuel cell, a Rankine cycle, an absorption refrigeration system, and a flash distillation system for seawater desalination. The EES software is employed to perform a basic analysis of the system. They are then transferred to MATLAB software to optimize and evaluate the impact of operational factors. Artificial intelligence is employed to evaluate and model the EES software's analysis output for this purpose. By enhancing the flow rate of fuel from 4 to 6.5 kg/s, the cost rate and energy efficiency are reduced by 51% and increased by 6.5%, respectively. Furthermore, the maximum increment in exergetic efficiency takes place whenever the inlet temperature of the gas turbine rises. According to an analysis of three types of biomasses, Solid Waste possesses the maximum efficiency rate, work output, and expense. Rice Husk, in contrast, has the minimum efficiency, work output, and expense. Additionally, with the change in fuel discharge and gas turbine inlet temperature, the system behavior for all three types of biomasses will be nearly identical. The Pareto front optimization findings demonstrate that the best mode for system performance is an output power of 53,512 kW, a cost of 0.643 dollars per second, and a first law efficiency of 42%. This optimal value occurs for fuel discharge of 5.125 and the maximum inlet temperature for a gas turbine. The rates of water desalination and cooling in this condition are 18.818 kg/s and 2356 kW, respectively.
    Matched MeSH terms: Artificial Intelligence*
  2. Vignesh R, Pradeep P, Balakrishnan P
    Med J Malaysia, 2023 Jul;78(4):547-549.
    PMID: 37518931
    Chat Generative Pre-Trained Transformer (ChatGPT) is an artificial intelligence (AI) language model developed by OpenAI. It is trained to process vast amounts of text and engage in human-like conversational interaction with users. Being accessible by all, it is widely used and its capabilities range from language translation, summarising long texts and creative writing. This article explores the potential role of ChatGPT in medical education and the possible concerns about the misuse of this technology through a conversation with ChatGPT itself via text prompts. The implications of this technology in medical education as told by ChatGPT are interesting and seemingly helpful for both the students and the tutors. However, this could be a double-edged sword considering the risks of compromised students' integrity and concerns of over-reliance. This also calls for counter strategies and policies in place to mitigate these risks.
    Matched MeSH terms: Artificial Intelligence*
  3. Blaizot A, Veettil SK, Saidoung P, Moreno-Garcia CF, Wiratunga N, Aceves-Martins M, et al.
    Res Synth Methods, 2022 May;13(3):353-362.
    PMID: 35174972 DOI: 10.1002/jrsm.1553
    The exponential increase in published articles makes a thorough and expedient review of literature increasingly challenging. This review delineated automated tools and platforms that employ artificial intelligence (AI) approaches and evaluated the reported benefits and challenges in using such methods. A search was conducted in 4 databases (Medline, Embase, CDSR, and Epistemonikos) up to April 2021 for systematic reviews and other related reviews implementing AI methods. To be included, the review must use any form of AI method, including machine learning, deep learning, neural network, or any other applications used to enable the full or semi-autonomous performance of one or more stages in the development of evidence synthesis. Twelve reviews were included, using nine different tools to implement 15 different AI methods. Eleven methods were used in the screening stages of the review (73%). The rest were divided: two in data extraction (13%) and two in risk of bias assessment (13%). The ambiguous benefits of the data extractions, combined with the reported advantages from 10 reviews, indicating that AI platforms have taken hold with varying success in evidence synthesis. However, the results are qualified by the reliance on the self-reporting of the review authors. Extensive human validation still appears required at this stage in implementing AI methods, though further evaluation is required to define the overall contribution of such platforms in enhancing efficiency and quality in evidence synthesis.
    Matched MeSH terms: Artificial Intelligence*
  4. Chin H, Song H, Baek G, Shin M, Jung C, Cha M, et al.
    J Med Internet Res, 2023 Oct 20;25:e51712.
    PMID: 37862063 DOI: 10.2196/51712
    BACKGROUND: Artificial intelligence chatbot research has focused on technical advances in natural language processing and validating the effectiveness of human-machine conversations in specific settings. However, real-world chat data remain proprietary and unexplored despite their growing popularity, and new analyses of chatbot uses and their effects on mitigating negative moods are urgently needed.

    OBJECTIVE: In this study, we investigated whether and how artificial intelligence chatbots facilitate the expression of user emotions, specifically sadness and depression. We also examined cultural differences in the expression of depressive moods among users in Western and Eastern countries.

    METHODS: This study used SimSimi, a global open-domain social chatbot, to analyze 152,783 conversation utterances containing the terms "depress" and "sad" in 3 Western countries (Canada, the United Kingdom, and the United States) and 5 Eastern countries (Indonesia, India, Malaysia, the Philippines, and Thailand). Study 1 reports new findings on the cultural differences in how people talk about depression and sadness to chatbots based on Linguistic Inquiry and Word Count and n-gram analyses. In study 2, we classified chat conversations into predefined topics using semisupervised classification techniques to better understand the types of depressive moods prevalent in chats. We then identified the distinguishing features of chat-based depressive discourse data and the disparity between Eastern and Western users.

    RESULTS: Our data revealed intriguing cultural differences. Chatbot users in Eastern countries indicated stronger emotions about depression than users in Western countries (positive: P

    Matched MeSH terms: Artificial Intelligence*
  5. Yang J, Por LY, Leong MC, Ku CS
    Ann Biomed Eng, 2023 Dec;51(12):2638-2640.
    PMID: 37332002 DOI: 10.1007/s10439-023-03281-3
    ChatGPT, an advanced language generation model developed by OpenAI, has the potential to revolutionize healthcare delivery and support for individuals with various conditions, including Down syndrome. This article explores the applications of ChatGPT in assisting children with Down syndrome, highlighting the benefits it can bring to their education, social interaction, and overall well-being. While acknowledging the challenges and limitations, we examine how ChatGPT can be utilized as a valuable tool in enhancing the lives of these children, promoting their cognitive development, and supporting their unique needs.
    Matched MeSH terms: Artificial Intelligence*
  6. Kumar P, Abubakar AA, Verma AK, Umaraw P, Adewale Ahmed M, Mehta N, et al.
    Crit Rev Food Sci Nutr, 2023 Nov;63(33):11830-11858.
    PMID: 35821661 DOI: 10.1080/10408398.2022.2096562
    Treating livestock as senseless production machines has led to rampant depletion of natural resources, enhanced greenhouse gas emissions, gross animal welfare violations, and other ethical issues. It has essentially instigated constant scrutiny of conventional meat production by various experts and scientists. Sustainably in the meat sector is a big challenge which requires a multifaced and holistic approach. Novel tools like digitalization of the farming system and livestock market, precision livestock farming, application of remote sensing and artificial intelligence to manage production and environmental impact/GHG emission, can help in attaining sustainability in this sector. Further, improving nutrient use efficiency and recycling in feed and animal production through integration with agroecology and industrial ecology, improving individual animal and herd health by ensuring proper biosecurity measures and selective breeding, and welfare by mitigating animal stress during production are also key elements in achieving sustainability in meat production. In addition, sustainability bears a direct relationship with various social dimensions of meat production efficiency such as non-market attributes, balance between demand and consumption, market and policy failures. The present review critically examines the various aspects that significantly impact the efficiency and sustainability of meat production.
    Matched MeSH terms: Artificial Intelligence*
  7. Abdaljaleel M, Barakat M, Alsanafi M, Salim NA, Abazid H, Malaeb D, et al.
    Sci Rep, 2024 Jan 23;14(1):1983.
    PMID: 38263214 DOI: 10.1038/s41598-024-52549-8
    Artificial intelligence models, like ChatGPT, have the potential to revolutionize higher education when implemented properly. This study aimed to investigate the factors influencing university students' attitudes and usage of ChatGPT in Arab countries. The survey instrument "TAME-ChatGPT" was administered to 2240 participants from Iraq, Kuwait, Egypt, Lebanon, and Jordan. Of those, 46.8% heard of ChatGPT, and 52.6% used it before the study. The results indicated that a positive attitude and usage of ChatGPT were determined by factors like ease of use, positive attitude towards technology, social influence, perceived usefulness, behavioral/cognitive influences, low perceived risks, and low anxiety. Confirmatory factor analysis indicated the adequacy of the "TAME-ChatGPT" constructs. Multivariate analysis demonstrated that the attitude towards ChatGPT usage was significantly influenced by country of residence, age, university type, and recent academic performance. This study validated "TAME-ChatGPT" as a useful tool for assessing ChatGPT adoption among university students. The successful integration of ChatGPT in higher education relies on the perceived ease of use, perceived usefulness, positive attitude towards technology, social influence, behavioral/cognitive elements, low anxiety, and minimal perceived risks. Policies for ChatGPT adoption in higher education should be tailored to individual contexts, considering the variations in student attitudes observed in this study.
    Matched MeSH terms: Artificial Intelligence*
  8. Khoriati AA, Shahid Z, Fok M, Frank RM, Voss A, D'Hooghe P, et al.
    J ISAKOS, 2024 Apr;9(2):227-233.
    PMID: 37949113 DOI: 10.1016/j.jisako.2023.10.015
    Matched MeSH terms: Artificial Intelligence*
  9. Mohd Faizal AS, Thevarajah TM, Khor SM, Chang SW
    Comput Methods Programs Biomed, 2021 Aug;207:106190.
    PMID: 34077865 DOI: 10.1016/j.cmpb.2021.106190
    Cardiovascular disease (CVD) is the leading cause of death worldwide and is a global health issue. Traditionally, statistical models are used commonly in the risk prediction and assessment of CVD. However, the adoption of artificial intelligent (AI) approach is rapidly taking hold in the current era of technology to evaluate patient risks and predict the outcome of CVD. In this review, we outline various conventional risk scores and prediction models and do a comparison with the AI approach. The strengths and limitations of both conventional and AI approaches are discussed. Besides that, biomarker discovery related to CVD are also elucidated as the biomarkers can be used in the risk stratification as well as early detection of the disease. Moreover, problems and challenges involved in current CVD studies are explored. Lastly, future prospects of CVD risk prediction and assessment in the multi-modality of big data integrative approaches are proposed.
    Matched MeSH terms: Artificial Intelligence
  10. Rahman MM, Khatun F, Uzzaman A, Sami SI, Bhuiyan MA, Kiong TS
    Int J Health Serv, 2021 10;51(4):446-461.
    PMID: 33999732 DOI: 10.1177/00207314211017469
    The novel coronavirus disease (COVID-19) has spread over 219 countries of the globe as a pandemic, creating alarming impacts on health care, socioeconomic environments, and international relationships. The principal objective of the study is to provide the current technological aspects of artificial intelligence (AI) and other relevant technologies and their implications for confronting COVID-19 and preventing the pandemic's dreadful effects. This article presents AI approaches that have significant contributions in the fields of health care, then highlights and categorizes their applications in confronting COVID-19, such as detection and diagnosis, data analysis and treatment procedures, research and drug development, social control and services, and the prediction of outbreaks. The study addresses the link between the technologies and the epidemics as well as the potential impacts of technology in health care with the introduction of machine learning and natural language processing tools. It is expected that this comprehensive study will support researchers in modeling health care systems and drive further studies in advanced technologies. Finally, we propose future directions in research and conclude that persuasive AI strategies, probabilistic models, and supervised learning are required to tackle future pandemic challenges.
    Matched MeSH terms: Artificial Intelligence
  11. Silalahi DD, Midi H, Arasan J, Mustafa MS, Caliman JP
    Heliyon, 2020 Jan;6(1):e03176.
    PMID: 32042959 DOI: 10.1016/j.heliyon.2020.e03176
    In practice, the collected spectra are very often composes of complex overtone and many overlapping peaks which may lead to misinterpretation because of its significant nonlinear characteristics. Using linear solution might not be appropriate. In addition, with a high-dimension of dataset due to large number of observations and data points the classical multiple regressions will neglect to fit. These complexities commonly will impact to multicollinearity problem, furthermore the risk of contamination of multiple outliers and high leverage points also increases. To address these problems, a new method called Kernel Partial Diagnostic Robust Potential (KPDRGP) is introduced. The method allows the nonlinear solution which maps nonlinearly the original input

    X

    matrix into higher dimensional feature mapping with corresponds to the Reproducing Kernel Hilbert Spaces (RKHS). In dimensional reduction, the method replaces the dot products calculation of elements in the mapped data to a nonlinear function in the original input space. To prevent the contamination of the multiple outlier and high leverage points the robust procedure using Diagnostic Robust Generalized Potentials (DRGP) algorithm was used. The results verified that using the simulation and real data, the proposed KPDRGP method was superior to the methods in the class of non-kernel and some other robust methods with kernel solution.
    Matched MeSH terms: Artificial Intelligence
  12. Hermawan A, Amrillah T, Riapanitra A, Ong WJ, Yin S
    Adv Healthc Mater, 2021 10;10(20):e2100970.
    PMID: 34318999 DOI: 10.1002/adhm.202100970
    A fully integrated, flexible, and functional sensing device for exhaled breath analysis drastically transforms conventional medical diagnosis to non-invasive, low-cost, real-time, and personalized health care. 2D materials based on MXenes offer multiple advantages for accurately detecting various breath biomarkers compared to conventional semiconducting oxides. High surface sensitivity, large surface-to-weight ratio, room temperature detection, and easy-to-assemble structures are vital parameters for such sensing devices in which MXenes have demonstrated all these properties both experimentally and theoretically. So far, MXenes-based flexible sensor is successfully fabricated at a lab-scale and is predicted to be translated into clinical practice within the next few years. This review presents a potential application of MXenes as emerging materials for flexible and wearable sensor devices. The biomarkers from exhaled breath are described first, with emphasis on metabolic processes and diseases indicated by abnormal biomarkers. Then, biomarkers sensing performances provided by MXenes families and the enhancement strategies are discussed. The method of fabrications toward MXenes integration into various flexible substrates is summarized. Finally, the fundamental challenges and prospects, including portable integration with Internet-of-Thing (IoT) and Artificial Intelligence (AI), are addressed to realize marketization.
    Matched MeSH terms: Artificial Intelligence
  13. Nagaki K, Furuta T, Yamaji N, Kuniyoshi D, Ishihara M, Kishima Y, et al.
    Chromosome Res, 2021 12;29(3-4):361-371.
    PMID: 34648121 DOI: 10.1007/s10577-021-09676-z
    Observing chromosomes is a time-consuming and labor-intensive process, and chromosomes have been analyzed manually for many years. In the last decade, automated acquisition systems for microscopic images have advanced dramatically due to advances in their controlling computer systems, and nowadays, it is possible to automatically acquire sets of tiling-images consisting of large number, more than 1000, of images from large areas of specimens. However, there has been no simple and inexpensive system to efficiently select images containing mitotic cells among these images. In this paper, a classification system of chromosomal images by deep learning artificial intelligence (AI) that can be easily handled by non-data scientists was applied. With this system, models suitable for our own samples could be easily built on a Macintosh computer with Create ML. As examples, models constructed by learning using chromosome images derived from various plant species were able to classify images containing mitotic cells among samples from plant species not used for learning in addition to samples from the species used. The system also worked for cells in tissue sections and tetrads. Since this system is inexpensive and can be easily trained via deep learning using scientists' own samples, it can be used not only for chromosomal image analysis but also for analysis of other biology-related images.
    Matched MeSH terms: Artificial Intelligence
  14. Md Saleh NI, Ab Ghani H, Jilani Z
    Artif Intell Med, 2022 Oct;132:102394.
    PMID: 36207072 DOI: 10.1016/j.artmed.2022.102394
    Outbreaks of the COVID-19 pandemic caused by the SARS-CoV-2 infection that started in Wuhan, China, have quickly spread worldwide. The current situation has contributed to a dynamic rate of hospital admissions. Global efforts by Artificial Intelligence (AI) and Machine Learning (ML) communities to develop solutions to assist COVID-19-related research have escalated ever since. However, despite overwhelming efforts from the AI and ML community, many machine learning-based AI systems have been designed as black boxes. This paper proposes a model that utilizes Formal Concept Analysis (FCA) to explain a machine learning technique called Long-short Term Memory (LSTM) on a dataset of hospital admissions due to COVID-19 in the United Kingdom. This paper intends to increase the transparency of decision-making in the era of ML by using the proposed LSTM-FCA explainable model. Both LSTM and FCA are able to evaluate the data and explain the model to make the results more understandable and interpretable. The results and discussions are helpful and may lead to new research to optimize the use of ML in various real-world applications and to contain the disease.
    Matched MeSH terms: Artificial Intelligence
  15. Hamyoon H, Yee Chan W, Mohammadi A, Yusuf Kuzan T, Mirza-Aghazadeh-Attari M, Leong WL, et al.
    Eur J Radiol, 2022 Dec;157:110591.
    PMID: 36356463 DOI: 10.1016/j.ejrad.2022.110591
    PURPOSE: To develop and validate a machine learning (ML) model for the classification of breast lesions on ultrasound images.

    METHOD: In the present study, three separate data cohorts containing 1288 breast lesions from three countries (Malaysia, Iran, and Turkey) were utilized for MLmodel development and external validation. The model was trained on ultrasound images of 725 breast lesions, and validation was done separately on the remaining data. An expert radiologist and a radiology resident classified the lesions based on the BI-RADS lexicon. Thirteen morphometric features were selected from a contour of the lesion and underwent a three-step feature selection process. Five features were chosen to be fed into the model separately and combined with the imaging signs mentioned in the BI-RADS reference guide. A support vector classifier was trained and optimized.

    RESULTS: The diagnostic profile of the model with various input data was compared to the expert radiologist and radiology resident. The agreement of each approach with histopathologic specimens was also determined. Based on BI-RADS and morphometric features, the model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.885, which is higher than the expert radiologist and radiology resident performances with AUC of 0.814 and 0.632, respectively in all cohorts. DeLong's test also showed that the AUC of the ML protocol was significantly different from that of the expert radiologist (ΔAUCs = 0.071, 95%CI: (0.056, 0.086), P = 0.005).

    CONCLUSIONS: These results support the possible role of morphometric features in enhancing the already well-excepted classification schemes.

    Matched MeSH terms: Artificial Intelligence
  16. Huqh MZU, Abdullah JY, Wong LS, Jamayet NB, Alam MK, Rashid QF, et al.
    Int J Environ Res Public Health, 2022 Aug 31;19(17).
    PMID: 36078576 DOI: 10.3390/ijerph191710860
    OBJECTIVE: The objective of this systematic review was (a) to explore the current clinical applications of AI/ML (Artificial intelligence and Machine learning) techniques in diagnosis and treatment prediction in children with CLP (Cleft lip and palate), (b) to create a qualitative summary of results of the studies retrieved.

    MATERIALS AND METHODS: An electronic search was carried out using databases such as PubMed, Scopus, and the Web of Science Core Collection. Two reviewers searched the databases separately and concurrently. The initial search was conducted on 6 July 2021. The publishing period was unrestricted; however, the search was limited to articles involving human participants and published in English. Combinations of Medical Subject Headings (MeSH) phrases and free text terms were used as search keywords in each database. The following data was taken from the methods and results sections of the selected papers: The amount of AI training datasets utilized to train the intelligent system, as well as their conditional properties; Unilateral CLP, Bilateral CLP, Unilateral Cleft lip and alveolus, Unilateral cleft lip, Hypernasality, Dental characteristics, and sagittal jaw relationship in children with CLP are among the problems studied.

    RESULTS: Based on the predefined search strings with accompanying database keywords, a total of 44 articles were found in Scopus, PubMed, and Web of Science search results. After reading the full articles, 12 papers were included for systematic analysis.

    CONCLUSIONS: Artificial intelligence provides an advanced technology that can be employed in AI-enabled computerized programming software for accurate landmark detection, rapid digital cephalometric analysis, clinical decision-making, and treatment prediction. In children with corrected unilateral cleft lip and palate, ML can help detect cephalometric predictors of future need for orthognathic surgery.

    Matched MeSH terms: Artificial Intelligence
  17. Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Almijalli M, Ahamed NU
    Phys Eng Sci Med, 2022 Dec;45(4):1289-1300.
    PMID: 36352317 DOI: 10.1007/s13246-022-01195-3
    Unusual walk patterns may increase individuals' risks of falling. Anthropometric features of the human body, such as the body mass index (BMI), influences the walk patterns of individuals. In addition to the BMI, uneven walking surfaces may cause variations in the usual walk patterns of an individual that will potentially increase the individual's risk of falling. The objective of this study was to statistically evaluate the variations in the walk patterns of individuals belonging to two BMI groups across a wide range of walking surfaces and to investigate whether a deep learning method could classify the BMI-specific walk patterns with similar variations. Data collected by wearable inertial measurement unit (IMU) sensors attached to individuals with two different BMI were collected while walking on real-world surfaces. In addition to traditional statistical analysis tools, an advanced deep learning-based neural network was used to evaluate and classify the BMI-specific walk patterns. The walk patterns of overweight/obese individuals showed a greater correlation with the corresponding walking surfaces than the normal-weight population. The results were supported by the deep learning method, which was able to classify the walk patterns of overweight/obese (94.8 ± 4.5%) individuals more accurately than those of normal-weight (59.4 ± 23.7%) individuals. The results suggest that application of the deep learning method is more suitable for recognizing the walk patterns of overweight/obese population than those of normal-weight individuals. The findings from the study will potentially inform healthcare applications, including artificial intelligence-based fall assessment systems for minimizing the risk of fall-related incidents among overweight and obese individuals.
    Matched MeSH terms: Artificial Intelligence
  18. Martín DG, Florez SL, González-Briones A, Corchado JM
    Sensors (Basel), 2023 Jan 14;23(2).
    PMID: 36679779 DOI: 10.3390/s23020982
    The revolution generated by the Internet of Things (IoT) has radically changed the world; countless objects with remote sensing, actuation, analysis and sharing capabilities are interconnected over heterogeneous communication networks. Consequently, all of today's devices can connect to the internet and can provide valuable information for decision making. However, the data collected by different devices are in different formats, which makes it necessary to develop a solution that integrates comprehensive semantic tools to represent, integrate and acquire knowledge, which is a major challenge for IoT environments. The proposed solution addresses this challenge by using IoT semantic data to reason about actionable knowledge, combining next-generation semantic technologies and artificial intelligence through a set of cognitive components that enables easy interoperability and integration for both legacy systems and emerging technologies, such as IoT, to generate business value in terms of faster analytics and improved decision making. Thus, combining IoT environments with cognitive artificial intelligence services, COSIBAS builds an abstraction layer between existing platforms for IoT and AI technologies to enable cognitive solutions and increase interoperability across multiple domains. The resulting low-cost cross platform supports scalability and the evolution of large-scale heterogeneous systems and allows the modernization of legacy infrastructures with cognitive tools and communication mechanisms while reusing assets.
    Matched MeSH terms: Artificial Intelligence
  19. Chau RCW, Li GH, Tew IM, Thu KM, McGrath C, Lo WL, et al.
    Int Dent J, 2023 Oct;73(5):724-730.
    PMID: 37117096 DOI: 10.1016/j.identj.2023.03.007
    OBJECTIVES: Gingivitis is one of the most prevalent plaque-initiated dental diseases globally. It is challenging to maintain satisfactory plaque control without continuous professional advice. Artificial intelligence may be used to provide automated visual plaque control advice based on intraoral photographs.

    METHODS: Frontal view intraoral photographs fulfilling selection criteria were collected. Along the gingival margin, the gingival conditions of individual sites were labelled as healthy, diseased, or questionable. Photographs were randomly assigned as training or validation datasets. Training datasets were input into a novel artificial intelligence system and its accuracy in detection of gingivitis including sensitivity, specificity, and mean intersection-over-union were analysed using validation dataset. The accuracy was reported according to STARD-2015 statement.

    RESULTS: A total of 567 intraoral photographs were collected and labelled, of which 80% were used for training and 20% for validation. Regarding training datasets, there were total 113,745,208 pixels with 9,270,413; 5,711,027; and 4,596,612 pixels were labelled as healthy, diseased, and questionable respectively. Regarding validation datasets, there were 28,319,607 pixels with 1,732,031; 1,866,104; and 1,116,493 pixels were labelled as healthy, diseased, and questionable, respectively. AI correctly predicted 1,114,623 healthy and 1,183,718 diseased pixels with sensitivity of 0.92 and specificity of 0.94. The mean intersection-over-union of the system was 0.60 and above the commonly accepted threshold of 0.50.

    CONCLUSIONS: Artificial intelligence could identify specific sites with and without gingival inflammation, with high sensitivity and high specificity that are on par with visual examination by human dentist. This system may be used for monitoring of the effectiveness of patients' plaque control.

    Matched MeSH terms: Artificial Intelligence
  20. Futane A, Jadhav P, Mustafa AH, Srinivasan A, Narayanamurthy V
    Biotechnol Lett, 2024 Feb;46(1):1-17.
    PMID: 38155321 DOI: 10.1007/s10529-023-03454-z
    Metal-Organic Frameworks (MOFs) have exceptional inherent properties that make them highly suitable for diverse applications, such as catalysis, storage, optics, chemo sensing, and biomedical science and technology. Over the past decades, researchers have utilized various techniques, including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasonic, to synthesize MOFs with tailored properties. Post-synthetic modification of linkers, nodal components, and crystallite domain size and morphology can functionalize MOFs to improve their aptamer applications. Advancements in AI and machine learning led to the development of nonporous MOFs and nanoscale MOFs for medical purposes. MOFs have exhibited promise in cancer therapy, with the successful accumulation of a photosensitizer in cancer cells representing a significant breakthrough. This perspective is focused on MOFs' use as advanced materials and systems for cancer therapy, exploring the challenging aspects and promising features of MOF-based cancer diagnosis and treatment. The paper concludes by emphasizing the potential of MOFs as a transformative technology for cancer treatment and diagnosis.
    Matched MeSH terms: Artificial Intelligence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links