Displaying publications 21 - 40 of 333 in total

Abstract:
Sort:
  1. Soon G, Pingguan-Murphy B, Akbar SA
    J Mech Behav Biomed Mater, 2017 04;68:26-31.
    PMID: 28135639 DOI: 10.1016/j.jmbbm.2017.01.028
    This study utilizes the technique of self-assembly to fabricate arrays of nanoislands on (001)-oriented yttria-stabilized zirconia single crystal substrates with miscut of 10° toward <110> direction. These self-assembled nanostructures were annealed at 1100°C for 5h upon doping with 10mol% gadolinium-doped ceria (GDC) by powder-suspension based method. X-Ray diffraction result showed that the miscut substrate after doping GDC was in the cubic phase. Energy dispersive X-ray (EDX) illustrates that the nanopatterned material contains all the elements from the GDC source and yttria-stabilized zirconia (YSZ) substrate. It also demonstrates a higher surface roughness and a more hydrophilic surface. The nanostructured materials were subsequently used for an in vitro study using a human fetal osteoblastic cell line (hFOB). An improved spreading, enhanced cell proliferation and up-regulated alkaline phosphatase activity (ALP) were observed on the nanopatterned substrates compared to the control substrates. Calcium deposits, which were stained positively by Alizarin Red S, appeared to be more abundant on the nanopatterned surfaces on day 7. The overall findings suggest that post fabrication treatment with surface modification such as creating a nanostructure (e.g. nanopatterns) can improve biocompatibility.
    Matched MeSH terms: Biocompatible Materials
  2. Raza MR, Sherazi I, Muhammad Aslam, Ahmad F, Abu Bakar Sulong, Muhamad Norhamidi, et al.
    Sains Malaysiana, 2017;46:285-293.
    316L stainless steel is a common biomedical material. Currently, biomedical parts are produced through powder injection molding (PIM). Carbon control is the most critical in PIM. Improper debinding can significantly change the properties of the final product. In this work, thermal debinding and sintering were performed in two different furnaces (i.e. laboratory and commercially available furnaces) to study the mechanical properties and corrosion resistance. Debounded samples were sintered in different atmospheres. The samples sintered in inert gas showed enhanced mechanical properties compared with wrought 316L stainless steel and higher corrosion rate than those sintered in the vacuum furnace. The densification and tensile strength of the hydrogen sintered samples increased up to 3% and 51%, respectively, compared with those of the vacuum-sintered samples. However, the samples sintered in inert gas also exhibited reduced ductility and corrosion resistance. This finding is attributed to the presence of residual carbon in debonded samples during debinding.
    Matched MeSH terms: Biocompatible Materials
  3. Ikumapayi OM, Akinlabi ET
    Data Brief, 2019 Feb;22:537-545.
    PMID: 30627604 DOI: 10.1016/j.dib.2018.12.067
    Coconut Shell (CS) as agricultural lignocellulosic biomaterial and agro-waste is predominantly available in India, Malaysia, Nigeria, Thailand, Sri Lanka, and Indonesia. It has proven to have effective durability characteristic, good abstractive resistance, high toughness, and good adsorption properties, and is most suitable for long standing use in many applications such as reinforcement, source of energy, fillers as well as activated carbon and its performance, efficiency and effectiveness depend wholly on whether is in form of nano-, micro-, and macro- particles. In this data, effects of milling time on morphological characteristics was experimented using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and X-Ray Fluorescence (XRF) analyses. The SEM images were taken at magnifications of 1.00kx, 2.00kx and 5.00kx which gives respective 50 µm, 20 µm and 10 µm in different milling time of 0, 20, 40 and 60 mins. Digital Vibratory Disc Milling Machine (VDMM) rated 380 V/50 Hz at 940 rpm was employed for the grinding and the morphology of the milled nanoparticles were characterised. It was revealed from the data collected that 0 min (i.e. 75 µm sieved) has the highest mean area value of 16.105 µm2 and area standard deviation of 200.738 µm2 with least value of a number of particle size distribution of 809 µm. In contrast, 60 mins milled has the lowest values for mean area and area standard deviation of 8.945 µm2 and 115.851 µm2 respectively with the highest number of particle size distribution of 2032 µm. It was observed that milling time increases the number of particle sizes distributions and reduces the area of particle size.
    Matched MeSH terms: Biocompatible Materials
  4. Gaaz TS, Sulong AB, Akhtar MN, Kadhum AA, Mohamad AB, Al-Amiery AA
    Molecules, 2015;20(12):22833-47.
    PMID: 26703542 DOI: 10.3390/molecules201219884
    The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol-halloysite nanotubes (PVA-HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA-HNT nanocomposites can be a potential way to address some of PVA's limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA-HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA-HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA.
    Matched MeSH terms: Biocompatible Materials
  5. Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale Ebrahim N
    Nanoscale Res Lett, 2019 May 16;14(1):164.
    PMID: 31098855 DOI: 10.1186/s11671-019-2994-y
    This bibliometric study investigated the public trends in the fields of nanoparticles which is limited to drug delivery and magnetic nanoparticles' literature published from 1980 to October 2017. The data were collected from the Web of Science Core Collections, and a network analysis of research outputs was carried out to analyse the research trends in the nanoparticles literature. Nanoparticles and its applications are progressing in recent years. The results show that documents in the field of nanoparticles in chemistry and material science have improved in citation rate, as the authors were researching in multidisciplinary zones. Top-cited documents are mainly focusing on drug delivery, magnetic nanoparticles and iron oxide nanoparticles which are also the top research keywords in all papers published. Top-cited papers are mostly published in Biomaterials journal which so far has published 12% of top-cited articles. Although research areas such as contrast agents, quantum dots, and nanocrystals are not considered as the top-ranked keywords in all documents, these keywords received noticeable citations. The trends of publications on drug delivery and magnetic nanoparticles give a general view on future research and identify potential opportunities and challenges.
    Matched MeSH terms: Biocompatible Materials
  6. Soheilmoghaddam M, Wahit MU, Tuck Whye W, Ibrahim Akos N, Heidar Pour R, Ali Yussuf A
    Carbohydr Polym, 2014 Jun 15;106:326-34.
    PMID: 24721086 DOI: 10.1016/j.carbpol.2014.02.085
    Bionanocomposite films based on regenerated cellulose (RC) and incorporated with zeolite at different concentrations were fabricated by dissolving cellulose in 1-ethyl-3-methylimidazolium chloride (EMIMCl) ionic liquid using a simple green method. The interactions between the zeolite and the cellulose matrix were confirmed by Fourier transform infrared spectra. Mechanical properties of the nanocomposite films significantly improved as compared with the pure regenerated cellulose film, without the loss of extensibility. Zeolite incorporation enhanced the thermal stability and char yield of the nanocomposites. The scanning electron microscopy and transmission electron microscopy showed that zeolite was uniformly dispersed in the regenerated cellulose matrix. In vitro cytotoxicity test demonstrated that both RC and RC/zeolite nanocomposite films are cytocompatible. These results indicate that the prepared nanocomposites have potential applications in biodegradable packaging, membranes and biomedical areas.
    Matched MeSH terms: Biocompatible Materials/chemistry
  7. Baradaran S, Moghaddam E, Nasiri-Tabrizi B, Basirun WJ, Mehrali M, Sookhakian M, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:656-668.
    PMID: 25686995 DOI: 10.1016/j.msec.2015.01.050
    The effect of the addition of an ionic dopant to calcium phosphates for biomedical applications requires specific research due to the essential roles played in such processes. In the present study, the mechanical and biological properties of Ni-doped hydroxyapatite (HA) and Ni-doped HA mixed with graphene nanoplatelets (GNPs) were evaluated. Ni (3wt.% and 6wt.%)-doped HA was synthesized using a continuous precipitation method and calcined at 900°C for 1h. The GNP (0.5-2wt.%)-reinforced 6% Ni-doped HA (Ni6) composite was prepared using rotary ball milling for 15h. The sintering process was performed using hot isostatic pressing at processing conditions of 1150°C and 160MPa with a 1-h holding time. The results indicated that the phase compositions and structural features of the products were noticeably affected by the Ni and GNPs. The mechanical properties of Ni6 and 1.5Ni6 were increased by 55% and 75% in hardness, 59% and 163% in fracture toughness and 120% and 85% in elastic modulus compared with monolithic HA, respectively. The in-vitro biological behavior was investigated using h-FOB osteoblast cells in 1, 3 and 5days of culture. Based on the osteoblast results, the cytotoxicity of the products was indeed affected by the Ni doping. In addition, the effect of GNPs on the growth and proliferation of osteoblast cells was investigated in Ni6 composites containing different ratios of GNPs, where 1.5wt.% was the optimum value.
    Matched MeSH terms: Biocompatible Materials/pharmacology; Biocompatible Materials/chemistry*
  8. Sanaei R, Abu J, Nazari M, Zuki MA, Allaudin ZN
    Vet Surg, 2015 Jul;44(5):603-12.
    PMID: 25656987 DOI: 10.1111/vsu.12292
    To evaluate avian allogeneic demineralized bone matrix (DBM) in the healing of long bone defects as a function of geometry and time in a pigeon model.
    Matched MeSH terms: Biocompatible Materials
  9. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZ, et al.
    Molecules, 2013 Jun 27;18(7):7533-48.
    PMID: 23807578 DOI: 10.3390/molecules18077533
    Superparamagnetic iron oxide nanoparticles (MNPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. These applications required that the MNPs such as iron oxide Fe₃O₄ magnetic nanoparticles (Fe₃O₄ MNPs) having high magnetization values and particle size smaller than 100 nm. This paper reports the experimental detail for preparation of monodisperse oleic acid (OA)-coated Fe₃O₄ MNPs by chemical co-precipitation method to determine the optimum pH, initial temperature and stirring speed in order to obtain the MNPs with small particle size and size distribution that is needed for biomedical applications. The obtained nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence spectrometry (EDXRF), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). The results show that the particle size as well as the magnetization of the MNPs was very much dependent on pH, initial temperature of Fe²⁺ and Fe³⁺ solutions and steering speed. The monodisperse Fe₃O₄ MNPs coated with oleic acid with size of 7.8 ± 1.9 nm were successfully prepared at optimum pH 11, initial temperature of 45°C and at stirring rate of 800 rpm. FTIR and XRD data reveal that the oleic acid molecules were adsorbed on the magnetic nanoparticles by chemisorption. Analyses of TEM show the oleic acid provided the Fe₃O₄ particles with better dispersibility. The synthesized Fe₃O₄ nanoparticles exhibited superparamagnetic behavior and the saturation magnetization of the Fe₃O₄ nanoparticles increased with the particle size.
    Matched MeSH terms: Biocompatible Materials/administration & dosage; Biocompatible Materials/chemistry*
  10. Aslam Khan MU, Abd Razak SI, Al Arjan WS, Nazir S, Sahaya Anand TJ, Mehboob H, et al.
    Molecules, 2021 Jan 25;26(3).
    PMID: 33504080 DOI: 10.3390/molecules26030619
    The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites' mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites' mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.
    Matched MeSH terms: Biocompatible Materials/chemistry*
  11. Vigneswari S, Murugaiyah V, Kaur G, Abdul Khalil HPS, Amirul AA
    Mater Sci Eng C Mater Biol Appl, 2016 Sep 01;66:147-155.
    PMID: 27207048 DOI: 10.1016/j.msec.2016.03.102
    The main focus of this study is the incorporation of collagen peptides to fabricate P(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] nano-fiber construct to further enhance surface wettability and support cell growth while harbouring desired properties for biodegradable wound dressing. Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen peptides construct was carried out using dual syringe system. The wettability of the constructs increased with the increase in 4HB molar fraction from 20mol% 4HB [53.2°], P(3HB-co-35mol%4HB)[48.9°], P(3HB-co-50mol%4HB)[44.5°] and P(3HB-co-82mol%4HB) [37.7°]. In vitro study carried out using mouse fibroblast cells (L929) grown on nanofiber P(3HB-co-4HB)/collagen peptides construct showed an increase in cell proliferation. In vivo study using animal model (Sprague Dawley rats) showed that nanofibrous P(3HB-co-4HB)/collagen peptides construct had a significant effect on wound contractions with the highest percentage of wound closure of 79%. Hence, P(3HB-co-4HB)/collagen peptides construct suitable for wound dressing have been developed using nano-fabrication technique.
    Matched MeSH terms: Biocompatible Materials/pharmacology; Biocompatible Materials/chemistry*
  12. Vigneswari S, Murugaiyah V, Kaur G, Abdul Khalil HP, Amirul AA
    Biomed Mater, 2016 10 06;11(5):055009.
    PMID: 27710927
    Polyhydroxyalkanoate (PHA) is a microbial polymer that has been at the forefront of many attempts at tissue engineering. However, the surface of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) is hydrophobic with few recognition sites for cell attachment. Various concentrations of fish-scale collagen peptides (FSCPs) were incorporated into P(3HB-co-4HB) copolymer by aminolysis. Later, FSCPs were introduced onto the aminolyzed P(3HB-co-4HB) scaffolds. Introduction of the FSCP groups was verified using Fourier transform infrared spectroscopy and the ninhydrin method. The effect of the incorporation of FSCPs on hydrophilicity was investigated using the water contact angle. As the concentration of FSCPs increased, the water contact angle decreased. In vitro study demonstrated that P(3HB-co-4HB)/FSCP scaffolds provided better cell attachment and growth of L929 mouse fibroblast cells and better cell proliferation. In vivo study showed that P(3HB-co-4HB)/1.5 wt% FSCPs had a significant effect on wound contractions, with the highest percentage of wound closure (61%) in 7 d.
    Matched MeSH terms: Biocompatible Materials/chemistry
  13. Danagody B, Bose N, Rajappan K, Iqbal A, Ramanujam GM, Anilkumar AK
    ACS Biomater Sci Eng, 2024 Jan 08;10(1):468-481.
    PMID: 38078836 DOI: 10.1021/acsbiomaterials.3c00892
    Developing biomaterial scaffolds using tissue engineering with physical and chemical surface modification processes can improve the bioactivity and biocompatibility of the materials. The appropriate substrate and site for cell attachment are crucial in cell behavior and biological activities. Therefore, the study aims to develop a conventional electrospun nanofibrous biomaterial using reproducible surface topography, which offers beneficial effects on the cell activities of bone cells. The bioactive MgO/gC3N4 was incorporated on PAN/PEG and fabricated into a nanofibrous membrane using electrospinning. The nanocomposite uniformly distributed on the PAN/PEG nanofiber helps to increase the number of induced pores and reduce the hydrophobicity of PAN. The physiochemical characterization of prepared nanoparticles and nanofibers was carried out using FTIR, X-ray diffraction (XRD), thermogravimetry analysis (TGA), X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. SEM and TEM analyses examined the nanofibrous morphology and the structure of MgO/gC3N4. In vitro studies such as on ALP activity demonstrated the membrane's ability to regenerate new bone and healing capacity. Furthermore, alizarin red staining showed the increasing ability of the cell-cell interaction and calcium content for tissue regeneration. The cytotoxicity of the prepared membrane was about 97.09% of live THP-1 cells on the surface of the MgO/gC3N4@PAN/PEG membrane evaluated using MTT dye staining. The soil burial degradation analysis exhibited that the maximum degradation occurs on the 45th day because of microbial activity. In vitro PBS degradation was observed on the 15th day after the bulk hydrolysis mechanism. Hence, on the basis of the study outcomes, we affirm that the MgO/gC3N4@PAN/PEG nanofibrous membrane can act as a potential bone regenerative substrate.
    Matched MeSH terms: Biocompatible Materials
  14. Inayat-Hussain SH, Rajab NF, Roslie H, Hussin AA, Ali AM, Annuar BO
    Med J Malaysia, 2004 May;59 Suppl B:176-7.
    PMID: 15468875
    Biomaterials intended for end-use application as bone-graft substitutes have to undergo safety evaluation. In this study, we investigated the in vitro cytotoxic effects especially to determine the mode of death of two hydroxyapatite compounds (HA2, HA3) which were synthesized locally. The methods used for cytotoxicity was the standard MTT assay whereas AO/PI staining was performed to determine the mode of cell death in HA treated L929 fibroblasts. Our results demonstrated that both HA2 and HA3 were not significantly cytotoxic as more than 75% cells after 72 hours treatment were viable. Furthermore, we found that the major mode of cell death in HA treated cells was apoptosis. In conclusion, our results demonstrated that these hydroxyapatite compounds are not cytotoxic where the mode of death was primarily via apoptosis.
    Matched MeSH terms: Biocompatible Materials/toxicity*
  15. Saadi S, Saari N, Abdulkarim MS, Ghazali HM, Anwar F
    J Control Release, 2018 03 28;274:93-101.
    PMID: 29031897 DOI: 10.1016/j.jconrel.2017.10.011
    Cell impurities are an emerging nucleating molecular barriers having the capability in disordering the metabolic chain reactions of proteolysis, glycolysis and lipolysis. Their massive effects induced by copolymer crystal growth in compaction with metal and mineral transients are extended as well as in damaging DNA and mRNA structure motif and other molecular assembly e.g. histones structure unites. Their polycrystalline packing modes, polydispersity and their tendency to surface and interface adhesion prompted us in structuring scaffold biomaterials enriched with biopeptides, layered by phospho-glycerides ester-forms. The interface tension of the formed map is flexible and dependent to the surface exposure and its collapse modes to the surrounding molecular ligands. Thus, the attempts in increasing surface exposure e.g. the viscoelastic of structured lipopeptides and types of formed network structures interplays an extra- conjugating biomolecules having a least cytotoxicity effects to cells constituents. Disulfides molecules are selected to be the key regulatory element in rejoining both lipidic and proteic moieties by disordering atoms status via chemical ionization using organic catalyst. The insertion of methionine based peptidic chain at the lateral surfaces of scaffold biomaterials enhances the electron-meta-static motions by raising a molecular disordering status at distinct regions of the map e.g. epimerization into a nonpolar side that helps the chemical conjunction of disulfide groups with the esterified phosphoglycerides mono-layers. These effects in turn are accomplished by the formation of meso-sphere nonpolar- vesicles. The oxidation of disulfide group would alter the ordering of initial molecules by raising a newly molecular disorders to the map with high polarity to surface regions. In the same time indicates a continuation in the crystallization growth factor via a low chemical lesions between the impurities and a supersaturation in the intra-atomic distances with maximum cross linking to the deformed ligand with scaffold biomaterials.
    Matched MeSH terms: Biocompatible Materials
  16. Ahmad P, Alam MK, Jakubovics NS, Schwendicke F, Asif JA
    J Dent Res, 2019 Dec;98(13):1425-1436.
    PMID: 31746684 DOI: 10.1177/0022034519880544
    Since its inception in 1919, the Journal of Dental Research has continually published high-quality articles that span the breadth of research topics relevant to dentistry, oral surgery, and medicine. As part of the journal's centennial celebration, we conducted an electronic search on Scopus to identify and analyze the top 100 most cited articles from 1919 to 2018. Since Scopus does not capture older citations, we conducted an additional analysis by Google Scholar to identify key articles published in the first 50 y of the journal. Based on Scopus, the articles were ranked in descending order per their citation counts. The citation counts of the 100 most cited articles varied from 262 to 1,503. The year in which the largest number of top 100 articles were published was 2004 (n = 6). Within the top 100, the majority of articles originated from the United States (n = 52). Research Reports-Biomaterials & Bioengineering was the most frequent category of cited articles (n = 35). There was no significant association between total citation count and time since publication (correlation coefficient = -0.051, P = 0.656). However, there was a significant negative association of citation density (correlation coefficient = -0.610, P < 0.01) with time since publication. Our analyses demonstrate the broad reach of the journal and the dynamics in citation patterns and research agenda over its 100-y history. There is considerable evidence of the high variance in research output, when measured via citations, across the globe. Moreover, it remains unclear how patients' priorities and dental health care needs are aligned with the perceived influence of single research pieces identified by our search. Our findings may help to inspire future research in tackling these inequalities and highlight the need for conceptualizing research priorities.
    Matched MeSH terms: Biocompatible Materials
  17. Jaganathan SK, Supriyanto E, Murugesan S, Balaji A, Asokan MK
    Biomed Res Int, 2014;2014:459465.
    PMID: 24895577 DOI: 10.1155/2014/459465
    Cardiovascular biomaterials (CB) dominate the category of biomaterials based on the demand and investments in this field. This review article classifies the CB into three major classes, namely, metals, polymers, and biological materials and collates the information about the CB. Blood compatibility is one of the major criteria which limit the use of biomaterials for cardiovascular application. Several key players are associated with blood compatibility and they are discussed in this paper. To enhance the compatibility of the CB, several surface modification strategies were in use currently. Some recent applications of surface modification technology on the materials for cardiovascular devices were also discussed for better understanding. Finally, the current trend of the CB, endothelization of the cardiac implants and utilization of induced human pluripotent stem cells (ihPSCs), is also presented in this review. The field of CB is growing constantly and many new investigators and researchers are developing interest in this domain. This review will serve as a one stop arrangement to quickly grasp the basic research in the field of CB.
    Matched MeSH terms: Biocompatible Materials/chemical synthesis*; Biocompatible Materials/therapeutic use*
  18. Heboyan A, Vardanyan A, Karobari MI, Marya A, Avagyan T, Tebyaniyan H, et al.
    Molecules, 2023 Feb 08;28(4).
    PMID: 36838607 DOI: 10.3390/molecules28041619
    The cementation of indirect restoration is one of the most important steps in prosthetic and restorative dentistry. Cementation aims to bond the prosthetic restoration to the prepared enamel or enamel and dentine. Successful cementation protocols prevent biofilm formation at the margin between tooth and restoration and minimize mechanical and biological complications. With the advancements in dental cements, they have been modified to be versatile in terms of handling, curing, and bond strengths. This review presents updates on dental cements, focusing on the composition, properties, advantages, limitations, and indications of the various cements available. Currently, dental restorations are made from various biomaterials, and depending on each clinical case, an appropriate luting material will be selected. There is no luting material that can be universally used. Therefore, it is important to distinguish the physical, mechanical, and biological properties of luting materials in order to identify the best options for each case. Nowadays, the most commonly used dental cements are glass-ionomer and resin cement. The type, shade, thickness of resin cement and the shade of the ceramic, all together, have a tangible influence on the final restoration color. Surface treatments of the restoration increase the microtensile bond strength. Hence, the proper surface treatment protocol of both the substrate and restoration surfaces is needed before cementation. Additionally, the manufacturer's instructions for the thin cement-layer thickness are important for the long-term success of the restoration.
    Matched MeSH terms: Biocompatible Materials*
  19. Elshereksi NW, Ghazali MJ, Muchtar A, Azhari CH
    J Dent, 2017 Jan;56:121-132.
    PMID: 27916635 DOI: 10.1016/j.jdent.2016.11.012
    OBJECTIVES: This study aimed to fabricate and characterise silanated and titanated nanobarium titanate (NBT) filled poly(methyl methacrylate) (PMMA) denture base composites and to evaluate the behaviour of a titanate coupling agent (TCA) as an alternative coupling agent to silane. The effect of filler surface modification on fracture toughness was also studied.

    METHODS: Silanated, titanated and pure NBT at 5% were incorporated in PMMA matrix. Neat PMMA matrix served as a control. NBT was sonicated in MMA prior to mixing with the PMMA. Curing was carried out using a water bath at 75°C for 1.5h and then at 100°C for 30min. NBT was characterised via Fourier transform-infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis before and after surface modification. The porosity and fracture toughness of the PMMA nanocomposites (n=6, for each formulation and test) were also evaluated.

    RESULTS: NBT was successfully functionalised by the coupling agents. The TCA exhibited the lowest percentage of porosity (0.09%), whereas silane revealed 0.53% porosity. Statistically significant differences in fracture toughness were observed among the fracture toughness values of the tested samples (p<0.05). While the fracture toughness of untreated samples was reduced by 8%, an enhancement of 25% was achieved after titanation. In addition, the fracture toughness of the titanated samples was higher than the silanated ones by 10%.

    CONCLUSION: Formation of a monolayer on the surface of TCA enhanced the NBT dispersion, however agglomeration of silanated NBT was observed due to insufficient coverage of NBT surface. Such behaviour led to reducing the porosity level and improving fracture toughness of titanated NBT/PMMA composites. Thus, TCA seemed to be more effective than silane.

    CLINICAL SIGNIFICANCE: Minimising the porosity level could have the potential to reduce fungus growth on denture base resin to be hygienically accepTable Such enhancements obtained with Ti-NBT could lead to promotion of the composites' longevity.

    Matched MeSH terms: Biocompatible Materials/chemistry*
  20. Lai KL, Roziyanna A, Ogunniyi DS, Zainal AM, Azlan AA
    Med J Malaysia, 2004 May;59 Suppl B:61-2.
    PMID: 15468819
    Various blend ratios of high-density polyethylene (HDPE) and ultra high molecular weight polyethylene (UHMWPE) were prepared with the objective of determining their suitability as biomaterials. In the unfilled state, a blend of 50/50 (HDPE/UHMWPE) ratio by weight was found to yield optimum properties in terms of processability and mechanical properties. Hydroxyapatite (HA) was compounded with the optimum blend ratio. The effects of HA loading, varied from 0 to 50wt% for both filled and unfilled blends were tested for mechanical properties. It was found that the inclusion of HA in the blend led to a remarkable improvement of mechanical properties compared to the unfilled blend. In order to improve the bonding between the polymer blend and the filler, the HA used was chemically treated with a coupling agent known as 3-(trimethoxysiyl) propyl methacrylate and the treated HA was mixed into the blend. The effect of mixing the blend with silane-treated HA also led to an overall improvement of mechanical properties.
    Matched MeSH terms: Biocompatible Materials/analysis; Biocompatible Materials/chemical synthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links