Displaying publications 21 - 40 of 140 in total

Abstract:
Sort:
  1. Ali MA, Islam MA, Othman NH, Noor AM, Ibrahim M
    Acta Sci Pol Technol Aliment, 2020 1 14;18(4):427-438.
    PMID: 31930793 DOI: 10.17306/J.AFS.0694
    BACKGROUND: Rice bran oil (RBO) contains significant amounts of micronutrients (oryzanol, tocotrienol, tocopherol, phytosterols etc.) that impart a high resistance to thermal oxidation of the oil. The high oxidative stability of RBO can make it a preferred oil to improve the oxidative and flavor stabilities of other oils rich in PUFAs. In this study, the changes in the oxidative status and fatty acid composition in soybean oil (SO) blended with RBO under extreme thermal conditions were evaluated.

    METHODS: The blends were prepared in a volume ratio of 10:90, 20:80, 40:60, and 60:40 (RBO:SO). The changes in the oxidative parameters and fatty acid composition of the samples during heating at frying temperature (170°C) were determined using analytical and instrumental methods. Oxidative alteration was also monitored by recording FTIR spectra of oil samples.

    RESULTS: The increase in oxidative parameters (free fatty acid, color, specific extinctions, peroxide value, p-anisidine value, and thiobarbituric acid value) was greater in pure SO as compared to RBO or blend oils during heating. This indicates that the SO samples incorporated with RBO have the least degradation, while pure SO has the highest. Blending resulted in a lower level of polyunsaturated fatty acids (PUFA)  with       a higher level of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA). During heating, the relative content of PUFA decreased and that of SFA increased. However, the presence of RBO in SO slowed down the oxidative deterioration of PUFA. In FTIR, the peak intensities in SO were markedly changed in comparison with blend oils during heating. The reduction in the formation of oxidative products in SO during thermal treatment increased as the concentration of the RBO in SO increased; however, the levels of the protective effect of RBO did not increase steadily with an increase in its concentration.

    CONCLUSIONS: During thermal treatment, the generation of hydroperoxides, their degradation and formation of secondary oxidative products as evaluated by oxidative indices, fatty acids and IR absorbances were lower in blend oils compared to pure SO. In conclusion, RBO can significantly retard the process of lipid peroxidation in SO during heating at frying temperature.

    Matched MeSH terms: Drug Stability
  2. Aziz HA, Peh KK, Tan YT
    Drug Dev Ind Pharm, 2007 Nov;33(11):1263-72.
    PMID: 18058323
    Curcumin, the main active constituent of turmeric herb (Curcuma longa L.) have been reported to possess many medicinal values. The application of curcumin in dermatological preparations is limited by their intense yellow color property, which stains the fabric and skin. The objectives of this study were to reduce the color staining effect and enhance the stability of curcumin via microencapsulation using gelatin simple coacervation method. As for curcumin, ethanol and acetone were used as coacervating solvents. Curcumin was dispersed in ethanol while dissolved in acetone. Irrespective of the types of coacervating solvents used, microencapsulation resolved the color-staining problem and enhanced the flow properties and photo-stability of curcumin. Nevertheless, it was found that more spherical curcumin microcapsules with higher yield, higher curcumin loading, and higher entrapment efficiency were obtained with acetone than ethanol. The in vitro release of curcumin after microencapsulation was slightly prolonged. Further evaluation of the effects of solubility of core materials in coacervating solvent or polymeric aqueous solution using six different drug compounds, namely, ketoconazole, ketoprofen, magnesium stearate, pseudoephedrine HCl, diclofenac sodium, and paracetamol, suggested that the solubility of core materials in aqueous polymeric solution determined the successful formation of microcapsules. Microcapsules could only be formed if the core materials were not dissolved in the aqueous polymeric solution while the core materials could either be dissolved or dispersed in the coacervating solvent. In summary, microencapsulation not only circumvents the color-staining problem but also improved the stability and flowability of curcumin. The solubility of core material in aqueous polymeric solution plays a pivotal role in determining the successful formation of microcapsules.
    Matched MeSH terms: Drug Stability
  3. Gazzali AM, Lobry M, Colombeau L, Acherar S, Azaïs H, Mordon S, et al.
    Eur J Pharm Sci, 2016 Oct 10;93:419-30.
    PMID: 27575880 DOI: 10.1016/j.ejps.2016.08.045
    Folic acid is a small molecule, also known as vitamin B9. It is an essential compound involved in important biochemical processes. It is widely used as a vector for targeted treatment and diagnosis especially in cancer therapeutics. Nevertheless, not many authors address the problem of folic acid degradation. Several researchers reported their observations concerning its denaturation, but they generally only took into account one parameter (pH, temperature, light or O2etc.). In this review, we will focus on five main parameters (assessed individually or in conjunction with one or several others) that have to be taken into account to avoid the degradation of folic acid: light, temperature, concentration, oxygen and pH, which are the most cited in the literature. Scrupulous bibliographic research enabled us to determine two additional degradation factors that are the influence of singlet oxygen and electron beam on folic acid stability, which are not considered as among the prime factors. Although these two factors are not commonly present as compared to the others, singlet oxygen and electron beams intervene in new therapeutic technologies and must be taken in consideration for further applications such photodynamic or X-rays therapies.
    Matched MeSH terms: Drug Stability
  4. Kandel S, Zaidi STR, Wanandy ST, Ming LC, Castelino RL, Sud K, et al.
    Perit Dial Int, 2017 11 21;38(1):49-56.
    PMID: 29162678 DOI: 10.3747/pdi.2017.00115
    BACKGROUND: Intraperitoneal (IP) administration of ceftazidime is recommended for the treatment of peritoneal dialysis-associated peritonitis (PDAP) from Pseudomonas. Patients with PDAP may also need IP heparin to overcome problems with drainage of turbid peritoneal dialysis (PD) fluids and blockage of catheters with fibrin. Physico-chemical stability of ceftazidime and heparin, and biological stability of heparin in many types of PD solutions is unknown. Therefore, we investigated the stability of ceftazidime and heparin in 4 types of PD solutions.

    METHODS: A total of 12 PD bags (3 for each type of solution) containing ceftazidime and heparin were prepared and stored at 4°C for 120 hours, and then at 25°C for 6 hours, and finally at 37°C for 12 hours. An aliquot was withdrawn after predefined time points and analyzed for the concentration of ceftazidime and heparin using high-performance liquid-chromatography (HPLC). Samples were assessed for pH, color changes, particle content, and anticoagulant activity of heparin.

    RESULTS: Ceftazidime and heparin retained more than 91% of their initial concentration when stored at 4°C for 120 hours followed by storage at 25°C for 6 hours and then at 37°C for 12 hours. Heparin retained more than 95% of its initial activity throughout the study period. Particle formation was not detected at any time under the storage conditions. The pH and color remained essentially unchanged throughout the study.

    CONCLUSIONS: Ceftazidime-heparin admixture retains its stability over long periods of storage at different temperatures, allowing its potential use for PDAP treatment in outpatient and remote settings.

    Matched MeSH terms: Drug Stability
  5. Hameed HA, Khan S, Shahid M, Ullah R, Bari A, Ali SS, et al.
    Drug Des Devel Ther, 2020;14:27-41.
    PMID: 32021089 DOI: 10.2147/DDDT.S232111
    BACKGROUND: Naproxen (NP) is a non-steroidal anti-inflammatory drug with poor aqueous solubility and low oral bioavailability, which may lead to therapeutic failure. NP causes crucial GIT irritation, bleeding, and peptic and duodenal ulcers.

    PURPOSE OF THE STUDY: This study aimed to engineer and characterize polymer hybrid enteric microspheres using an integrated (experimental and molecular modelling) approach with further development to solid dosage form with modified drug release kinetics and improved bioavailability.

    MATERIALS AND METHODS: NP loaded polymer hybrid enteric microspheres (PHE-Ms) were fabricated by using a modified solvent evaporation technique coupled with molecular modelling (MM) approach. The PHE-Ms were characterized by particle size, distribution, morphology, crystallinity, EE, drug-polymer compatibility, and DSC. The optimized NP loaded PHE-Ms were further subjected to downstream procedures including tablet dosage form development, stability studies and comparative in vitro-in vivo evaluation.

    RESULTS: The hydrophobic polymer EUD-L100 and hydrophilic polymer HPMC-E5 delayed and modified drug release at intestinal pH while imparting retardation of NP release at gastric pH to diminish the gastric side effects. The crystallinity of the NP loaded PHE-Ms was established through DSC and P (XRD). The particle size for the developed formulations of PEH-Ms (M1-M5) was in the range from 29.06 ±7.3-74.31 ± 17.7 μm with Span index values of 0.491-0.69, respectively. The produced NP hybrid microspheres demonstrated retarded drug release at pH 1.2 and improved dissolution at pH 6.8. The in vitro drug release patterns were fitted to various release kinetic models and the best-followed model was the Higuchi model with a release exponent "n" value > 0.5. Stability studies at different storage conditions confirmed stability of the NP loaded PHE-Ms based tablets (P<0.05). The molecular modelling (MM) study resulted in adequate binding energy of co-polymer complex SLS-Eudragit-HPMC-Naproxen (-3.9 kcal/mol). In contrast to the NP (unprocessed) and marketed formulations, a significant increase in the Cmax of PHE-MT1 (44.41±4.43) was observed.

    CONCLUSION: The current study concludes that developing NP loaded PHE-Ms based tablets could effectively reduce GIT consequences with restored therapeutic effects. The modified release pattern could improve the dissolution rate and enhancement of oral bioavailability. The MM study strengthens the polymer-drug relationship in microspheres.

    Matched MeSH terms: Drug Stability
  6. Edueng K, Mahlin D, Gråsjö J, Nylander O, Thakrani M, Bergström CAS
    Molecules, 2019 Jul 27;24(15).
    PMID: 31357587 DOI: 10.3390/molecules24152731
    This study explores the effect of physical aging and/or crystallization on the supersaturation potential and crystallization kinetics of amorphous active pharmaceutical ingredients (APIs). Spray-dried, fully amorphous indapamide, metolazone, glibenclamide, hydrocortisone, hydrochlorothiazide, ketoconazole, and sulfathiazole were used as model APIs. The parameters used to assess the supersaturation potential and crystallization kinetics were the maximum supersaturation concentration (Cmax,app), the area under the curve (AUC), and the crystallization rate constant (k). These were compared for freshly spray-dried and aged/crystallized samples. Aged samples were stored at 75% relative humidity for 168 days (6 months) or until they were completely crystallized, whichever came first. The solid-state changes were monitored with differential scanning calorimetry, Raman spectroscopy, and powder X-ray diffraction. Supersaturation potential and crystallization kinetics were investigated using a tenfold supersaturation ratio compared to the thermodynamic solubility using the µDISS Profiler. The physically aged indapamide and metolazone and the minimally crystallized glibenclamide and hydrocortisone did not show significant differences in their Cmax,app and AUC when compared to the freshly spray-dried samples. Ketoconazole, with a crystalline content of 23%, reduced its Cmax,app and AUC by 50%, with Cmax,app being the same as the crystalline solubility. The AUC of aged metolazone, one of the two compounds that remained completely amorphous after storage, significantly improved as the crystallization kinetics significantly decreased. Glibenclamide improved the most in its supersaturation potential from amorphization. The study also revealed that, besides solid-state crystallization during storage, crystallization during dissolution and its corresponding pathway may significantly compromise the supersaturation potential of fully amorphous APIs.
    Matched MeSH terms: Drug Stability
  7. A VBR, Yusop Z, Jaafar J, Aris AB, Majid ZA, Umar K, et al.
    J Pharm Biomed Anal, 2016 Sep 05;128:141-148.
    PMID: 27262107 DOI: 10.1016/j.jpba.2016.05.026
    In this study a sensitive and selective gradient reverse phase UPLC-MS/MS method was developed for the simultaneous determination of six process related impurities viz., Imp-I, Imp-II, Imp-III, Imp-IV, Imp-V and Imp-VI in darunavir. The chromatographic separation was performed on Acquity UPLC BEH C18 (50 mm×2.1mm, 1.7μm) column using gradient elution of acetonitrile-methanol (80:20, v/v) and 5.0mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4mL/min. Both negative and positive electrospray ionization (ESI) modes were operated simultaneously using multiple reaction monitoring (MRM) for the quantification of all six impurities in darunavir. The developed method was fully validated following ICH guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, robustness and sample solution stability. The method was able to quantitate Imp-I, Imp-IV, Imp-V at 0.3ppm and Imp-II, Imp-III, and Imp-VI at 0.2ppm with respect to 5.0mg/mL of darunavir. The calibration curves showed good linearity over the concentration range of LOQ to 250% for all six impurities. The correlation coefficient obtained was >0.9989 in all the cases. The accuracy of the method lies between 89.90% and 104.60% for all six impurities. Finally, the method has been successfully applied for three formulation batches of darunavir to determine the above mentioned impurities, however no impurity was found beyond the LOQ. This method is a good quality control tool for the trace level quantification of six process related impurities in darunavir during its synthesis.
    Matched MeSH terms: Drug Stability
  8. Ishaka A, Umar Imam M, Mahamud R, Zuki AB, Maznah I
    Int J Nanomedicine, 2014;9:2261-9.
    PMID: 24872689 DOI: 10.2147/IJN.S56999
    Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56-94.52 nm), with optimum charge distribution (-55.8 to -45.12 mV), pH (6.79-6.92) and refractive index (1.50); these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times.
    Matched MeSH terms: Drug Stability
  9. Lim HP, Tey BT, Chan ES
    J Control Release, 2014 Jul 28;186:11-21.
    PMID: 24816070 DOI: 10.1016/j.jconrel.2014.04.042
    Natural biopolymers have attracted considerable interest for the development of delivery systems for protein drugs owing to their biocompatibility, non-toxicity, renewability and mild processing conditions. This paper offers an overview of the current status and future perspectives of particle designs using biopolymers for the stabilization and controlled-delivery of a model protein drug--insulin. We first describe the design criteria for polymeric encapsulation and subsequently classify the basic principles of particle fabrication as well as the existing particle designs for oral insulin encapsulation. The performances of these existing particle designs in terms of insulin stability and in vitro release behavior in acidic and alkaline media, as well as their in vivo performance are compared and reviewed. This review forms the basis for future works on the optimization of particle design and material formulation for the development of an improved oral delivery system for protein drugs.
    Matched MeSH terms: Drug Stability
  10. Siwayanan P, Aziz R, Bakar NA, Ya H, Jokiman R, Chelliapan S
    J Oleo Sci, 2014;63(6):585-92.
    PMID: 24829132
    Phosphate-free spray dried detergent powders (SDDP) comprising binary anionic surfactants of palm C16 methyl ester sulfonate (C16MES) and linear alkyl benzene sulfonic acid (LABSA) were produced using a 5 kg/h-capacity co-current pilot spray dryer (CSD). Six phosphate-free detergent (PFD) formulations comprising C16MES/LABSA in various ratios under pH 7-8 were studied. Three PFD formulations having C16MES/LABSA in respective ratios of 0:100 (control), 20:80 and 40:60 ratios were selected for further evaluation based on their optimum detergent slurry concentrations. The resulting SDDP from these formulations were analysed for its detergency stability (over nine months of storage period) and particle characteristics. C16MES/LABSA of 40:60 ratio was selected as the ideal PFD formulation since its resulting SDDP has consistent detergency stability (variation of 2.3% in detergency/active over nine months storage period), excellent bulk density (0.37 kg/L), fine particle size at 50% cumulative volume percentage (D50 of 60.48 μm), high coefficient of particle size uniformity (D60/D10 of 3.86) and large spread of equivalent particle diameters. In terms of surface morphology, the SDDP of the ideal formulation were found to have regular hollow particles with smooth spherical surfaces. Although SDDP of the ideal formulation have excellent characteristics, but in terms of flowability, these powders were classified as slightly less free flowing (Hausner ratio of 1.27 and Carr's index of 21.3).
    Matched MeSH terms: Drug Stability
  11. Rezaee M, Basri M, Rahman RN, Salleh AB, Chaibakhsh N, Karjiban RA
    Int J Nanomedicine, 2014;9:539-48.
    PMID: 24531324 DOI: 10.2147/IJN.S49616
    Response surface methodology was employed to study the effect of formulation composition variables, water content (60%-80%, w/w) and oil and surfactant (O/S) ratio (0.17-1.33), as well as high-shear emulsification conditions, mixing rate (300-3,000 rpm) and mixing time (5-30 minutes) on the properties of sodium diclofenac-loaded palm kernel oil esters-nanoemulsions. The two response variables were droplet size and viscosity. Optimization of the conditions according to the four variables was performed for preparation of the nanoemulsions with the minimum values of particle size and viscosity. The results showed that the experimental data could be sufficiently fitted into a third-order polynomial model with multiple regression coefficients (R(2) ) of 0.938 and 0.994 for the particle size and viscosity, respectively. Water content, O/S ratio and mixing time, quadrics of all independent variables, interaction between O/S ratio and mixing rate and between mixing time and rate, as well as cubic term of water content had a significant effect (P<0.05) on the particle size of nanoemulsions. The linear effect of all independent variables, quadrics of water content and O/S ratio, interaction of water content and O/S ratio, as well as cubic term of water content and O/S ratio had significant effects (P<0.05) on the viscosity of all nanoemulsions. The optimum conditions for preparation of sodium diclofenac nanoemulsions were predicted to be: 71.36% water content; 0.69 O/S ratio; 950 rpm mixing rate, and 5 minute mixing time. The optimized formulation showed good storage stability in different temperatures.
    Matched MeSH terms: Drug Stability
  12. Charoo N, Chiew M, Tay A, Lian L
    Cutan Ocul Toxicol, 2014 Sep;33(3):242-6.
    PMID: 24147942 DOI: 10.3109/15569527.2013.837058
    The aim of this work was to find the effect of temperature and manufacturing source of phenylmercuric nitrate (PMN) on PMN absorption on low-density polyethylene (LDPE) and polypropylene containers in chloramphenicol eye drops. Two factorial experiments were designed to study the effect of temperature on PMN assay in chloramphenicol eye drops stored in LDPE and prepared from two different PMN sources. PMN source had no effect on PMN assay at 2-8 °C, however at stress conditions (30 °C/75%RH) for 3 weeks, the effect of PMN source on PMN assay was found significant (p 
    Matched MeSH terms: Drug Stability
  13. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA
    Molecules, 2013 May 28;18(6):6269-80.
    PMID: 23760028 DOI: 10.3390/molecules18066269
    Synthesis of ZnO-Ag heterostructure nanoparticles was carried out by a precipitation method with cellulose nanocrystals (CNCs) as a stabilizer for antimicrobial and thermal studies. ZnO-Ag nanoparticles were obtained from various weight percentages of added AgNO₃ relative to Zn precursors for evaluating the best composition with enhanced functional properties. The ZnO-Ag/CNCs samples were characterized systematically by TEM, XRD, UV, TGA and DTG. From the TEM studies we observed that ZnO-Ag heterostructure nanoparticles have spherical shapes with size diameters in a 9-35 nm range. The antibacterial activities of samples were assessed against the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The CNC-stabilized ZnO-Ag exhibited greater bactericidal activity compared to cellulose-free ZnO-Ag heterostructure nanoparticles of the same particle size. The incorporation of ZnO-Ag hetreostructure nanoparticles significantly increased the thermal stability of cellulose nanocrystals.
    Matched MeSH terms: Drug Stability
  14. Sahib MN, Abdulameer SA, Darwis Y, Peh KK, Tan YT
    Drug Des Devel Ther, 2012;6:29-42.
    PMID: 22393583
    The local treatment of lung disorders such as asthma and chronic obstructive pulmonary disease via pulmonary drug delivery offers many advantages over oral or intravenous routes of administration. This is because direct deposition of a drug at the diseased site increases local drug concentrations, which improves the pulmonary receptor occupancy and reduces the overall dose required, therefore reducing the side effects that result from high drug doses. From a clinical point of view, although jet nebulizers have been used for aerosol delivery of water-soluble compounds and micronized suspensions, their use with hydrophobic drugs has been inadequate.
    Matched MeSH terms: Drug Stability
  15. Han NM, May CY
    J Chromatogr Sci, 2012 Mar;50(3):283-6.
    PMID: 22337806 DOI: 10.1093/chromsci/bms002
    Analyses of tocols (tocopherols and tocotrienols) in palm oil have been extensively reported in the past. However, due to the scarcity of individual tocotrienol standards, calibrations have mostly been carried out using only α-tocopherol as standard. Moreover, even if the individual tocotrienols are being used, their reliability is often questioned, because tocotrienols are highly susceptible to oxidation and deterioration. This paper reports on the study of the deterioration rate of individual tocotrienol standards upon storage as well as different calibration methods for the tocols in palm oil.
    Matched MeSH terms: Drug Stability
  16. Chitneni M, Peh KK, Darwis D, Abdulkarim M, Abdullah GZ, Qureshi MJ
    Pak J Pharm Sci, 2011 Apr;24(2):113-21.
    PMID: 21454158
    The objective of the present study was to determine the intestinal absorption of sulpiride incorporated into SMEDDS by means of single-pass intestinal perfusion method (SPIP) in rat and to compare the effective permeability coefficient obtained with that of drug solution and micellar solution. The prepared SMEDDS and micelles formulations were investigated for droplets size. SPIP experiment was performed using the three formulations in three of the secluded regions of the small intestine (duodenum, jejunum, and ileum). The amount of the drug in the samples was estimated by HPLC and the effective permeability coefficients in rats were calculated. The human intestinal permeability was predicted based on rat effective permeability coefficient value. The dilution stability of the formulations was also determined. The average droplet size of SMEDDS and micelles was 9.27 nm and 7.20 nm respectively. The effective permeability coefficient of sulpiride was appreciably lower in the ileum weighed against jejunum and duodenum when administered as a solution (P<0.05). The estimated human absorption of sulpiride for the SMEDDS dilutions was superior to that from solution (P<0.05) and similar to micellar solution. The micellar dilutions were unstable whereas the SMEDDS dilutions were stable. Based on the above results, SMEDDS can be a potential candidate for improving the peroral absorption of the sulpiride.
    Matched MeSH terms: Drug Stability
  17. Tang SY, Manickam S, Wei TK, Nashiru B
    Ultrason Sonochem, 2012 Mar;19(2):330-45.
    PMID: 21835676 DOI: 10.1016/j.ultsonch.2011.07.001
    In the present study, response surface methodology (RSM) based on central composite design (CCD) was employed to investigate the influence of main emulsion composition variables, namely drug loading, oil content, emulsifier content as well as the effect of the ultrasonic operating parameters such as pre-mixing time, ultrasonic amplitude, and irradiation time on the properties of aspirin-loaded nanoemulsions. The two main emulsion properties studied as response variables were: mean droplet size and polydispersity index. The ultimate goal of the present work was to determine the optimum level of the six independent variables in which an optimal aspirin nanoemulsion with desirable properties could be produced. The response surface analysis results clearly showed that the variability of two responses could be depicted as a linear function of the content of main emulsion compositions and ultrasonic processing variables. In the present investigation, it is evidently shown that ultrasound cavitation is a powerful yet promising approach in the controlled production of aspirin nanoemulsions with smaller average droplet size in a range of 200-300 nm and with a polydispersity index (PDI) of about 0.30. This study proved that the use of low frequency ultrasound is of considerable importance in the controlled production of pharmaceutical nanoemulsions in the drug delivery system.
    Matched MeSH terms: Drug Stability
  18. Tamilvanan S, Kumar BA, Senthilkumar SR, Baskar R, Sekharan TR
    AAPS PharmSciTech, 2010 Jun;11(2):904-9.
    PMID: 20496017 DOI: 10.1208/s12249-010-9455-3
    The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer-chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze-thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze-thaw cycling. After storing the emulsion at 4 degrees C, 25 degrees C, and 37 degrees C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37 degrees C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.
    Matched MeSH terms: Drug Stability
  19. Yodhnu S, Sirikatitham A, Wattanapiromsakul C
    J Chromatogr Sci, 2009 Mar;47(3):185-9.
    PMID: 19298703
    Mangosteen, Garcinia mangostana L., is known as the "Queen of fruits" and can be cultivated in the tropical rainforest such as Malaysia, Indonesia, and Thailand. Compounds isolated from the fruit peel of mangosteen contain abundant xanthones (especially alpha-mangostin). It has been used as traditional medicine such as anti-inflammatory and antibacterial and is popularly applied to cosmetic and pharmaceutical products. However, there is little information for quality and quantity determination of alpha-mangostin in mangosteen. Thus, the aim of this study was to set up a validated and stability-indicated isocratic reverse-phase high-performance liquid chromatographic (HPLC) method for quality control and quantity determination of a-mangostin from mangosteen peel extract. The assay was fully validated and shown to be linear (r(2) > 0.999), sensitive (LOD = 0.02 microg/mL and LOQ = 0.08 microg/mL), accurate (intra-day was between 98.1-100.8%, inter-day was between 90.0-101.3%), precise (intra-day variation < or = 1.8%, inter-day variation < or = 4.3%), specific, and with good recovery. Total analysis was approximately 8 min. The finalized method is also a stability-indicating assay. The present method should be useful for analytical research and for routine quality control analysis of alpha-mangostin in mangosteen peel extract and products of mangosteen.
    Matched MeSH terms: Drug Stability
  20. Zhang Q, Noryati I, Cheng LH
    J Food Sci, 2008 Mar;73(2):E82-7.
    PMID: 18298729 DOI: 10.1111/j.1750-3841.2007.00627.x
    Chicken breast muscle powder (CBMP) and modified waxy cornstarch (MWCS) blends were prepared at different pH conditions (pH 4, 5, 6, 7, 8, and 9). The blends were characterized by light microscopy, frequency sweep, flow analysis, and freeze-thaw stability analysis. Light microscopy showed that the blend structure was coarse at pH conditions close to the isoelectric point of protein and became finer with increasing pH. Frequency sweep demonstrated that the blend was more liquid-like with relatively lower storage (G') and loss (G'') moduli as the pH was increased from pH 4 to pH 9. Flow analysis revealed that thixotropy behavior was evident in samples treated at pHs 4 and 5, whereas antithixotropy was shown by those adjusted to pHs 6, 7, 8, and 9. The CBMP-MWCS blends were found to show better freeze-thaw stability at pH 8 that could be attributed to the formation of a highly interactive network structure of CBMP and MWCS.
    Matched MeSH terms: Drug Stability
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links