Displaying publications 21 - 40 of 305 in total

Abstract:
Sort:
  1. Jean SS, Coombs G, Ling T, Balaji V, Rodrigues C, Mikamo H, et al.
    Int J Antimicrob Agents, 2016 Apr;47(4):328-34.
    PMID: 27005459 DOI: 10.1016/j.ijantimicag.2016.01.008
    A total of 9599 isolates of Gram-negative bacteria (GNB) causing urinary tract infections (UTIs) were collected from 60 centres in 13 countries in the Asia-Pacific region from 2010-2013. These isolates comprised Enterobacteriaceae species (mainly Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Klebsiella oxytoca, Enterobacter cloacae and Morganella morganii) and non-fermentative GNB species (predominantly Pseudomonas aeruginosa and Acinetobacter baumannii). In vitro susceptibilities were determined by the agar dilution method and susceptibility profiles were determined using the minimum inhibitory concentration (MIC) interpretive breakpoints recommended by the Clinical and Laboratory Standards Institute in 2015. Production of extended-spectrum β-lactamases (ESBLs) amongst E. coli, K. pneumoniae, P. mirabilis and K. oxytoca isolates was determined by the double-disk synergy test. China, Vietnam, India, Thailand and the Philippines had the highest rates of GNB species producing ESBLs and the highest rates of cephalosporin resistance. ESBL production and hospital-acquired infection (isolates obtained ≥48h after admission) significantly compromised the susceptibility of isolates of E. coli and K. pneumoniae to ciprofloxacin, levofloxacin and most β-lactams, with the exception of imipenem and ertapenem. However, >87% of ESBL-producing E. coli strains were susceptible to amikacin and piperacillin/tazobactam, indicating that these antibiotics might be appropriate alternatives for treating UTIs due to ESBL-producing E. coli. Fluoroquinolones were shown to be inappropriate as empirical therapy for UTIs. Antibiotic resistance is a serious problem in the Asia-Pacific region. Therefore, continuous monitoring of evolutionary trends in the susceptibility profiles of GNB causing UTIs in Asia is crucial.
    Matched MeSH terms: Drug Resistance, Bacterial
  2. Tan, Y.F., Haresh, K.K., Chai, L.C., Son R.
    MyJurnal
    A study to determine the antibiotic sensitivity pattern and genotyping using RAPD-PCR was performed on 50 C. jejuni isolated from sushi retailed in different supermarkets. With less than half of the isolates susceptible to the antibiotics tested, resistant to two or more antibiotics were observed in most of the isolates. The banding patterns obtained from RAPD-PCR revealed that no predominant clone exists and the bacterial population is rather diverse. Hence, the resistance of the C. jejuni to different classes of antibiotic as well as their diverse genotypes suggests that these C. jejuni isolates were generated from different sources in the contaminated supermarkets where sushi were retailed. Our data showed that C. jejuni can be an important reservoir for resistance genes and that study with comprehensive collections of samples are urgently required to establish better measures to reduce or eliminate the risk from antibiotic resistant and pathogenic bacteria originating from minimally processed ready-to-eat food.
    Matched MeSH terms: Drug Resistance, Bacterial
  3. Sharma A, Singh A, Dar MA, Kaur RJ, Charan J, Iskandar K, et al.
    J Infect Public Health, 2022 Feb;15(2):172-181.
    PMID: 34972026 DOI: 10.1016/j.jiph.2021.12.008
    Antimicrobial Resistance (AMR) is significant challenge humanity faces today, with many patients losing their lives every year due to AMR. It is more widespread and has shown a higher prevalence in low- and middle-income countries (LMICs) due to lack of awareness and other associated reasons. WHO has suggested some crucial guidelines and specific strategies such as antimicrobial stewardship programs taken at the institutional level to combat AMR. Creating awareness at the grassroots level can help to reduce the AMR and promote safe and effective use of antimicrobials. Control strategies in curbing AMR also comprise hygiene and sanitation as microbes travel from contaminated surroundings to the human body surface. As resistance to multiple drugs increases, vaccines can play a significant role in curbing the menace of AMR. This article summarizes the current surveillance practices and applied control measures to tackle the hostility in these countries with particular reference to the role of antimicrobial stewardship programs and the responsibilities of regulatory authorities in managing the situation.
    Matched MeSH terms: Drug Resistance, Bacterial
  4. Graells T, Lambraki IA, Cousins M, Léger A, Henriksson PJG, Troell M, et al.
    Front Public Health, 2023;11:1230848.
    PMID: 37900049 DOI: 10.3389/fpubh.2023.1230848
    INTRODUCTION: Antimicrobial resistance (AMR) is a challenge to modern medicine. Interventions have been applied worldwide to tackle AMR, but these actions are often not reported to peers or published, leading to important knowledge gaps about what actions are being taken. Understanding factors that influence the implementation of AMR interventions and what factors are relevant in low-middle-income countries (LMICs) and high-income countries (HICs) were the key objectives of this exploratory study, with the aim to identifying which priorities these contexts need.

    METHODS: A questionnaire was used to explore context, characteristics, and success factors or obstacles to intervention success based on participant input. The context was analyzed using the AMR-Intervene framework, and success factors and obstacles to intervention success were identified using thematic analysis.

    RESULTS: Of the 77 interventions, 57 were implemented in HICs and 17 in LMICs. Interventions took place in the animal sector, followed by the human sector. Public organizations were mainly responsible for implementation and funding. Nine themes and 32 sub-themes emerged as important for intervention success. The themes most frequently reported were 'behavior', 'capacity and resources', 'planning', and 'information'. Five sub-themes were key in all contexts ('collaboration and coordination', 'implementation', 'assessment', 'governance', and 'awareness'), two were key in LMICs ('funding and finances' and 'surveillance, antimicrobial susceptibility testing and preventive screening'), and five were key in HICs ('mandatory', 'multiple profiles', 'personnel', 'management', and 'design').

    CONCLUSION: LMIC sub-themes showed that funding and surveillance were still key issues for interventions, while important HIC sub-themes were more specific and detailed, including mandatory enforcement, multiple profiles, and personnel needed for good management and good design. While behavior is often underrated when implementing AMR interventions, capacity and resources are usually considered, and LMICs can benefit from sub-themes captured in HICs if tailored to their contexts. The factors identified can improve the design, planning, implementation, and evaluation of interventions.

    Matched MeSH terms: Drug Resistance, Bacterial
  5. Gunell M, Webber MA, Kotilainen P, Lilly AJ, Caddick JM, Jalava J, et al.
    Antimicrob Agents Chemother, 2009 Sep;53(9):3832-6.
    PMID: 19596880 DOI: 10.1128/AAC.00121-09
    Nontyphoidal Salmonella enterica strains with a nonclassical quinolone resistance phenotype were isolated from patients returning from Thailand or Malaysia to Finland. A total of 10 isolates of seven serovars were studied in detail, all of which had reduced susceptibility (MIC > or = 0.125 microg/ml) to ciprofloxacin but were either susceptible or showed only low-level resistance (MIC < or = 32 microg/ml) to nalidixic acid. Phenotypic characterization included susceptibility testing by the agar dilution method and investigation of efflux activity. Genotypic characterization included the screening of mutations in the quinolone resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE by PCR and denaturing high-pressure liquid chromatography and the amplification of plasmid-mediated quinolone resistance (PMQR) genes qnrA, qnrB, qnrS, qnrD, aac(6')-Ib-cr, and qepA by PCR. PMQR was confirmed by plasmid analysis, Southern hybridization, and plasmid transfer. No mutations in the QRDRs of gyrA, gyrB, parC, or parE were detected with the exception of a Thr57-Ser substitution within ParC seen in all but the S. enterica serovar Typhimurium strains. The qnrA and qnrS genes were the only PMQR determinants detected. Plasmids carrying qnr alleles were transferable in vitro, and the resistance phenotype was reproducible in Escherichia coli DH5alpha transformants. These data demonstrate the emergence of a highly mobile qnr genotype that, in the absence of mutation within topoisomerase genes, confers the nontypical quinolone resistance phenotype in S. enterica isolates. The qnr resistance mechanism enables bacteria to survive elevated quinolone concentrations, and therefore, strains carrying qnr alleles may be able to expand during fluoroquinolone treatment. This is of concern since nonclassical quinolone resistance is plasmid mediated and therefore mobilizable.
    Matched MeSH terms: Drug Resistance, Bacterial/genetics; Drug Resistance, Bacterial/physiology*
  6. Rameshkumar MR, Arunagirinathan N, Swathirajan CR, Vignesh R, Balakrishnan P, Solomon SS
    Indian J Med Res, 2018 09;148(3):341-344.
    PMID: 30425226 DOI: 10.4103/ijmr.IJMR_730_17
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects; Drug Resistance, Bacterial/genetics
  7. Ngoi ST, Thong KL
    Biomed Res Int, 2014;2014:718084.
    PMID: 25371903 DOI: 10.1155/2014/718084
    The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes.
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects; Drug Resistance, Bacterial/genetics*
  8. Kim SY, Ko KS
    Microb Drug Resist, 2019 Mar;25(2):227-232.
    PMID: 30212274 DOI: 10.1089/mdr.2018.0020
    To reveal whether an increase of CTX-M-15-producing Klebsiella pneumoniae ST11 isolates is due to clonal dissemination across the countries, plasmids (pHK02-026, pM16-13, pIN03-01, and pTH02-34) were extracted from four K. pneumoniae isolates collected in Hong Kong, Malaysia, Thailand, and Indonesia, respectively. Complete sequencing of blaCTX-M-15-carrying plasmids was performed. In addition to the four plasmids, a previously sequenced plasmid (pKP12226) of a K. pneumoniae ST11 isolate from Korea was included in the analysis. While pIN03-01 and pTH02-34, which belonged to the incompatibility group IncX3, showed nearly the same structure, the others of IncF1A or IncFII exhibited very different structures. The number and kinds of antibiotic genes found in the plasmids were also different from each other. Cryptic prophage genes were identified in all five blaCTX-M-15-harboring plasmids from the ST11 isolates; P1-like region in pKP12226, CPZ-55 prophage region in pHK02-026, phage shock operon pspFABCD in pM16-13, and SPBc2 prophage yokD in pIN03-01 and pTH02-34. The plasmids with blaCTX-M-15 in the prevailing K. pneumoniae ST11 isolates in Asian countries might emerge from diverse origins by recombination. The prevalence of CTX-M-15-producing K. pneumoniae ST11 clone in Asian countries is not mainly due to the dissemination of a single strain.
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects*; Drug Resistance, Bacterial/genetics*
  9. D'Aeth JC, van der Linden MP, McGee L, de Lencastre H, Turner P, Song JH, et al.
    Elife, 2021 Jul 14;10.
    PMID: 34259624 DOI: 10.7554/eLife.67113
    Multidrug-resistant Streptococcus pneumoniae emerge through the modification of core genome loci by interspecies homologous recombinations, and acquisition of gene cassettes. Both occurred in the otherwise contrasting histories of the antibiotic-resistant S. pneumoniae lineages PMEN3 and PMEN9. A single PMEN3 clade spread globally, evading vaccine-induced immunity through frequent serotype switching, whereas locally circulating PMEN9 clades independently gained resistance. Both lineages repeatedly integrated Tn916-type and Tn1207.1-type elements, conferring tetracycline and macrolide resistance, respectively, through homologous recombination importing sequences originating in other species. A species-wide dataset found over 100 instances of such interspecific acquisitions of resistance cassettes and flanking homologous arms. Phylodynamic analysis of the most commonly sampled Tn1207.1-type insertion in PMEN9, originating from a commensal and disrupting a competence gene, suggested its expansion across Germany was driven by a high ratio of macrolide-to-β-lactam consumption. Hence, selection from antibiotic consumption was sufficient for these atypically large recombinations to overcome species boundaries across the pneumococcal chromosome.
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects*; Drug Resistance, Bacterial/genetics*
  10. Kurup A, Liau KH, Ren J, Lu MC, Navarro NS, Farooka MW, et al.
    Ann Med Surg (Lond), 2014 Sep;3(3):85-91.
    PMID: 25568794 DOI: 10.1016/j.amsu.2014.06.005
    Regional epidemiological data and resistance profiles are essential for selecting appropriate antibiotic therapy for intra-abdominal infections (IAIs). However, such information may not be readily available in many areas of Asia and current international guidelines on antibiotic therapy for IAIs are for Western countries, with the most recent guidance for the Asian region dating from 2007. Therefore, the Asian Consensus Taskforce on Complicated Intra-Abdominal Infections (ACT-cIAI) was convened to develop updated recommendations for antibiotic management of complicated IAIs (cIAIs) in Asia. This review article is based on a thorough literature review of Asian and international publications related to clinical management, epidemiology, microbiology, and bacterial resistance patterns in cIAIs, combined with the expert consensus of the Taskforce members. The microbiological profiles of IAIs in the Asian region are outlined and compared with Western data, and the latest available data on antimicrobial resistance in key pathogens causing IAIs in Asia is presented. From this information, antimicrobial therapies suitable for treating cIAIs in patients in Asian settings are proposed in the hope that guidance relevant to Asian practices will prove beneficial to local physicians managing IAIs.
    Matched MeSH terms: Drug Resistance, Bacterial
  11. Noor Shafina MN, Nor Azizah A, Mohammad AR, Faisal MF, Mohamad Ikhsan S, Hafizah Z, et al.
    Med J Malaysia, 2015 Jun;70(3):153-7.
    PMID: 26248777 MyJurnal
    INTRODUCTION: Urinary tract infection (UTI) is a common bacterial infection affecting children and therefore, prompt recognition and accurate antimicrobial management are vital to prevent kidney damage. This study aims to determine the bacterial pathogens and their patterns of antimicrobial resistance in children presenting with UTI.
    METHODS: A retrospective study of 721 cases, involving children between the ages of 1-day old to 13 years old with culture-proven UTI in Selayang Hospital, Malaysia between January 2007 and December 2011. The bacterial pathogens and antibiotic resistance patterns in the total population, prophylaxis and no prophylaxis groups were studied.
    RESULTS: The 3 most common organisms isolated in the total population were E.Coli (41.6%), Klebsiella spp. (21.2%) and Enterococcus spp. (11.0%). With regards to the antibiotic resistance, E.Coli resistance rates to ampicillin, cefuroxime and gentamicin were 67.7%, 15.3% and 7.3% respectively. Ampicillin-resistance was also highest in Klebsiella spp. (84.3%), Enterococcus spp. (15.5%) and Proteus spp. (55.5%).
    CONCLUSION: E.coli remains to be the leading bacterial pathogen causing UTI in children, with ampicillin-resistance occurring in more than half of these cases. Therefore, accurate choice of antibiotics is important to ensure optimal outcome. In our study, cefuroxime and gentamicin have lower antibiotic resistance rates and can be used in the treatment of UTI in children.
    Matched MeSH terms: Drug Resistance, Bacterial
  12. Wan Makhtar WR, Mohd Azlan M, Hassan NH, Aziah I, Samsurizal NH, Yusof NY
    Microbiol Resour Announc, 2020 Aug 13;9(33).
    PMID: 32817162 DOI: 10.1128/MRA.01497-19
    We describe here the draft genome sequence and basic characteristics of Escherichia coli isolate INF13/18/A, which was isolated from Universiti Sains Malaysia (USM) Hospital. This isolate was identified as an extended-spectrum β-lactamase-producing Escherichia coli strain harboring the antimicrobial resistance genes TEM, CTX-M-1, and CTX-M-9.
    Matched MeSH terms: Drug Resistance, Bacterial
  13. Ahmad Sabri NS, Mohd Zulkeflle SN, Yusof N, Md Akhir FN, Othman N, Zakaria Z, et al.
    Microbiol Resour Announc, 2021 May 06;10(18).
    PMID: 33958405 DOI: 10.1128/MRA.00332-21
    Staphylococcus spp. are Gram-positive bacteria that reside within the normal microbiota of humans and animals but pose a health threat as reservoirs of antimicrobial resistance genes. Here, we present the draft genome sequences of three Staphylococcus sp. strains isolated from hospital wastewater in Malaysia that demonstrated resistance to multiple antibiotics.
    Matched MeSH terms: Drug Resistance, Bacterial
  14. Hong KW, Thinagaran Da, Gan HM, Yin WF, Chan KG
    J Bacteriol, 2012 Nov;194(22):6324.
    PMID: 23115161 DOI: 10.1128/JB.01608-12
    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.
    Matched MeSH terms: Drug Resistance, Bacterial
  15. Léger A, Lambraki I, Graells T, Cousins M, Henriksson PJG, Harbarth S, et al.
    J Antimicrob Chemother, 2021 01 01;76(1):1-21.
    PMID: 33057678 DOI: 10.1093/jac/dkaa394
    The global threat of antimicrobial resistance (AMR) requires coordinated actions by and across different sectors. Increasing attention at the global and national levels has led to different strategies to tackle the challenge. The diversity of possible actions to address AMR is currently not well understood from a One Health perspective. AMR-Intervene, an interdisciplinary social-ecological framework, describes interventions to tackle AMR in terms of six components: (i) core information about the publication; (ii) social system; (iii) bio-ecological system; (iv) triggers and goals; (v) implementation and governance; and (vi) assessment. AMR-Intervene provides a broadly applicable framework, which can inform the design, implementation, assessment and reporting of interventions to tackle AMR and, in turn, enable faster uptake of successful interventions to build societal resilience to AMR.
    Matched MeSH terms: Drug Resistance, Bacterial
  16. Low YM, Chong CW, Yap IKS, Chai LC, Clarke SC, Ponnampalavanar S, et al.
    Pathog Glob Health, 2018 10;112(7):378-386.
    PMID: 30380366 DOI: 10.1080/20477724.2018.1538281
    The increasing prevalence of antibiotic resistant pathogens poses a serious threat to global health. However, less emphasis has been placed to co-relate the gene expression and metabolism of antibiotic resistant pathogens. This study aims to elucidate gene expression and variations in metabolism of multidrug resistant Klebsiella pneumoniae after exposure to antibiotics. Phenotypic responses of three genotypically distinct carbapenem resistant Klebsiella pneumoniae (CRKP) strains untreated and treated with sub-lethal concentrations of imipenem were investigated via phenotype microarrays (PM). The gene expression and metabolism of the strain harboring blaNDM-1 before and after exposure to sub-lethal concentration of imipenem were further investigated by RNA-sequencing (RNA-Seq) and 1H NMR spectroscopy respectively. Most genes related to cell division, central carbon metabolism and nucleotide metabolism were downregulated after imipenem treatment. Similarly, 1H NMR spectra obtained from treated CRKP showed decrease in levels of bacterial end products (acetate, pyruvate, succinate, formate) and metabolites involved in nucleotide metabolism (uracil, xanthine, hypoxanthine) but elevated levels of glycerophosphocholine. The presence of anserine was also observed for the treated CRKP while FAPγ-adenine and methyladenine were only present in untreated bacterial cells. As a conclusion, the studied CRKP strain exhibited decrease in central carbon metabolism, cell division and nucleotide metabolism after exposure to sub-lethal concentrations of imipenem. The understanding of the complex biological system of this multidrug resistant bacterium may help in the development of novel strategies and potential targets for the management of the infections.
    Matched MeSH terms: Drug Resistance, Bacterial/drug effects*; Drug Resistance, Bacterial/genetics; Drug Resistance, Bacterial/physiology*
  17. Hashmi FK, Atif N, Malik UR, Saleem F, Riboua Z, Hassali MA, et al.
    Disaster Med Public Health Prep, 2022 Aug;16(4):1285-1286.
    PMID: 33691830 DOI: 10.1017/dmp.2020.492
    Matched MeSH terms: Drug Resistance, Bacterial
  18. Haulisah NA, Hassan L, Jajere SM, Ahmad NI, Bejo SK
    PLoS One, 2022;17(12):e0277664.
    PMID: 36477195 DOI: 10.1371/journal.pone.0277664
    Laboratory surveillance and the monitoring of antimicrobial resistance (AMR) trends and patterns among local isolates have been highly effective in providing comprehensive information for public health decision-making. A total of 396 cases along with 449 specimens were received for antibiotic susceptibility testing at a public university veterinary diagnostic laboratory in Malaysia between 2015 and 2017. Escherichia coli was the most frequently isolated (n = 101, 13%) bacteria, followed by Staphylococcus pseudintermedius (n = 97, 12%) and Streptococcus canis (n = 62, 8%). In cats, S. pseudintermedius isolates were highly resistant to azithromycin (90%), while the E. coli isolates were highly resistant to doxycycline (90%), tetracycline (81%), and cephalexin (75%). About 55% of S. pseudintermedius and 82% of E. coli were multi-drug resistant (MDR). In dogs, S. intermedius isolates were highly resistant to aminoglycosides neomycin (90.9%) and gentamicin (84.6%), and tetracycline (75%). Whereas the E. coli isolates were highly resistant to cephalexin (82.1%) and amoxicillin/clavulanic acid (76.5%). MDR was observed in 60% of S. intermedius and 72% of E. coli from dogs. Generally, the bacterial isolates from cats demonstrated higher levels of resistance to multiple antibiotics compared to those from dogs.
    Matched MeSH terms: Drug Resistance, Bacterial
  19. Jha N, Mudvari A, Hayat K, Shankar PR
    J Nepal Health Res Counc, 2023 Mar 09;20(3):689-696.
    PMID: 36974858 DOI: 10.33314/jnhrc.v20i3.3992
    BACKGROUND: Antimicrobial resistance is an important global problem resulting in an improper response of infections to antimicrobials and an increase in the duration and cost of treatment. Healthcare professionals play an important role in addressing Antimicrobial resistance and positive perception is important for involvement in antimicrobial stewardship policies. Hence the perception of key Healthcare professionals, including physicians, nurses, and hospital pharmacists, towards Antimicrobial resistance antimicrobial stewardship policies was studied.

    METHODS: A cross-sectional study was conducted in a tertiary care hospital at Lalitpur, from January to March 2021 using stratified random sampling. An online questionnaire was circulated to the selected Healthcare professionals. Median Antimicrobial resistance and antimicrobial stewardship policy scores were calculated and compared among different subgroups. Previous engagement with Antimicrobial resistance and antimicrobial stewardship policies programs was also noted. Descriptive statistics, Mann Whitney, and Kruskal Wallis tests were used for data analysis.

    RESULTS: The response rate was 89.3% (202/226). Antimicrobial resistance was regarded as a serious problem in the Nepali community by participants with work experience of 1-5 years, 87 (75.6%, p=0.029), and female participants, 62 (45.5%, p<0.001). Most physicians, females, and participants with working experience 1-5 years believed inappropriate use of antibiotics can harm patients and is professionally unethical. Physicians supported the availability of local antimicrobial guidelines and protocols. The median scores for Antimicrobial resistance (p<0.001) and Antimicrobial resistance eradication (p=0.048) differed according to age groups.

    CONCLUSIONS: Healthcare professionals believed Antimicrobial resistance was an important issue. Antibiotic guidelines developed should be strictly implemented. Healthcare professionals also believed inappropriate use of antibiotics can harm patients and is professionally unethical.

    Matched MeSH terms: Drug Resistance, Bacterial
  20. Dhingra S, Rahman NAA, Peile E, Rahman M, Sartelli M, Hassali MA, et al.
    Front Public Health, 2020;8:535668.
    PMID: 33251170 DOI: 10.3389/fpubh.2020.535668
    Antibiotics changed medical practice by significantly decreasing the morbidity and mortality associated with bacterial infection. However, infectious diseases remain the leading cause of death in the world. There is global concern about the rise in antimicrobial resistance (AMR), which affects both developed and developing countries. AMR is a public health challenge with extensive health, economic, and societal implications. This paper sets AMR in context, starting with the history of antibiotics, including the discovery of penicillin and the golden era of antibiotics, before exploring the problems and challenges we now face due to AMR. Among the factors discussed is the low level of development of new antimicrobials and the irrational prescribing of antibiotics in developed and developing countries. A fundamental problem is the knowledge, attitude, and practice (KAP) regarding antibiotics among medical practitioners, and we explore this aspect in some depth, including a discussion on the KAP among medical students. We conclude with suggestions on how to address this public health threat, including recommendations on training medical students about antibiotics, and strategies to overcome the problems of irrational antibiotic prescribing and AMR.
    Matched MeSH terms: Drug Resistance, Bacterial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links