Displaying publications 21 - 40 of 230 in total

Abstract:
Sort:
  1. Chapman R, Howden-Chapman P, Capon A
    Environ Int, 2016 Sep;94:380-387.
    PMID: 27126780 DOI: 10.1016/j.envint.2016.04.014
    Understanding cities comprehensively as systems is a costly challenge and is typically not feasible for policy makers. Nevertheless, focusing on some key systemic characteristics of cities can give useful insights for policy to advance health and well-being outcomes. Moreover, if we take a coevolutionary systems view of cities, some conventional assumptions about the nature of urban development (e.g. the growth in private vehicle use with income) may not stand up. We illustrate this by examining the coevolution of urban transport and land use systems, and institutional change, giving examples of policy implications. At a high level, our concern derives from the need to better understand the dynamics of urban change, and its implications for health and well-being. At a practical level, we see opportunities to use stylised findings about urban systems to underpin policy experiments. While it is now not uncommon to view cities as systems, policy makers appear to have made little use so far of a systems approach to inform choice of policies with consequences for health and well-being. System insights can be applied to intelligently anticipate change - for example, as cities are subjected to increasing natural system reactions to climate change, they must find ways to mitigate and adapt to it. Secondly, systems insights around policy cobenefits are vital for better informing horizontal policy integration. Lastly, an implication of system complexity is that rather than seeking detailed, 'full' knowledge about urban issues and policies, cities would be well advised to engage in policy experimentation to address increasingly urgent health and climate change issues.
    Matched MeSH terms: Cities*
  2. He Z, Chin Y, Yu S, Huang J, Zhang CJP, Zhu K, et al.
    JMIR Public Health Surveill, 2021 Jan 25;7(1):e20495.
    PMID: 33232262 DOI: 10.2196/20495
    BACKGROUND: The influence of meteorological factors on the transmission and spread of COVID-19 is of interest and has not been investigated.

    OBJECTIVE: This study aimed to investigate the associations between meteorological factors and the daily number of new cases of COVID-19 in 9 Asian cities.

    METHODS: Pearson correlation and generalized additive modeling (GAM) were performed to assess the relationships between daily new COVID-19 cases and meteorological factors (daily average temperature and relative humidity) with the most updated data currently available.

    RESULTS: The Pearson correlation showed that daily new confirmed cases of COVID-19 were more correlated with the average temperature than with relative humidity. Daily new confirmed cases were negatively correlated with the average temperature in Beijing (r=-0.565, P

    Matched MeSH terms: Cities/epidemiology
  3. Bong CP, Goh RKY, Lim JS, Ho WS, Lee CT, Hashim H, et al.
    J Environ Manage, 2017 Dec 01;203(Pt 2):679-687.
    PMID: 27267145 DOI: 10.1016/j.jenvman.2016.05.033
    Rapid population growth and urbanisation have generated large amount of municipal solid waste (MSW) in many cities. Up to 40-60% of Malaysia's MSW is reported to be food waste where such waste is highly putrescible and can cause bad odour and public health issue if its disposal is delayed. In this study, the implementation of community composting in a village within Iskandar Malaysia is presented as a case study to showcase effective MSW management and mitigation of GHG emission. The selected village, Felda Taib Andak (FTA), is located within a palm oil plantation and a crude palm oil processing mill. This project showcases a community-composting prototype to compost food and oil palm wastes into high quality compost. The objective of this article is to highlight the economic and environment impacts of a community-based composting project to the key stakeholders in the community, including residents, oil palm plantation owners and palm oil mill operators by comparing three different scenarios, through a life cycle approach, in terms of the greenhouse gas emission and cost benefit analysis. First scenario is the baseline case, where all the domestic waste is sent to landfill site. In the second scenario, a small-scale centralised composting project was implemented. In the third scenario, the data obtained from Scenario 2 was used to do a projection on the GHG emission and costing analysis for a pilot-scale centralised composting plant. The study showed a reduction potential of 71.64% on GHG emission through the diversion of food waste from landfill, compost utilisation and significant revenue from the compost sale in Scenario 3. This thus provided better insight into the feasibility and desirability in implementing a pilot-scale centralised composting plant for a sub-urban community in Malaysia to achieve a low carbon and self-sustainable society, in terms of environment and economic aspects.
    Matched MeSH terms: Cities
  4. Aziz NA, Daly E, Allen S, Rowson B, Greig C, Forman D, et al.
    Parasit Vectors, 2016;9:56.
    PMID: 26830203 DOI: 10.1186/s13071-016-1338-3
    Angiostrongylus vasorum is a highly pathogenic metastrongylid nematode affecting dogs, which uses gastropod molluscs as intermediate hosts. The geographical distribution of the parasite appears to be heterogeneous or patchy and understanding of the factors underlying this heterogeneity is limited. In this study, we compared the species of gastropod present and the prevalence of A. vasorum along a rural-urban gradient in two cities in the south-west United Kingdom.
    Matched MeSH terms: Cities
  5. Koh HL, Lim PE
    Environ Monit Assess, 1991 Oct;19(1-3):373-82.
    PMID: 24233954 DOI: 10.1007/BF00401326
    Georgetown of Penang, an old city, is noted for its narrow streets. The existing traffic dispersal system is utterly inadequate to cope with the ever increasing number of cars and motorcycles on the road. The principal objective of this study is to build prediction models of CO to be employed as one of the planning tools in the future design of Penang urban traffic dispersal system. This study involves the monitoring of kerbside CO levels at selected sites and the fitting of hourly-averaged CO data to linear regression models incorporating the residual effect of CO emission due to traffic in the earlier periods and also different categories of vehicles. The best overall regression model appears to be the one based upon the total traffic count of motorcycles. This can be accounted for by the fact that the traffic counts of motorcycles and cars are highly correlated in most cases and that the emissions of CO from motorcycles are more readily detected as they travel closer to the kerb. The inclusion of residual CO in the models significantly improves the correlation coefficient from about 0.4 to about 0.7.
    Matched MeSH terms: Cities
  6. Yigitcanlar T, Butler L, Windle E, Desouza KC, Mehmood R, Corchado JM
    Sensors (Basel), 2020 May 25;20(10).
    PMID: 32466175 DOI: 10.3390/s20102988
    In recent years, artificial intelligence (AI) has started to manifest itself at an unprecedented pace. With highly sophisticated capabilities, AI has the potential to dramatically change our cities and societies. Despite its growing importance, the urban and social implications of AI are still an understudied area. In order to contribute to the ongoing efforts to address this research gap, this paper introduces the notion of an artificially intelligent city as the potential successor of the popular smart city brand-where the smartness of a city has come to be strongly associated with the use of viable technological solutions, including AI. The study explores whether building artificially intelligent cities can safeguard humanity from natural disasters, pandemics, and other catastrophes. All of the statements in this viewpoint are based on a thorough review of the current status of AI literature, research, developments, trends, and applications. This paper generates insights and identifies prospective research questions by charting the evolution of AI and the potential impacts of the systematic adoption of AI in cities and societies. The generated insights inform urban policymakers, managers, and planners on how to ensure the correct uptake of AI in our cities, and the identified critical questions offer scholars directions for prospective research and development.
    Matched MeSH terms: Cities
  7. Ali MAH, Mailah M, Jabbar WA, Moiduddin K, Ameen W, Alkhalefah H
    Sensors (Basel), 2020 Jul 01;20(13).
    PMID: 32630340 DOI: 10.3390/s20133694
    A real-time roundabout detection and navigation system for smart vehicles and cities using laser simulator-fuzzy logic algorithms and sensor fusion in a road environment is presented in this paper. A wheeled mobile robot (WMR) is supposed to navigate autonomously on the road in real-time and reach a predefined goal while discovering and detecting the road roundabout. A complete modeling and path planning of the road's roundabout intersection was derived to enable the WMR to navigate autonomously in indoor and outdoor terrains. A new algorithm, called Laser Simulator, has been introduced to detect various entities in a road roundabout setting, which is later integrated with fuzzy logic algorithm for making the right decision about the existence of the roundabout. The sensor fusion process involving the use of a Wi-Fi camera, laser range finder, and odometry was implemented to generate the robot's path planning and localization within the road environment. The local maps were built using the extracted data from the camera and laser range finder to estimate the road parameters such as road width, side curbs, and roundabout center, all in two-dimensional space. The path generation algorithm was fully derived within the local maps and tested with a WMR platform in real-time.
    Matched MeSH terms: Cities
  8. Arifin MH, Kayode JS, Azahar MA, Jamil H, Sabri SFA
    Data Brief, 2018 Jun;18:1864-1868.
    PMID: 29904689 DOI: 10.1016/j.dib.2018.04.119
    The paper presents the data from the surface and subsurface mapping of this area for the purpose of siting industrial city in the area. The field data collected combine with the borehole data was to successfully apply these to solving geological, environmental and engineering complications posed by the complexity of the subsurface geological structures underlain this area. The Electrical Resistivity, (ER) and Induced Polarization, (IP) data were initially processed using RES2DINV software model to generate the depth to the lithological units together with topographic correction. The 2-D ER and IP data were collected from 23rd April 2017 up until 7th May 2017 covering a total of about 17.6 km along 44 survey lines using ABEM Terrameter SAS4000 for the field measurement. A total of 20 Borehole logs data were recorded to better characterized in-situ, the subsurface geological formations emplaced in the study area. The study area is located at Bagan Datuk, Perak Darul Ridzuan situated on Latitude 2° 44.653'N and Longitudes 104° 28.79' E along the west coast Peninsula Malaysia. The topography of the area is generally flat low-laying and elevation range from about 0 m to 32 m above mean sea level (MSL).
    Matched MeSH terms: Cities
  9. Lan S, Tseng ML, Yang C, Huisingh D
    Sci Total Environ, 2020 Apr 10;712:136381.
    PMID: 31940512 DOI: 10.1016/j.scitotenv.2019.136381
    "Smart cities" have become the development direction pursued by city leaders to address challenges related to rapid growth in urban areas. The sustainable development of the logistics sector has important practical significance for the evolution of smart cities. This study assessed the inefficiency rate and total factor productivity (TFP) of logistics in 36 Chinese cities from 2006 to 2015. The directional distance function (DDF) and Luenberger productivity index analytical approaches were used to assess the relevant parameters. The results revealed that the logistics system inefficiency rate of the eastern region was much higher than that of the central and western regions, while that of the western region was slightly higher than that of the central region. This study identified the main constraints of the logistics TFP in different regions in China. This finding is used to promote policy-making and investment planning to improve China's competitive advantage. The results documented that the central region of China needs to accelerate logistics reforms and use its location advantage of its location to form an organic connection with the eastern and western regions. Countries can use such metrics to take actions to improve their logistics performance, as such an improvement has a causal relationship with economic development.
    Matched MeSH terms: Cities
  10. Jin X, Sumaila UR, Yin K, Qi Z
    PMID: 34501589 DOI: 10.3390/ijerph18179006
    The Ministry of Ecology and Environment of the People's Republic of China formally proposed an environmental interview system in May 2014, which applies pressure on local governments to fulfill their responsibility toward environmental protection by conducting face-to-face public interviews with their officials. In this paper, 48 cities that were publicly interviewed from 2014-2020 were considered the experimental group and 48 cities surrounding them were the control group. First, the dynamic panel model is applied to initially determine the effect of the policy. Then, a regression discontinuity method (Sharp RD) is used to analyze the short-term and long-term effects and compare the reasons for the differences observed among the estimates of various types of samples. Finally, a series of robustness tests were also conducted. The results show that the environmental interview system can improve air quality. However, because an emergency short-term local governance system exists at present, the governance effect is not long-term and, therefore, not sustainable. Therefore, it suggests that the government should continue to improve the environmental interview system, establish an optimal environmental protection incentive mechanism, and encourage local governments to implement environmental protection policies effectively in the long term. The results of the research are of great significance to the environmental impact assessment system of the world, especially in countries with similar economic systems, which are facing a trade-off between economic growth and environmental sustainability.
    Matched MeSH terms: Cities
  11. Kamble CB, Raju R, Vishnu R, Rajkanth R, Pariatamby A
    Waste Manag Res, 2021 Nov;39(11):1427-1436.
    PMID: 34494917 DOI: 10.1177/0734242X211029159
    Management of waste is one of the major challenges faced by many developing countries. This study therefore attempts to develop a circular economy (CE) model to manage wastes and closing the loop and reducing the generation of residual wastes in Indian municipalities. Through extant literature review, the researchers found 30 success factors of CE implementation. Using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) SIMOS approach, the rating and weight of decision makers (DMs) for each factor were collected. A structured questionnaire has been developed incorporating all these 30 factors, to extract the most important factors. The data was collected from top 10 officials (DMs) from the Chennai municipality, who handle three regions (metropolitan, suburbia and industrial). Based on the TOPSIS SIMOS analysis, nine CE implementing factors (critical success factors (CSFs)) among the 30 variables that were significant based on the cut-off value was identified. A CE model has been proposed based on these nine CSFs for waste management in India.
    Matched MeSH terms: Cities
  12. Nellis S, Loong SK, Abd-Jamil J, Fauzi R, AbuBakar S
    Geospat Health, 2021 11 03;16(2).
    PMID: 34730321 DOI: 10.4081/gh.2021.1008
    Dengue is a complex disease with an increasing number of infections worldwide. This study aimed to analyse spatiotemporal dengue outbreaks using geospatial techniques and examine the effects of the weather on dengue outbreaks in the Klang Valley area, Kuala Lumpur, Malaysia. Daily weather variables including rainfall, temperature (maximum and minimum) and wind speed were acquired together with the daily reported dengue cases data from 2001 to 2011 and converted into geospatial format to identify whether there was a specific pattern of the dengue outbreaks. The association between these variables and dengue outbreaks was assessed using Spearman's correlation. The result showed that dengue outbreaks consistently occurred in the study area during a 11-year study period. And that the strongest outbreaks frequently occurred in two high-rise apartment buildings located in Kuala Lumpur City centre. The results also show significant negative correlations between maximum temperature and minimum temperature on dengue outbreaks around the study area as well as in the area of the high-rise apartment buildings in Kuala Lumpur City centre.
    Matched MeSH terms: Cities
  13. Aghamohammadi N, Ramakreshnan L, Fong CS, Noor RM, Hanif NR, Sulaiman NM
    Sci Total Environ, 2022 Feb 01;806(Pt 1):150331.
    PMID: 34571225 DOI: 10.1016/j.scitotenv.2021.150331
    The stakeholders' perceptions on the impacts of Urban Heat Island (UHI) are critical for reducing exposure and influencing their response to interventions that are aimed at encouraging a behaviour change. A proper understanding of the UHI impacts on the society, economy and environment is deemed an essential motivating factor for the stakeholders to work towards UHI mitigations in the local context. This study adopted an inductive qualitative approach using Stakeholder Dialogue Sessions (SDSs) to assess the perceived impacts of UHI among various stakeholders, comprising policy makers, academicians, developers and Non-Governmental Organizations (NGO), in a tropical metropolitan city. The results revealed five themes such as deterioration of public health, acceleration of urban migration patterns and spending time in cooler areas, reduction of workers' productivity, increased energy consumption by the households and deterioration of environmental quality and natural resources that were categorized into social, economic and environmental impacts. Although most of the stakeholders were quite unfamiliar with the term UHI, they still display a good understanding of the potential impacts of UHI due to their posteriori knowledge and ability to rationalize the physical condition of the environment in which they live. The findings provide useful insights and valuable information to the local authorities to tailor necessary actions and educational campaigns to increase UHI awareness among the stakeholders. Being among the earlier studies to use a qualitative approach to attain the aforementioned objective, the findings are crucial to determine the level of understanding of the stakeholders on the impact of UHI. Through this study, the authors have highlighted the gaps and needs for knowledge improvements aimed at behaviour change among the stakeholders.
    Matched MeSH terms: Cities
  14. Cheng H, Wang FF, Dong DW, Liang JC, Zhao CF, Yan B
    Front Public Health, 2021;9:769687.
    PMID: 34746088 DOI: 10.3389/fpubh.2021.769687
    This article takes the Guangdong Province of China as the research object and uses the difference-in-difference model to evaluate the impact of smart city construction on the quality of public occupational health and intercity differences. The obtained results show that smart city construction significantly improves the quality of public occupational health, and it is still valid after a series of robustness tests. The effect of this policy is stronger in cities that belong to the Pearl River Delta region or sub-provincial level cities. This study indicates that the central government should improve the pilot evaluation system and the performance appraisal mechanism of smart cities from the perspective of top-level design during the process of promoting smart city construction, which aims to correctly guide local governments to promote the construction of smart cities. To achieve the full improvement effect of smart city construction on the quality of public occupational health, local governments should implement smart city strategies in a purposeful and planned way according to the actual situation of the development of the jurisdiction.
    Matched MeSH terms: Cities
  15. Amegah ML, Adanu EK, Kolawole Ojo T, Bukari S, Asare-Akuffo F
    Traffic Inj Prev, 2023;24(1):94-97.
    PMID: 36178858 DOI: 10.1080/15389588.2022.2127321
    OBJECTIVE: There is a dearth of empirical studies on motorcyclists' red-light running and helmet use at signalized intersections in low and middle-income countries like Ghana, Nigeria and Malaysia. This study seeks to fill the gap by looking at red-light running and helmet use at signalized intersections in the Cape Coast metropolis, Ghana. The study also identified potential areas of intervention to reduce the dangers posed by motorcyclists' red-light running in the Cape Coast Metropolis without the use of a helmet.

    METHOD: A naturalistic exploratory un-obstructive observational approach was used in assessing this phenomenon. The relationship between motorcyclists' behaviors and motorcyclists' observed demographic characteristics, the locality of the intersection, time of the week and presence of pillion passengers were analyzed. Chi-Square test of independence was used to establish the statistically significant relationships between dependent and independent variables.

    RESULTS: In all, 2,225 motorcyclists and 744 pillion passengers were observed. The results revealed that 33.1% of the motorcyclists ran a red light with 45.4% not using a helmet. Red-light running at signalized intersections was significantly linked to the locality of the intersection, time of the week, and helmet use. The helmet use was low and significantly associated with the presence of a pillion passenger and whether the pillion passenger used a helmet or not.

    CONCLUSION: Red-light running is influenced by locality of intersection, time of the week and helmet use. Efforts to reduce red-light running and improve helmet use should involve road safety education, awareness creation, and enforcement of traffic laws by the officials of the National Road Safety Authority and Motor Transport and Traffic Department of the Ghana Police Service. City managers in other low and middle-income countries can use the findings in the study to inform policy.

    Matched MeSH terms: Cities
  16. Lin X, Baskaran A, Zhang Y
    PMID: 36768047 DOI: 10.3390/ijerph20032679
    Green ecological development has become an inevitable choice to achieve sustainable urban development and carbon neutrality. This paper evaluates the level of green ecological city development in the Xin'an watershed as measured by green total factor productivity (GTFP), analyzes the direct and spatial effects of the Watershed Horizontal Ecological Compensation policy on GTFP, and further examines the moderating effect of the Research and Development (R&D) incentives, industrial structure, and income gap. This paper conducts difference-in-differences (DID) and spatial regression analysis on 27 cities from 2007 to 2019. The results show that GTFP progresses to varying degrees across cities over time, especially in the pilot cities. Crucially, the Watershed Horizontal Ecological Compensation policy significantly improved GTFP, although the effect was slight. Interestingly, the increase in GTFP in pilot cities that implemented the policy spatially suppressed the increase in GTFP in cities that did not implement the policy. Our evidence also shows that the positive effect of the policy is higher in regions with higher R&D incentives and industrial structure upgrading, which indicates that R&D incentives and industrial upgrading are crucial. In comparison, the income gap has not made the expected negative adjustment effect under the Chinese government's poverty alleviation policy. However, the positive policy effect is heterogeneous in the downstream and upstream pilot cities. The "forcing effect" of the policy on the downstream cities is more favorable than the "compensating effect" on the upstream cities. Therefore, policymakers should pay more attention to ensuring the effectiveness of the Watershed Horizontal Ecological Compensation policy in enhancing GTFP as a long-term strategy to guarantee the sustainability of green ecological development in Chinese cities.
    Matched MeSH terms: Cities
  17. Luo N, Ibrahim R, Abidin SZ
    Int J Environ Res Public Health, 2022 Dec 14;19(24).
    PMID: 36554658 DOI: 10.3390/ijerph192416780
    Characteristics of children's paintings have been suggested considered for application in public art since they are known to positively evoke a sense of well-being when people see them. This study aims to understand the impact of artistic features from children's drawings on people's well-being; then analyzing the adaptive design principles of 3D public art featuring children's paintings on people's happiness; and finally, exploring the influence of 3D public art featuring children's paintings on improving public spaces and enhancing people's well-being. The results lead to proposing a conceptual framework for public artworks in public spaces for improving people's happiness. The proposed conceptual framework recommends that, by applying the visual and thinking features of children's paintings to public art, artists can design high-quality artworks suitable for a city, which could improve people's happiness in public spaces. This study recommends further research into how public art can promote public spaces and shape the urban culture. It contributes to enhancing the quality of public art and public spaces, and inspiring a sense of well-being among citizens through the use of appropriate public art. The results are significant because they will help artists to create more high-quality public artworks for urban public spaces in order to evoke people's happiness.
    Matched MeSH terms: Cities
  18. Gohari A, Gohari A, Ahmad AB
    Environ Sci Pollut Res Int, 2023 Jan;30(2):3707-3725.
    PMID: 35953748 DOI: 10.1007/s11356-022-22472-4
    Megacities recently are experiencing a shortage of green spaces basically due to the rapid growth of urbanization and increasing demand for different building types. Consideration of sustainable urban development is essential since the expansion of city facilities should be in line with social, economic, and environmental aspects. In this regard, green roof technology has been recommended as an effective solution for the growth of green spaces per capita and improving sustainability means of urban developments due to its diverse advantages. This study thus aimed at prioritizing sustainability indicators and relative sub-criteria of adopting green roof technology for residential and governmental buildings in the city of Mashhad, Iran, which has a dry climate. For this purpose, thirteen sub-criteria, which are extracted from the existing literature, are classified into three main sustainability indicators (environmental, economic, and social). Also, the best-worth method (BWM) as a multi-criteria decision-making technique was implemented to prioritize indicators and sub-criteria by analyzing the expert's opinion. The results indicated that respective economic and environmental indicators attract the highest priority in residential and governmental buildings. Additionally, the most important sub-criteria in environmental, economic, and social groups are air quality, roof longevity, and public health in both building types, respectively. However, when all criteria were considered, the respective highest priorities belong to roof longevity and air quality in residential and governmental buildings, while biodiversity conservation is the least important one in both building types. The results of this research can be beneficial in other cities with similar economic and climate conditions.
    Matched MeSH terms: Cities
  19. Kurniawan TA, Othman MHD, Liang X, Goh HH, Gikas P, Kusworo TD, et al.
    J Environ Manage, 2023 Jul 15;338:117765.
    PMID: 36965421 DOI: 10.1016/j.jenvman.2023.117765
    Digitalization and sustainability have been considered as critical elements in tackling a growing problem of solid waste in the framework of circular economy (CE). Although digitalization can enhance time-efficiency and/or cost-efficiency, their end-results do not always lead to sustainability. So far, the literatures still lack of a holistic view in understanding the development trends and key roles of digitalization in waste recycling industry to benefit stakeholders and to protect the environment. To bridge this knowledge gap, this work systematically investigates how leveraging digitalization in waste recycling industry could address these research questions: (1) What are the key problems of solid waste recycling? (2) How the trends of digitalization in waste management could benefit a CE? (3) How digitalization could strengthen waste recycling industry in a post-pandemic era? While digitalization boosts material flows in a CE, it is evident that utilizing digital solutions to strengthen waste recycling business could reinforce a resource-efficient, low-carbon, and a CE. In the Industry 4.0 era, digitalization can add 15% (about USD 15.7 trillion) to global economy by 2030. As digitalization grows, making the waste sector shift to a CE could save between 30% and 35% of municipalities' waste management budget. With digitalization, a cost reduction of 3.6% and a revenue increase of 4.1% are projected annually. This would contribute to USD 493 billion in an increasing revenue yearly in the next decade. As digitalization enables tasks to be completed shortly with less manpower, this could save USD 421 billion annually for the next decade. With respect to environmental impacts, digitalization in the waste sector could reduce global CO2 emissions by 15% by 2030 through technological solutions. Overall, this work suggests that digitalization in the waste sector contributes net-zero emission to a digital economy, while transitioning to a sustainable world as its social impacts.
    Matched MeSH terms: Cities
  20. Bagheri M, Ibrahim ZZ, Wolf ID, Akhir MF, Talaat WIAW, Oryani B
    Environ Sci Pollut Res Int, 2023 Jul;30(34):81839-81857.
    PMID: 35789462 DOI: 10.1007/s11356-022-21662-4
    The impact of global warming presents an increased risk to the world's shorelines. The Intergovernmental Panel on Climate Change (IPCC) reported that the twenty-first century experienced a severe global mean sea-level rise due to human-induced climate change. Therefore, coastal planners require reasonably accurate estimates of the rate of sea-level rise and the potential impacts, including extreme sea-level changes, floods, and shoreline erosion. Also, land loss as a result of disturbance of shoreline is of interest as it damages properties and infrastructure. Using a nonlinear autoregressive network with an exogenous input (NARX) model, this study attempted to simulate (1991 to 2012) and predict (2013-2020) sea-level change along Merang kechil to Kuala Marang in Terengganu state shoreline areas. The simulation results show a rising trend with a maximum rate of 28.73 mm/year and an average of about 8.81 mm/year. In comparison, the prediction results show a rising sea level with a maximum rate of 79.26 mm/year and an average of about 25.34 mm/year. The database generated from this study can be used to inform shoreline defense strategies adapting to sea-level rise, flood, and erosion. Scientists can forecast sea-level increases beyond 2020 using simulated sea-level data up to 2020 and apply it for future research. The data also helps decision-makers choose measures for vulnerable shoreline settlements to adapt to sea-level rise. Notably, the data will provide essential information for policy development and implementation to facilitate operational decision-making processes for coastal cities.
    Matched MeSH terms: Cities
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links