Displaying publications 21 - 40 of 226 in total

Abstract:
Sort:
  1. Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD
    Phytochemistry, 2018 Oct;154:94-105.
    PMID: 30031244 DOI: 10.1016/j.phytochem.2018.07.002
    Antimicrobial peptides (AMPs), the self-defence products of organisms, are extensively distributed in plants. They can be classified into several groups, including thionins, defensins, snakins, lipid transfer proteins, glycine-rich proteins, cyclotides and hevein-type proteins. AMPs can be extracted and isolated from different plants and plant organs such as stems, roots, seeds, flowers and leaves. They perform various physiological defensive mechanisms to eliminate viruses, bacteria, fungi and parasites, and so could be used as therapeutic and preservative agents. Research on AMPs has sought to obtain more detailed and reliable information regarding the selection of suitable plant sources and the use of appropriate isolation and purification techniques, as well as examining the mode of action of these peptides. Well-established AMP purification techniques currently used include salt precipitation methods, absorption-desorption, a combination of ion-exchange and reversed-phase C18 solid phase extraction, reversed-phase high-performance liquid chromatography (RP-HPLC), and the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method. Beyond these traditional methods, this review aims to highlight new and different approaches to the selection, characterisation, isolation, purification, mode of action and bioactivity assessment of a range of AMPs collected from plant sources. The information gathered will be helpful in the search for novel AMPs distributed in the plant kingdom, as well as providing future directions for the further investigation of AMPs for possible use on humans.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  2. Tang ELH, Tan NH, Fung SY, Tan CH
    Toxicon, 2019 Aug 22;169:91-102.
    PMID: 31445943 DOI: 10.1016/j.toxicon.2019.08.004
    The intraspecific geographical venom variations of Calloselasma rhodostoma from Malaysia (CR-M), Indonesia (CR-I), Thailand (CR-T) and Vietnam (CR-V) were investigated through 1D SDS-PAGE and nano-ESI-LCMS/MS. The venom antigenicity, procoagulant activities and neutralization using Thai C. rhodostoma Monovalent Antivenom (CRMAV) were also investigated. SDS-PAGE patterns of the venoms were relatively similar with minor variations. Proteomic analysis revealed that snake venom metalloproteinases (SVMPs, particularly P-I class), serine proteases (SVSPs) and snaclecs dominated the venom protein composition (68.96-81.80%), followed by L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2) (7.37-11.08% and 5.18-13.81%, respectively), corroborating C. rhodostoma envenoming effects (hemorrhage, consumptive coagulopathy, thrombocytopenia and local tissue necrosis). Other proteins of lower abundances (2.82-9.13%) identified include cysteine-rich secretory proteins (CRISP), phospholipase B, phosphodiesterase, nerve growth factor, 5'-nucleotidase, aminopeptidase and hyaluronidase. All four venoms exhibited strong procoagulant effects which were neutralized by CRMAV to different extents. CRMAV immunoreactivity was high toward venoms of CR-M, CR-I and CR-T but relatively low for CR-V venom. Among the venom samples from different locales, CR-V venom proteome has the smallest SVMP composition while SVSP, PLA2 and phosphodiesterase were more abundant in the venom. These variations in C. rhodostoma venom protein composition could partly explain the differences seen in immunoreactivity. (198 words).
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  3. Tanaka H, Kawamoto Y, Terao K
    J Med Primatol, 1991 May;20(3):126-32.
    PMID: 1895332
    Vitamin D-binding protein (DBP) of crab-eating macaques (Macaca fascicularis) was examined by means of three electrophoretic methods. DBP phenotypes were observed to be one or two bands in each method. All of DBP molecular variants could be detected by the simultaneous typing with these three methods. Family analysis suggested that DBP variants followed the mode of autosomal codominant inheritance. A total of 17 phenotypes governed by at least 11 alleles were observed in the populations of Malaysia, Indonesia, and the Philippines. The genetic variability was high in Malaysian and Indonesian populations but low in the Philippine population.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  4. Tan WS
    J Gen Appl Microbiol, 2002 Apr;48(2):103-7.
    PMID: 12469306
    The long surface antigen (L-HBsAg) of hepatitis B virus (HBV) plays a central role in the production of infectious virions. During HBV morphogenesis, both the PreS and S domains of L-HBsAg form docking sites for the viral nucleocapsids. Thus, a compound that disrupts the interaction between the L-HBsAg and nucleocapsids could serve as a therapeutic agent against the virus based upon inhibition of morphogenesis. Synthetic peptides correspond to the binding sites in L-HBsAg inhibited the association of L-HBsAg with core antigen (HBcAg). A synthetic peptide carrying the epitope for a monoclonal antibody to the PreS1 domain competed weakly with L-HBsAg for HBcAg, but peptides corresponding to a linear sequence at the tip of the nucleocapsid spike did not, showing that the competing peptide does not resemble the tip of the spike.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  5. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1992 Mar;101(3):471-4.
    PMID: 1582185
    1. The biological properties of nine venom samples from six taxa of Micrurus were investigated. The venoms exhibited low protease, phosphodiesterase and 5'-nucleotidase activities, moderate to strong phospholipase A and hyaluronidase activities, variable L-amino acid oxidase activity and were devoid of arginine ester hydrolase and thrombin-like activities. Some venom samples exhibited strong acetylcholinesterase activity. Venoms of M. c. dumerili and M. frontalis exhibited exceptionally high alkaline phosphomonoesterase activity while two of the M. f. fulvius venom samples tested exhibited strong hemorrhagic activity in mice. 2. The polyacrylamide gel electrophoretic patterns of the venoms indicate that most of the Micrurus venom proteins are basic proteins. All Micrurus venoms tested exhibited similar SDS-polyacrylamide gel electrophoretic patterns, with an intense low mol. wt protein band. 3. The Micrurus venoms appear to exhibit biological properties similar to other elapid venoms found in Asia and Africa. There are, however, no common characteristics in the biological properties of the venoms examined at the generic level.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  6. Tan NH, Armugam A, Mirtschin PJ
    Comp. Biochem. Physiol., B, 1992 Nov;103(3):585-8.
    PMID: 1458834
    1. The biological properties of four venom pooled samples from adult taipan (Oxyuranus scutellatus) snakes and one pooled venom sample from six juvenile taipan snakes (11 months old) were compared. 2. The intravenous LD50 (median lethal dose), procoagulant activity and enzymatic activities of the juvenile venom were not significantly different from those of the adult venoms. 3. The juvenile and adult venoms exhibited similar polyacrylamide gel electrophoretic (PAGE) and SDS-PAGE patterns, indicating that they possessed a similar protein composition. 4. The results suggest that there is no significant age-dependency in the biological properties of taipan venom.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  7. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1992 May;102(1):103-9.
    PMID: 1526113
    1. Examination of the polyacrylamide gel electrophoretic (PAGE) and SDS-PAGE patterns of snake venoms shows that these patterns are useful for species differentiation (and hence identification) for snakes of certain genera but have only limited application for snakes from some other genera, due either to the marked individual variations in the venoms or the lack of marked interspecific differences within the same genus. 2. There is no substantial intersubspecific difference in the electrophoretic patterns of the venoms. 3. In general there are no common characteristics in the electrophoretic patterns of the venom at the generic level because of the wide variations in the electrophoretic patterns of venoms of snakes within the same genus. 4. At the familial level, the venoms of Elapidae exhibited SDS-PAGE patterns distinct from those of Crotalidae.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  8. Tan NH, Arunmozhiarasi A, Ponnudurai G
    PMID: 1685421
    1. The biological properties of twelve samples of venoms from all four species of Dendroaspis (mamba) were investigated. 2. Dendroaspis venoms generally exhibited very low levels of protease, phosphodiesterase and alkaline phosphomonoesterase; low to moderately low level of 5'-nucleotidase and very high hyaluronidase activities, but were devoid of L-amino acid oxidase, phospholipase A, acetylcholinesterase and arginine ester hydrolase activities. The unusual feature in venom enzyme content can be used to distinguish Dendroaspis venoms from other snake venoms. 3. All Dendroaspis venoms did not exhibit hemorrhagic or procoagulant activity. Some Dendroaspis venoms, however, exhibited strong anticoagulant activity. The intravenous median lethal dose of the venoms ranged from 0.5 microgram/g mouse to 4.2 micrograms/g mouse. 4. Venom biological activities are not very useful for the differentiation of the Dendroaspis species. The four Dendroaspis venoms, however, can be differentiated by their venom SDS-polyacrylamide gel electrophoretic patterns.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  9. Tan NH, Saifuddin MN
    Int. J. Biochem., 1990;22(5):481-7.
    PMID: 2347427
    1. The two major phospholipase A2 enzymes (OHPLA-DE1 and OHPLA-DE2) of king cobra (Ophiophagus hannah) venom have been purified to electrophoretic homogeneity. 2. The isoelectric points of OHPLA-DE1 and OHPLA-DE2 were 3.81 and 3.89, respectively and the Mws were 14,000 and 15,000, respectively, as estimated by Sephadex G-75 gel filtration chromatography; and 14,000 as estimated by SDS-PAGE. 3. The enzymes were not lethal to mice at a dosage of 10 micrograms/g body wt by i.v. route. Both phospholipase A2 enzymes, however, exhibited moderate edema-inducing and anti-coagulant activities. 4. Bromophenacylation of the enzymes reduced the enzymatic activity drastically but did not affect the edema-inducing activity of the enzymes.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  10. Tan NH, Saifuddin MN
    Biochem. Int., 1989 Oct;19(4):937-44.
    PMID: 2619759
    The L-amino acid oxidase (EC 1. 4. 3. 2) from King cobra (Ophiophagus hannah) venom was purified to electrophoretic homogeneity. The molecular weight of the enzyme was determined to be 140000 when examined by gel filtration and 68000 by SDS-polyacrylamide gel electrophoresis. The enzyme had an isoelectric point of 4.5 and an intravenous LD50 of 5 micrograms/g in mice. It is a glycoprotein and contains two moles of FAD per mole of enzyme. The enzyme exhibited unusual thermal stability and unlike most other venom L-amino acid oxidases, it was stable in alkaline solution and was not inactivated by freezing.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  11. Tan NH
    Arch Biochem Biophys, 1982 Oct 01;218(1):51-8.
    PMID: 7149742
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel/methods
  12. Tan NH
    PMID: 19770070 DOI: 10.1016/j.cbpc.2009.09.002
    A thrombin-like enzyme, purpurase, was purified from the Cryptelytrops purpureomaculatus (mangrove pit viper) venom using high performance ion-exchange and gel filtration chromatography. The purified sample (termed purpurase) yielded a homogeneous band in SDS-polyacrylamide gel electrophoresis with a molecular weight of 35,000. The N-terminal sequence of purpurase was determined to be VVGGDECNINDHRSLVRIF and is homologous to many other venom thrombin-like enzymes. Purpurase exhibits both arginine ester hydrolase and amidase activities. Kinetic studies using tripeptide chromogenic anilide substrates showed that purpurase is not fastidious towards its substrate. The clotting times of fibrinogen by purpurase were concentration dependent, with optimum clotting activity at 3mg fibronogen/mL. The clotting activity by purpurase was in the following decreasing order: cat fibrinogen>human fibrinogen>dog fibrinogen>goat fibrinogen>rabbit fibrinogen. Reversed-phase HPLC analysis of the products of action of purpurase on bovine fibrinogen showed that only fibrinopeptide A was released. Indirect ELISA studies showed that anti-purpurase cross-reacted strongly with venoms of most crotalid venoms, indicating the snake venom thrombin-like enzymes generally possess similar epitopes. In the more specific double-sandwich ELISA, however, anti-purpurase cross-reacted only with venoms of certain species of the Trimeresurus complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  13. Tan NH, Saifuddin MN
    Toxicon, 1990;28(4):385-92.
    PMID: 2190359
    The major hemorrhagin (termed hannahtoxin) of the venom of Ophiophagus hannah (king cobra) was purified to electrophoretic homogeneity by DEAE-Sephacel ion exchange chromatography, Sephadex G-200 gel filtration followed by a second DEAE-Sephacel chromatography. Proteolytic activity was associated with the hemorrhagic activity throughout the purification procedures. Hannahtoxin constituted approximately 2% of the crude venom. It had an isoelectric point of 5.3, a carbohydrate content of 12%, a mol. wt of 66,000 as determined by SDS-polyacrylamide gel electrophoresis and 63,000 as determined by gel filtration. It contains 1 mole of Zn per mole of protein. The minimum hemorrhage doses for hannahtoxin are 0.7 microgram and 75 micrograms, respectively, in rabbits and in mice. Hannahtoxin was not lethal to mice at a dose of 2 mg/kg (i.v.) but killed rabbits at doses above 0.18 mg/kg (i.v.). It liberated protein from rabbit glomerular basement membrane but not rat glomerular basement membrane. Treatment of the hemorrhagin with EDTA and 1,10-phenanthroline eliminated both the proteolytic and hemorrhagic activities completely.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  14. Tan NH, Ponnudurai G, Mirtschin PJ
    Toxicon, 1993 Mar;31(3):363-7.
    PMID: 8470140
    The biological properties of adult and juvenile inland taipan (Oxyuranus microlepidotus) snake venoms were examined. The enzymatic activities, intravenous median lethal dose and procoagulant activity of the juvenile venom samples were not significantly different from those of the adult venom samples. Also, the juvenile and adult venoms exhibited similar electrophoretic patterns, indicating that they possessed similar protein composition.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  15. Tan KY, Liew ST, Tan QY, Abdul-Rahman FN, Azmi NI, Sim SM, et al.
    Toxicon, 2019 Mar 15;160:55-58.
    PMID: 30797900 DOI: 10.1016/j.toxicon.2019.02.010
    Gel filtration chromatography and gel electrophoresis revealed minimal protein degradation in lyophilized antivenoms which were 2-year expired (Hemato Polyvalent, Neuro Polyvalent; Thailand) and 18-year expired (Hemato Bivalent, Neuro Bivalent; Taiwan). All expired antivenoms retained immunological binding activity, and were able to neutralize the hemotoxic or neurotoxic as well as lethal effects of the homologous snake venoms. The findings show that antivenoms under proper storage conditions may remain relatively stable beyond the indicated shelf life.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel/methods
  16. Tan JS, Abbasiliasi S, Lalung J, Tam YJ, Murugan P, Lee CK
    Prep Biochem Biotechnol, 2021;51(3):260-266.
    PMID: 32876520 DOI: 10.1080/10826068.2020.1808793
    This study aimed at purification of phycocyanin (PC) from Phormidium tergestinum using an aqueous two-phase system (ATPS) comprised of polyethylene glycol (PEG) and salts. The partitioning efficiency of PC in ATPS and the effect of phase composition, pH, crude loading, and neutral salts on purification factor and yield were investigated. Results showed that PC was selectively partitioned toward bottom phase of the system containing potassium phosphate. Under optimum conditions of 20% (w/w) PEG 4000, 10% (w/w) potassium phosphate, 20% (v/v) crude load at pH 7, with addition of 0.5% (w/w) NaCl, PC from P. tergestinum was partially purified up to 5.34-fold with a yield of 87.8%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the molecular weight of PC was ∼19 kDa. Results from this study demonstrated ATPS could be used as a potential approach for the purification of PC from P. tergestinum.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  17. Tan HY, Nagoor NH, Sekaran SD
    Trop Biomed, 2010 Dec;27(3):430-41.
    PMID: 21399583 MyJurnal
    The major outer membrane protein (OmpH) of 4 local Malaysian strains of Pasteurella multocida serotype B:2 were characterized in comparison to ATCC strains. Three major peptide bands of MW 26, 32 and 37 kDa were characterized using SDSPAGE. Two of these fragments, the 32 kDa and 37 kDa were observed to be more reactive with a mouse polyclonal antiserum in all of the local isolates as well as the ATCC strains in a Western blot. However, the 32 kDa fragment was found to cross react with other Gram negative bacteria. Therefore, the 37 kDa OmpH was selected as vaccine candidate. The 37 kDa ompH gene of the isolated strain 1710 was cloned into an Escherichia coli expression vector to produce large amounts of recombinant OmpH (rOmpH). The 37 kDa ompH gene of strain 1710 was sequenced. In comparison to a reference strain X-73 of the ompH of P. multocida, 39bp was found deleted in the 37 kDa ompH gene. However, the deletion did not shift the reading frame or change the amino acid sequence. The rOmpH was used in a mice protection study. Mice immunized and challenged intraperitoneally resulted 100% protection against P. multocida whilst mice immunized subcutaneously and challenged intraperitoneally only resulted 80% protection. The rOmpH is therefore a suitable candidate for vaccination field studies. The same rOmpH was also used to develop a potential diagnostic kit in an ELISA format.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  18. Tan CY, Rahman RN, Kadir HA, Tayyab S
    Acta Biochim. Pol., 2011;58(3):405-12.
    PMID: 21887412
    Bacillus licheniformis α-amylase (BLA) was chemically modified using 100-fold molar excess of succinic anhydride over protein or 0.66 M potassium cyanate to obtain 42 % succinylated and 81 % carbamylated BLAs. Size and charge homogeneity of modified preparations was established by Sephacryl S-200 HR gel chromatography and polyacrylamide gel electrophoresis. Conformational alteration in these preparations was evident by the larger Stokes radii (3.40 nm for carbamylated and 3.34 nm for succinylated BLAs) compared to 2.43 nm obtained for native BLA. Urea denaturation results using mean residue ellipticity (MRE) as a probe also showed conformational destabilization based on the early start of transition as well as ΔG(D)(H(2)O) values obtained for both modified derivatives and Ca-depleted BLA. Decrease in ΔG(D)(H(2)O) value from 5,930 cal/mol (for native BLA) to 3,957 cal/mol (for succinylated BLA), 3,336 cal/mol (for carbamylated BLA) and 3,430 cal/mol for Ca-depleted BLA suggested reduced conformational stability upon modification of amino groups of BLA or depletion of calcium. Since both succinylation and carbamylation reactions abolish the positive charge on amino groups (both α- and ε- amino), the decrease in conformational stability can be ascribed to the disruption of salt bridges present in the protein which might have released the intrinsic calcium from its binding site.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  19. Tan CH, Tan NH, Sim SM, Fung SY, Gnanathasan CA
    Toxicon, 2015 Jan;93:164-70.
    PMID: 25451538 DOI: 10.1016/j.toxicon.2014.11.231
    The hump-nosed pit viper, Hypanle hypnale, contributes to snakebite mortality and morbidity in Sri Lanka. Studies showed that the venom is hemotoxic and nephrotoxic, with some biochemical and antigenic properties similar to the venom of Calloselasma rhodostoma (Malayan pit viper). To further characterize the complexity composition of the venom, we investigated the proteome of a pooled venom sample from >10 Sri Lankan H. hypnale with reverse-phase high performance liquid chromatography (rp-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and peptide sequencing (tandem mass-spectrometry and/or N-terminal sequencing). The findings ascertained that two phospholipase A2 subtypes (E6-PLA2, W6-PLA2) dominate the toxin composition by 40.1%, followed by snake venom metalloproteases (36.9%), l-amino acid oxidase (11.9%), C-type lectins (5.5%), serine proteases (3.3%) and others (2.3%). The presence of the major toxins correlates with the venom's major pathogenic effects, indicating these to be the principal target toxins for antivenom neutralization. This study supports the previous finding of PLA2 dominance in the venom but diverges from the view that H. hypnale venom has low expression of large enzymatic toxins. The knowledge of the composition and abundance of toxins is essential to elucidate the pathophysiology of H. hypnale envenomation and to optimize antivenom formulation in the future.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
  20. Tan CH, Liew JL, Tan KY, Tan NH
    Sci Rep, 2016 11 21;6:37299.
    PMID: 27869134 DOI: 10.1038/srep37299
    Serum Anti Ular Bisa (SABU) is the only snake antivenom produced locally in Indonesia; however, its effectiveness has not been rigorously evaluated. This study aimed to assess the protein composition and neutralization efficacy of SABU. SDS polyacrylamide gel electrophoresis, size-exclusion liquid chromatography and shotgun proteomics revealed that SABU consists of F(ab')2 but a significant amount of dimers, protein aggregates and contaminant albumins. SABU moderately neutralized Calloselasma rhodostoma venom (potency of 12.7 mg venom neutralized per ml antivenom, or 121.8 mg venom per g antivenom protein) and Bungarus fasciatus venom (0.9 mg/ml; 8.5 mg/g) but it was weak against the venoms of Naja sputatrix (0.3 mg/ml; 2.9 mg/g), Naja sumatrana (0.2 mg/ml; 1.8 mg/g) and Bungarus candidus (0.1 mg/ml; 1.0 mg/g). In comparison, NPAV, the Thai Neuro Polyvalent Antivenom, outperformed SABU with greater potencies against the venoms of N. sputatrix (0.6 mg/ml; 8.3 mg/g), N. sumatrana (0.5 mg/ml; 7.1 mg/g) and B. candidus (1.7 mg/ml; 23.2 mg/g). The inferior efficacy of SABU implies that a large antivenom dose is required clinically for effective treatment. Besides, the antivenom contains numerous impurities e.g., albumins that greatly increase the risk of hypersensitivity. Together, the findings indicate that the production of SABU warrants further improvement.
    Matched MeSH terms: Electrophoresis, Polyacrylamide Gel
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links