Displaying publications 21 - 40 of 279 in total

Abstract:
Sort:
  1. Teh CS, Chua KH, Thong KL
    Infect Genet Evol, 2011 Jul;11(5):1121-8.
    PMID: 21511055 DOI: 10.1016/j.meegid.2011.04.005
    This paper describes the development and application of multilocus sequencing typing (MLST) and multi-virulence locus sequencing typing (MVLST) methods in determining the genetic variation and relatedness of 43 Vibrio cholerae strains of different serogroups isolated from various sources in Malaysia. The MLST assay used six housekeeping genes (dnaE, lap, recA, gyrB, cat and gmd), while the MVLST assay incorporated three virulence genes (ctxAB, tcpA and tcpI) and three virulence-associated genes (hlyA, toxR and rtxA). Our data showed that the dnaE and rtxA genes were the most conserved genes in V. cholerae O1 strains. Among the 12 studied genes, transitional substitutions that led to silent mutations were observed in all, except for gmd and hlyA, while non-synonymous substitutions occurred more frequently in virulence and virulence-associated genes. Five V. cholerae O1 strains were found to be the El Tor variant O1 strains because they harboured the classical ctxB gene. In addition, the classical ctxB gene was also observed in O139 V. cholerae. A total of 29 MLST types were observed, and this assay could differentiate V. cholerae within the non-O1/non-O139 serogroups. A total of 27 MVLST types were obtained. MVLST appeared to be more discriminatory than MLST because it could differentiate V. cholerae strains from two different outbreaks and could separate the toxigenic from the non-toxigenic subtypes. Although the O1 V. cholerae strains were closely related, the combined MLST and MVLST analyses differentiated the strains isolated from different localities. In conclusion, sequence-based analysis in this study provided a better understanding of mutation points and the type of mutations in V. cholerae. The MVLST assay is useful to characterise O1 V. cholerae strains, while combined analysis may improve the discriminatory power and is suitable for the local epidemiological study of V. cholerae.
    Matched MeSH terms: Bacterial Proteins/genetics
  2. Rahman RN, Kamarudin NH, Yunus J, Salleh AB, Basri M
    Int J Mol Sci, 2010;11(9):3195-208.
    PMID: 20957088 DOI: 10.3390/ijms11093195
    An organic solvent tolerant lipase gene from Staphylococcus epidermidis AT2 was successfully cloned and expressed with pTrcHis2 in E. coli TOP10. Sequence analysis revealed an open reading frame (ORF) of 1,933 bp in length which coded for a polypeptide of 643 amino acid residues. The polypeptide comprised of a signal peptide (37 amino acids), pro-peptide and a mature protein of 390 amino acids. Expression of AT2 lipase resulted in an 18-fold increase in activity, upon the induction of 0.6 mM IPTG after a 10 h incubation period. Interestingly, this lipase was stable in various organic solvents (25% (v/v), mainly toluene, octanol, p-xylene and n-hexane). Literature shows that most of the organic solvent stable bacterial lipases were produced by Pseudomonas sp. and Bacillus sp., but very few from Staphylococcus sp. This lipase demonstrates great potential to be employed in various industrial applications.
    Matched MeSH terms: Bacterial Proteins/genetics
  3. Gan HM, Ibrahim Z, Shahir S, Yahya A
    FEMS Microbiol Lett, 2011 May;318(2):108-14.
    PMID: 21323982 DOI: 10.1111/j.1574-6968.2011.02245.x
    Genes involved in the 4-aminobenzenesulfonate (4-ABS) degradation pathway of Hydrogenophaga sp. PBC were identified using transposon mutagenesis. The screening of 10,000 mutants for incomplete 4-ABS biotransformation identified four mutants with single transposon insertion. Genes with insertions that impaired the ability to utilize 4-ABS for growth included (1) 4-sulfocatechol 1,2-dioxygenase β-subunit (pcaH2) and 3-sulfomuconate cycloisomerase involved in the modified β-ketoadipate pathway; (2) 4-aminobenzenesulfonate 3,4-dioxygenase component (sadA) involved in aromatic ring hydroxylation; and (3) transposase gene homolog with a putative cis-diol dehydrogenase gene located downstream. The pcaH2 mutant strain accumulated brown metabolite during growth on 4-ABS which was identified as 4-sulfocatechol through thin layer chromatography and HPLC analyses. Supplementation of wild-type sadA gene in trans restored the 4-ABS degradation ability of the sadA mutant, thus supporting the annotation of its disrupted gene.
    Matched MeSH terms: Bacterial Proteins/genetics
  4. Yong SF, Goh FN, Ngeow YF
    J Water Health, 2010 Mar;8(1):92-100.
    PMID: 20009251 DOI: 10.2166/wh.2009.002
    In this study, we investigated the distribution of Legionella species in water cooling towers located in different parts of Malaysia to obtain information that may inform public health policies for the prevention of legionellosis. A total of 20 water samples were collected from 11 cooling towers located in three different states in east, west and south Malaysia. The samples were concentrated by filtration and treated with an acid buffer before plating on to BCYE agar. Legionella viable counts in these samples ranged from 100 to 2,000 CFU ml(-1); 28 isolates from the 24 samples were examined by latex agglutination as well as 16S rRNA and rpoB PCR-DNA sequencing. These isolates were identified as Legionella pneumophila serogroup 1 (35.7%), L. pneumophila serogroup 2-14 (39%), L. pneumophila non-groupable (10.7%), L. busanensis, L. gormanii, L. anisa and L. gresilensis. L. pneumophila was clearly the predominant species at all sampling sites. Repeat sampling from the same cooling tower and testing different colonies from the same water sample showed concurrent colonization by different serogroups and different species of Legionella in some of the cooling towers.
    Matched MeSH terms: Bacterial Proteins/genetics
  5. Teh CS, Chua KH, Thong KL
    J Appl Microbiol, 2010 Jun;108(6):1940-5.
    PMID: 19891709 DOI: 10.1111/j.1365-2672.2009.04599.x
    To develop a multiplex PCR targeting the gyrB and pntA genes for Vibrio species differentiation.
    Matched MeSH terms: Bacterial Proteins/genetics
  6. Lim BS, Chong CE, Zamrod Z, Nathan S, Mohamed R
    In Silico Biol. (Gedrukt), 2007;7(4-5):389-97.
    PMID: 18391231
    Many members of the AraC/XylS family transcription regulator have been proven to play a critical role in regulating bacterial virulence factors in response to environmental stress. By using the Hidden Markov Model (HMM) profile built from the alignment of a 99 amino acid conserved domain sequence of 273 AraC/XylS family transcription regulators, we detected a total of 45 AraC/XylS family transcription regulators in the genome of the Gram-negative pathogen, Burkholderia pseudomallei. Further in silico analysis of each detected AraC/XylS family transcription regulatory protein and its neighboring genes allowed us to make a first-order guess on the role of some of these transcription regulators in regulating important virulence factors such as those involved in three type III secretion systems and biosynthesis of pyochelin, exopolysaccharide (EPS) and phospholipase C. This paper has demonstrated an efficient and systematic genome-wide scale prediction of the AraC/XylS family that can be applied to other protein families.
    Matched MeSH terms: Bacterial Proteins/genetics*
  7. Allwood EM, Logue CA, Hafner GJ, Ketheesan N, Norton RE, Peak IR, et al.
    FEMS Immunol. Med. Microbiol., 2008 Oct;54(1):144-53.
    PMID: 18657105 DOI: 10.1111/j.1574-695X.2008.00464.x
    Burkholderia pseudomallei, the causative agent of melioidosis, is endemic to Southeast Asia and northern Australia. Clinical manifestations of the disease are diverse, ranging from chronic localized infection to acute septicaemia, with death occurring within 24-48 h after the onset of symptoms. Definitive diagnosis of melioidosis involves bacterial culture and identification, with results obtained within 3-4 days. This delayed diagnosis is a major contributing factor to high mortality rates. Rapid diagnosis is vital for successful management of the disease. This study describes the purification and evaluation of three recombinant antigenic proteins, BPSL0972, BipD and OmpA from B. pseudomallei 08, for their potential in the serodiagnosis of melioidosis using an indirect enzyme-linked immunosorbent assay (ELISA) method. The recombinant proteins were evaluated using 74 serum samples from culture-confirmed melioidosis patients from Malaysia, Thailand and Australia. In addition, 62 nonmelioidosis controls consisting of serum samples from clinically suspected melioidosis patients (n=20) and from healthy blood donors from an endemic region (n=18) and a nonendemic region (n=24) were included. The indirect ELISAs using BipD and BPSL0972 as antigens demonstrated poor to moderate sensitivities (42% and 51%, respectively) but good specificity (both 100%). In contrast, the indirect ELISA using OmpA as an antigen achieved 95% sensitivity and 98% specificity. These results highlight the potential for OmpA to be used in the serodiagnosis of melioidosis in an endemic area.
    Matched MeSH terms: Bacterial Proteins/genetics
  8. Tay ST, Rohani YM, Ho TM, Shamala D
    Microbiol. Immunol., 2005;49(1):67-71.
    PMID: 15665455
    The DNA sequences encompassing two hypervariable regions, VD II and III of the 56 kDa immunodominant protein gene of 21 Malaysian strains of Orientia tsutsugamushi were determined. Two strains demonstrated a 100% DNA homology with the Gilliam prototype strain, and one with TH1817 strain and TA678 strain respectively. High percentages of DNA similarity (95-99%) were observed with Karp (4 strains), Gilliam (2 strains), TH1817 (4 strains), TC586 (3 strains) and TA763 (1 strain). The remaining strains demonstrated the highest DNA similarity with TA763 (1 strain, 89%), TA678 (1 strain, 86%) and TA686 (1 strain, 87%). Our study provides additional evidence on the existence and the genetic heterogeneity of TA strains of the Southeast Asia and their closely related strains in Malaysia.
    Matched MeSH terms: Bacterial Proteins/genetics*
  9. Rahman RN, Leow TC, Basri M, Salleh AB
    Protein Expr. Purif., 2005 Apr;40(2):411-6.
    PMID: 15766884
    The extracellular production of T1 lipase was performed by co-expression of pJL3 vector encoding bacteriocin release protein in prokaryotic system. Secretory expression was optimized by considering several parameters, including host strains, inducer (IPTG) concentration, media, induction at A(600 nm), temperature, and time of induction. Among the host strains tested, Origami B excreted out 18,100 U/ml of lipase activity into culture medium when induced with 50 microM IPTG for 12 h. The Origami B harboring recombinant plasmid pGEX/T1S and pJL3 vector was chosen for further study. IPTG at 0.05 mM, YT medium, induction at A(600 nm) of 1.25, 30 degrees C, and 32 h of induction time were best condition for T1 lipase secretion with Origami B as a host.
    Matched MeSH terms: Bacterial Proteins/genetics
  10. Shakiba MH, Ali MS, Rahman RN, Salleh AB, Leow TC
    Extremophiles, 2016 Jan;20(1):44-55.
    PMID: 26475626 DOI: 10.1007/s00792-015-0796-4
    The gene encoding for a novel cold-adapted enzyme from family II of bacterial classification (GDSL family) was cloned from the genomic DNA of Photobacterium sp. strain J15 in an Escherichia coli system, yielding a recombinant 36 kDa J15 GDSL esterase which was purified in two steps with a final yield and purification of 38.6 and 15.3 respectively. Characterization of the biochemical properties showed the J15 GDSL esterase had maximum activity at 20 °C and pH 8.0, was stable at 10 °C for 3 h and retained 50 % of its activity after a 6 h incubation at 10 °C. The enzyme was activated by Tween-20, -60 and Triton-X100 and inhibited by 1 mM Sodium dodecyl sulphate (SDS), while β-mercaptoethanol and Dithiothreitol (DTT) enhanced activity by 4.3 and 5.4 fold respectively. These results showed the J15 GDSL esterase was a novel cold-adapted enzyme from family II of lipolytic enzymes. A structural model constructed using autotransporter EstA from Pseudomonas aeruginosa as a template revealed the presence of a typical catalytic triad consisting of a serine, aspartate, and histidine which was verified with site directed mutagenesis on active serine.
    Matched MeSH terms: Bacterial Proteins/genetics
  11. Mohd Khari FI, Karunakaran R, Rosli R, Tee Tay S
    PLoS One, 2016;11(3):e0150643.
    PMID: 26963619 DOI: 10.1371/journal.pone.0150643
    OBJECTIVES: The objective of this study was to determine the occurrence of chromosomal and plasmid-mediated β-lactamases (AmpC) genes in a collection of Malaysian isolates of Enterobacter species. Several phenotypic tests for detection of AmpC production of Enterobacter spp. were evaluated and the agreements between tests were determined.

    METHODS: Antimicrobial susceptibility profiles for 117 Enterobacter clinical isolates obtained from the Medical Microbiology Diagnostic Laboratory, University Malaya Medical Centre, Malaysia, from November 2012-February 2014 were determined in accordance to CLSI guidelines. AmpC genes were detected using a multiplex PCR assay targeting the MIR/ACT gene (closely related to chromosomal EBC family gene) and other plasmid-mediated genes, including DHA, MOX, CMY, ACC, and FOX. The AmpC β-lactamase production of the isolates was assessed using cefoxitin disk screening test, D69C AmpC detection set, cefoxitin-cloxacillin double disk synergy test (CC-DDS) and AmpC induction test.

    RESULTS: Among the Enterobacter isolates in this study, 39.3% were resistant to cefotaxime and ceftriaxone and 23.9% were resistant to ceftazidime. Ten (8.5%) of the isolates were resistant to cefepime, and one isolate was resistant to meropenem. Chromosomal EBC family gene was amplified from 36 (47.4%) E. cloacae and three (25%) E. asburiae. A novel blaDHA type plasmid-mediated AmpC gene was identified for the first time from an E. cloacae isolate. AmpC β-lactamase production was detected in 99 (89.2%) of 111 potential AmpC β-lactamase producers (positive in cefoxitin disk screening) using D69C AmpC detection set. The detection rates were lower with CC-DDS (80.2%) and AmpC induction tests (50.5%). There was low agreement between the D69C AmpC detection set and the other two phenotypic tests. Of the 40 isolates with AmpC genes detected in this study, 87.5%, 77.5% and 50.0% of these isolates were positive by the D69C AmpC detection set, CC-DDS and AmpC induction tests, respectively.

    CONCLUSIONS: Besides MIR/ACT gene, a novel plasmid-mediated AmpC gene belonging to the DHA-type was identified in this study. Low agreement was noted between the D69C AmpC detection set and two other phenotypic tests for detection of AmpC production in Enterobacter spp. As plasmid-mediated genes may serve as the reservoir for the emergence of antibiotic resistance in a clinical setting, surveillance and infection control measures are necessary to limit the spread of these genes in the hospital.

    Matched MeSH terms: Bacterial Proteins/genetics*
  12. Dinesh B, Lau NS, Furusawa G, Kim SW, Taylor TD, Foong SY, et al.
    Mar Genomics, 2016 Feb;25:115-121.
    PMID: 26795059 DOI: 10.1016/j.margen.2015.12.006
    To date, the genus Mangrovimonas consists of only one species, Mangrovimonas yunxiaonensis strain LY01 that is known to have algicidal effects against harmful algal blooms (HABs) of Alexandrium tamarense. In this study, the whole genome sequence of three Mangrovimonas-like strains, TPBH4(T)(=LMG 28913(T),=JCM 30882(T)), ST2L12(T)(=LMG 28914(T),=JCM 30880(T)) and ST2L15(T)(=LMG 28915(T),=JCM 30881(T)) isolated from estuarine mangrove sediments in Perak, Malaysia were described. The sequenced genomes had a range of assembly size ranging from 3.56 Mb to 4.15 Mb which are significantly larger than that of M. yunxiaonensis LY01 (2.67 Mb). Xylan, xylose, L-arabinan and L-arabinose utilization genes were found in the genome sequences of the three Mangrovimonas-like strains described in this study. In contrast, these carbohydrate metabolism genes were not found in the genome sequence of LY01. In addition, TPBH4(T) and ST2L12(T) show capability to degrade xylan using qualitative plate assay method.
    Matched MeSH terms: Bacterial Proteins/genetics
  13. Sinnasamy S, Noordin NM, MacRae TH, Bin Abdullah MI, Bossier P, Wahid ME, et al.
    J Fish Dis, 2016 May;39(5):577-84.
    PMID: 26132358 DOI: 10.1111/jfd.12390
    Feeding aquatic animals with bacterial encapsulated heat-shock proteins (Hsps) is potentially a new method to combat vibriosis, an important disease affecting aquatic animals used in aquaculture. Food pellets comprised of shrimp and containing Escherichia coli overexpressing either DnaK-DnaJ-GrpE, the prokaryotic equivalents of Hsp70-Hsp40-Hsp20, or only DnaK were fed to juveniles of the white leg shrimp Penaeus vannamei, and protection against pathogenic Vibrio harveyi was determined. Maintaining pellets at different temperatures for varying lengths of time reduced the number of live adhering E. coli, as did contact with sea water, demonstrating that storage and immersion adversely affected bacterial survival and attachment to pellets. Feeding P. vannamei with E. coli did not compromise their survival, indicating that the bacteria were not pathogenic to shrimp. Feeding P. vannamei with pellets containing bacteria overproducing DnaK (approximately 60 cells g(-1) pellets) boosted P. vannamei survival twofold against V. harveyi, suggesting that DnaK plays a role in Vibrio tolerance. Pellets containing DnaK were effective in providing protection to P. vannamei for up to 2 weeks before loss of viability and that DnaK encapsulated by these bacteria enhanced shrimp resistance against Vibrio infection.
    Matched MeSH terms: Bacterial Proteins/genetics*
  14. Tai HF, Foo HL, Abdul Rahim R, Loh TC, Abdullah MP, Yoshinobu K
    Microb Cell Fact, 2015;14:89.
    PMID: 26077560 DOI: 10.1186/s12934-015-0280-y
    Bacteriocin-producing Lactic acid bacteria (LAB) have vast applications in human and animal health, as well as in food industry. The structural, immunity, regulatory, export and modification genes are required for effective bacteriocin biosynthesis. Variations in gene sequence, composition and organisation will affect the antimicrobial spectrum of bacteriocin greatly. Lactobacillus plantarum I-UL4 is a novel multiple bacteriocin producer that harbours both plw and plnEF structural genes simultaneous which has not been reported elsewhere. Therefore, molecular characterisation of bacteriocin genes that harboured in L. plantarum I-UL4 was conducted in this study.
    Matched MeSH terms: Bacterial Proteins/genetics*
  15. Thevarajoo S, Selvaratnam C, Chan KG, Goh KM, Chong CS
    Mar Genomics, 2015 Oct;23:49-50.
    PMID: 25957696 DOI: 10.1016/j.margen.2015.04.009
    Type strain Vitellibacter vladivostokensis KMM 3516(T) (=NBRC 16718(T)) belongs to the phylum Cytophaga-Flavobacterium-Bacteroides. To date, no genomes of the Vitellibacter spp. have been reported, and their metabolic pathways are unknown. This study reports the draft genome sequence of V. vladivostokensis. Moreover, mining of genes associated with proteolytic enzymes was performed to provide insights for further enzyme characterization.
    Matched MeSH terms: Bacterial Proteins/genetics
  16. Moi IM, Roslan NN, Leow ATC, Ali MSM, Rahman RNZRA, Rahimpour A, et al.
    Appl Microbiol Biotechnol, 2017 Jun;101(11):4371-4385.
    PMID: 28497204 DOI: 10.1007/s00253-017-8300-y
    Photobacterium species are Gram-negative coccobacilli which are distributed in marine habitats worldwide. Some species are unique because of their capability to produce luminescence. Taxonomically, about 23 species and 2 subspecies are validated to date. Genomes from a few Photobacterium spp. have been sequenced and studied. They are considered a special group of bacteria because some species are capable of producing essential polyunsaturated fatty acids, antibacterial compounds, lipases, esterases and asparaginases. They are also used as biosensors in food and environmental monitoring and detectors of drown victim, as well as an important symbiont.
    Matched MeSH terms: Bacterial Proteins/genetics*
  17. Low KO, Muhammad Mahadi N, Md Illias R
    Appl Microbiol Biotechnol, 2013 May;97(9):3811-26.
    PMID: 23529680 DOI: 10.1007/s00253-013-4831-z
    Escherichia coli-the powerhouse for recombinant protein production-is rapidly gaining status as a reliable and efficient host for secretory expression. An improved understanding of protein translocation processes and its mechanisms has inspired and accelerated the development of new tools and applications in this field and, in particular, a more efficient secretion signal. Several important characteristics and requirements are summarised for the design of a more efficient signal peptide for the production of recombinant proteins in E. coli. General approaches and strategies to optimise the signal peptide, including the selection and modification of the signal peptide components, are included. Several challenges in the secretory production of recombinant proteins are discussed, and research approaches designed to meet these challenges are proposed.
    Matched MeSH terms: Bacterial Proteins/genetics
  18. Tay ST, Kho KL, Lye SF, Ngeow YF
    J Vet Med Sci, 2018 Apr 18;80(4):653-661.
    PMID: 29311425 DOI: 10.1292/jvms.17-0448
    Bartonella bovis is a small Gram-negative bacterium recognized as an etiological agent for bacteremia and endocarditis in cattle. As few reports are available on the taxonomic position of B. bovis and its mechanism of virulence, this study aims to resolve the phylogeny of B. bovis and investigate putative virulence genes based on whole genome sequence analysis. Genome-wide comparisons based on single nucleotide polymorphisms (SNP) and orthologous genes were performed in this study for phylogenetic inference of 27 Bartonella species. Rapid Annotation using Subsystem Technology (RAST) analysis was used for annotation of putative virulence genes. The phylogenetic tree generated from the genome-wide comparison of orthologous genes exhibited a topology almost similar to that of the tree generated from SNP-based comparison, indicating a high concordance in the nucleotide and amino acid sequences of Bartonella spp. The analyses show consistent grouping of B. bovis in a cluster related to ruminant-associated species, including Bartonella australis, Bartonella melophagi and Bartonella schoenbuchensis. RAST analysis revealed genes encoding flagellar components, in corroboration with the observation of flagella-like structure of BbUM strain under negative straining. Genes associated with virulence, disease and defence, prophages, membrane transport, iron acquisition, motility and chemotaxis are annotated in B. bovis genome. The flagellin (flaA) gene of B. bovis is closely related to Bartonella bacilliformis and Bartonella clarridgeiae but distinct from other Gram-negative bacteria. The absence of type IV secretion systems, the bona fide pathogenicity factors of bartonellae, in B. bovis suggests that it may have a different mechanism of pathogenicity.
    Matched MeSH terms: Bacterial Proteins/genetics
  19. Jatuponwiphat T, Chumnanpuen P, Othman S, E-Kobon T, Vongsangnak W
    Microb Pathog, 2019 Feb;127:257-266.
    PMID: 30550841 DOI: 10.1016/j.micpath.2018.12.013
    Pasteurella multocida causes respiratory infectious diseases in a multitude of birds and mammals. A number of virulence-associated genes were reported across different strains of P. multocida, including those involved in the iron transport and metabolism. Comparative iron-associated genes of P. multocida among different animal hosts towards their interaction networks have not been fully revealed. Therefore, this study aimed to identify the iron-associated genes from core- and pan-genomes of fourteen P. multocida strains and to construct iron-associated protein interaction networks using genome-scale network analysis which might be associated with the virulence. Results showed that these fourteen strains had 1587 genes in the core-genome and 3400 genes constituting their pan-genome. Out of these, 2651 genes associated with iron transport and metabolism were selected to construct the protein interaction networks and 361 genes were incorporated into the iron-associated protein interaction network (iPIN) consisting of nine different iron-associated functional modules. After comparing with the virulence factor database (VFDB), 21 virulence-associated proteins were determined and 11 of these belonged to the heme biosynthesis module. From this study, the core heme biosynthesis module and the core outer membrane hemoglobin receptor HgbA were proposed as candidate targets to design novel antibiotics and vaccines for preventing pasteurellosis across the serotypes or animal hosts for enhanced precision agriculture to ensure sustainability in food security.
    Matched MeSH terms: Bacterial Proteins/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links