Displaying publications 21 - 40 of 103 in total

Abstract:
Sort:
  1. Sivanaesan L, Kwan TK, Perumal R
    Biochem. Int., 1991 Oct;25(3):561-70.
    PMID: 1666829
    Calmodulin, an activator protein in most calcium-dependent processes, was isolated to apparent homogeneity from the femurs of 1-day old chicks using phenyl-Sepharose and high performance liquid chromatography. The purified calmodulin was found to produce a 6-fold increase in the activity of alkaline phosphatase isolated from the same source. A Ca2+ concentration of 10(-5) M was required for the activation. Purification of alkaline phosphatase involved acetone precipitation, DEAE-Sephacel and Sephadex G-200 column chromatography. The enzyme was purified to 540-fold and had a specific activity of 10.75 U/mg protein.
    Matched MeSH terms: Enzyme Activation/physiology
  2. Serri NA, Kamaruddin AH, Long WS
    Bioprocess Biosyst Eng, 2006 Oct;29(4):253-60.
    PMID: 16868763
    Immobilized Candida rugosa lipase was used for the synthesis of citronellyl laurate from citronellol and lauric acid. Screening of different types of support (Amberlite MB-1 and Celite) for immobilization of lipase and solvent (n-hexane, n-heptane, and iso-octane) and optimization of reaction conditions, such as catalyst loading, effect of substrates molar ratio and temperature, have been studied. The maximum enzyme activity was obtained at 310 K. The immobilized C. rugosa lipase onto Amberlite MB-1 support was found to be the best support with a conversion of 89% of citronellyl laurate ester in iso-octane compared to Celite 545. Deactivation of C. rugosa lipase at 313, 318 and 323 K were observed. Ordered bi bi mechanism with dead end complex of lauric acid was found to fit the initial rate data and the kinetic parameters were obtained by non-linear regression analysis.
    Matched MeSH terms: Enzyme Activation
  3. Sayyed RZ, Bhamare HM, Sapna, Marraiki N, Elgorban AM, Syed A, et al.
    PLoS One, 2020;15(6):e0229968.
    PMID: 32497077 DOI: 10.1371/journal.pone.0229968
    Although laccase has been recognized as a wonder molecule and green enzyme, the use of low yielding fungal strains, poor production, purification, and low enzyme kinetics have hampered its large-scale application. Thus,this study aims to select high yielding fungal strains and optimize the production, purification, and kinetics of laccase of Aspergillus sp. HB_RZ4. The results obtained indicated that Aspergillus sp. HB_RZ4 produced a significantly large amount of laccase under meso-acidophilic shaking conditions in a medium containing glucose and yeast extract. A 25 μM CuSO4 was observed to enhance the enzyme yield. The enzyme was best purified on a Sephadex G-100 column. The purified enzyme resembled laccase of A. flavus. The kinetics of the purified enzyme revealed high substrate specificity and good velocity of reaction,using ABTS as a substrate. The enzyme was observed to be stable over various pH values and temperatures. The peptide structure of the purified enzyme was found to resemble laccase of A. kawachii IFO 4308. The fungus was observed to decolorize various dyes independent of the requirement of a laccase mediator system.Aspergillus sp. HB_RZ4 was observed to be a potent natural producer of laccase, and it decolorized the dyes even in the absence of a laccase mediator system. Thus, it can be used for bioremediation of effluent that contains non-textile dyes.
    Matched MeSH terms: Enzyme Activation
  4. Saunus JM, Quinn MC, Patch AM, Pearson JV, Bailey PJ, Nones K, et al.
    J Pathol, 2015 Nov;237(3):363-78.
    PMID: 26172396 DOI: 10.1002/path.4583
    Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2)  = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting HER3, which is broadly over-expressed and activated in BMs, independent of primary site and systemic therapy.
    Matched MeSH terms: Enzyme Activation
  5. Salwoom L, Raja Abd Rahman RNZ, Salleh AB, Mohd Shariff F, Convey P, Pearce D, et al.
    Molecules, 2019 Feb 16;24(4).
    PMID: 30781467 DOI: 10.3390/molecules24040715
    In recent years, studies on psychrophilic lipases have been an emerging area of research in the field of enzymology. This study focuses on bacterial strains isolated from anthropogenically-influenced soil samples collected around Signy Island Research Station (South Orkney Islands, maritime Antarctic). Limited information on lipase activities from bacteria isolated from Signy station is currently available. The presence of lipase genes was determined using real time quantification PCR (qPCR) in samples obtained from three different locations on Signy Island. Twenty strains from the location with highest lipase gene detection were screened for lipolytic activities at a temperature of 4 °C, and from this one strain was selected for further examination based on the highest enzymatic activities obtained. Analysis of 16S rRNA sequence data of this strain showed the highest level of sequence similarity (98%) to a Pseudomonas sp. strain also isolated from Antarctica. In order to increase lipase production of this psychrophilic strain, optimisation of different parameters of physical and nutritional factors were investigated. Optimal production was obtained at 10 °C and pH 7.0, at 150 rev/min shaking rate over 36 h incubation.
    Matched MeSH terms: Enzyme Activation
  6. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Molecules, 2009 Nov 06;14(11):4476-85.
    PMID: 19924080 DOI: 10.3390/molecules14114476
    This study examines the in vitro antioxidant activities of the methanol extract of Swietenia mahagoni seeds (SMCM seed extract). The extract was screened for possible antioxidant activities by free radical scavenging activity (DPPH), xanthine oxidase inhibition (XOI), hydrogen peroxide scavenging activity (HPSA) and ferric-reducing antioxidant power (FRAP) assays. The total phenolic and flavonoid contents were also determined. The extract exhibits antioxidant activity of 23.29% with an IC(50 )value of 2.3 mg/mL in the DPPH radical scavenging method, 47.2% in the XOI assay, 49.5% by the HPSA method, and 0.728 mmol/Fe(II)g in the FRAP method at the concentration tested. The amount of total phenolics and flavonoid contents was 70.83 mg gallic acid equivalent (GAE) and 2.5 +/- 0.15 mg of catechin equivalent per gram of dry extract, respectively. High Performance Thin Layer Chromatography (HPTLC) screening indicates the presence of phenolic compounds in the SMCM seed extract. The results indicate that the extract has both high free radical scavenging and xanthine oxidase inhibition activity. The antioxidant activity of SMCM seed extract is comparable with that of other Malaysian tropical fruits and herbal plants.
    Matched MeSH terms: Enzyme Activation/drug effects*
  7. Rahman RN, Salleh AB, Basri M, Wong CF
    Int J Mol Sci, 2011;12(9):5797-814.
    PMID: 22016627 DOI: 10.3390/ijms12095797
    Recombinant elastase strain K overexpressed from E. coli KRX/pCon2(3) was purified to homogeneity by a combination of hydrophobic interaction chromatography and ion exchange chromatography, with a final yield of 48% and a 25-fold increase in specific activity. The purified protein had exhibited a first ever reported homodimer size of 65 kDa by SDS-PAGE and MALDI-TOF, a size which is totally distinct from that of typically reported 33 kDa monomer from P. aeruginosa. The organic solvent stability experiment had demonstrated a stability pattern which completely opposed the rules laid out in previous reports in which activity stability and enhancement were observed in hydrophilic organic solvents such as DMSO, methanol, ethanol and 1-propanol. The high stability and enhancement of the enzyme in hydrophilic solvents were explained from the view of alteration in secondary structures. Elastinolytic activation and stability were observed in 25 and 50% of methanol, respectively, despite slight reduction in α-helical structure caused upon the addition of the solvent. Further characterization experiments had postulated great stability and enhancement of elastase strain K in broad range of temperatures, pHs, metal ions, surfactants, denaturing agents and substrate specificity, indicating its potential application in detergent formulation.
    Matched MeSH terms: Enzyme Activation
  8. Rahman RN, Geok LP, Basri M, Salleh AB
    Bioresour Technol, 2005 Mar;96(4):429-36.
    PMID: 15491823
    The physical factors affecting the production of an organic solvent-tolerant protease from Pseudomonas aeruginosa strain K was investigated. Growth and protease production were detected from 37 to 45 degrees C with 37 degrees C being the optimum temperature for P. aeruginosa. Maximum enzyme activity was achieved at static conditions with 4.0% (v/v) inoculum. Shifting the culture from stationary to shaking condition decreased the protease production (6.0-10.0% v/v). Extracellular organic solvent-tolerant protease was detected over a broad pH range from 6.0 to 9.0. However, the highest yield of protease was observed at pH 7.0. Neutral media increased the protease production compared to acidic or alkaline media.
    Matched MeSH terms: Enzyme Activation
  9. Rahman MA, Ramli F, Karimian H, Dehghan F, Nordin N, Ali HM, et al.
    PLoS One, 2016;11(3):e0151466.
    PMID: 27019365 DOI: 10.1371/journal.pone.0151466
    Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae). This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3 analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5 μg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell line T1074, with IC50 value of 32.5±0.5 μg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways.
    Matched MeSH terms: Enzyme Activation/drug effects
  10. Poobathy R, Sinniah UR, Xavier R, Subramaniam S
    Appl Biochem Biotechnol, 2013 Jul;170(5):1066-79.
    PMID: 23640259 DOI: 10.1007/s12010-013-0241-z
    Dendrobium sonia-28 is an important ornamental orchid in the Malaysian flower industry. However, the genus faces both low germination rates and the risk of producing heterozygous progenies. Cryopreservation is currently the favoured long-term storage method for orchids with propagation problems. Vitrification, a frequently used cryopreservation technique, involves the application of pretreatments and cryoprotectants to protect and recover explants during and after storage in liquid nitrogen. However, cryopreservation may cause osmotic injuries and toxicity to cryopreserved explants from the use of highly concentrated additives, and cellular injuries from thawing, devitrification and ice formation. Reactive oxygen species (ROS), occurring during dehydration and cryopreservation, may also cause membrane damage. Plants possess efficient antioxidant systems such as the superoxide dismutase (SOD) and catalase (CAT) enzymes to scavenge ROS during low temperature stress. In this study, protocorm-like bodies (PLBs) of Dendrobium sonia-28 were assayed for the total protein content, and both SOD and CAT activities, at each stage of a vitrification exercise to observe for deleterious stages in the protocol. The results indicated that cryopreserved PLBs of Dendrobium sonia-28 underwent excessive post-thawing oxidative stress due to decreased levels of the CAT enzyme at the post-thawing recovery stage, which contributed to the poor survival rates of the cryopreserved PLBs.
    Matched MeSH terms: Enzyme Activation
  11. Phang CW, Karsani SA, Sethi G, Abd Malek SN
    PLoS One, 2016;11(2):e0148775.
    PMID: 26859847 DOI: 10.1371/journal.pone.0148775
    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
    Matched MeSH terms: Enzyme Activation/drug effects
  12. Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Ming OH, Khalid S, et al.
    Basic Clin Pharmacol Toxicol, 2011 Mar;108(3):155-62.
    PMID: 20955360 DOI: 10.1111/j.1742-7843.2010.00635.x
    This study investigated the antinociceptive effects of zerumbone in chemical behavioural models of nociception in mice. Zerumbone given through intraperitoneal route (i.p.) produced dose-related antinociception when assessed on acetic acid-induced abdominal writhing test in mice. In addition, the i.p. administration of zerumbone exhibited significant inhibition of the neurogenic pain induced by intraplantar (i.pl.) injection of capsaicin and bradykinin. Likewise, zerumbone given by i.p. route reduced the nociception produced by i.pl. injection of glutamate and phorbol myristate acetate (PMA). The antinociception caused by zerumbone in the acetic acid test was significantly attenuated by i.p. pre-treatment of mice with l-arginine (nitric oxide precursor) and glibenclamide (ATP-sensitive K(+) channel inhibitor). However, the antinociception of zerumbone was enhanced by methylene blue (non-specific gyanylyl cyclase inhibitor). Together, these results indicate that zerumbone produces pronounced antinociception against chemical models of nociception in mice. It also strongly suggests that the l-arginine-nitric oxide-cGMP-PKC-K(+) ATP channel pathways, the TRPV1 and kinin B2 receptors play an important role in the zerumbone-induced antinociception.
    Matched MeSH terms: Enzyme Activation/drug effects
  13. Oskoueian E, Abdullah N, Ahmad S
    Molecules, 2012 Sep 10;17(9):10816-30.
    PMID: 22964499 DOI: 10.3390/molecules170910816
    Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC₅₀ of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA) as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC₅₀ concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun). These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy.
    Matched MeSH terms: Enzyme Activation
  14. Onsa GH, bin Saari N, Selamat J, Bakar J
    J Agric Food Chem, 2000 Oct;48(10):5041-5.
    PMID: 11052775
    Latent polyphenol oxidase (LPPO), an enzyme responsible for the browning reaction of sago starches during processing and storage, was investigated. The enzyme was effectively extracted and partially purified from the pith using combinations of nonionic detergents. With Triton X-114 and a temperature-induced phase partitioning method, the enzyme showed a recovery of 70% and purification of 4. 1-fold. Native PAGE analysis of the partially purified LPPO revealed three activity bands when stained with catechol and two bands with pyrogallol. The molecular masses of the enzymes were estimated by SDS-PAGE to be 37, 45, and 53 kDa. The enzyme showed optimum pH values of 4.5 with 4-methylcatechol as a substrate and 7.5 with pyrogallol. The LPPO was highly reactive toward diphenols and triphenols. The activity of the enzyme was greatly enhanced in the presence of trypsin, SDS, ethanol, and linoleic acid.
    Matched MeSH terms: Enzyme Activation
  15. Nyon MP, Rice DW, Berrisford JM, Hounslow AM, Moir AJ, Huang H, et al.
    J Mol Biol, 2009 Jan 9;385(1):226-35.
    PMID: 18983850 DOI: 10.1016/j.jmb.2008.10.050
    Cutinase belongs to a group of enzymes that catalyze the hydrolysis of esters and triglycerides. Structural studies on the enzyme from Fusarium solani have revealed the presence of a classic catalytic triad that has been implicated in the enzyme's mechanism. We have solved the crystal structure of Glomerella cingulata cutinase in the absence and in the presence of the inhibitors E600 (diethyl p-nitrophenyl phosphate) and PETFP (3-phenethylthio-1,1,1-trifluoropropan-2-one) to resolutions between 2.6 and 1.9 A. Analysis of these structures reveals that the catalytic triad (Ser136, Asp191, and His204) adopts an unusual configuration with the putative essential histidine His204 swung out of the active site into a position where it is unable to participate in catalysis, with the imidazole ring 11 A away from its expected position. Solution-state NMR experiments are consistent with the disrupted configuration of the triad observed crystallographically. H204N, a site-directed mutant, was shown to be catalytically inactive, confirming the importance of this residue in the enzyme mechanism. These findings suggest that, during its catalytic cycle, cutinase undergoes a significant conformational rearrangement converting the loop bearing the histidine from an inactive conformation, in which the histidine of the triad is solvent exposed, to an active conformation, in which the triad assumes a classic configuration.
    Matched MeSH terms: Enzyme Activation/drug effects
  16. Ng IS, Song CP, Ooi CW, Tey BT, Lee YH, Chang YK
    Int J Biol Macromol, 2019 Aug 01;134:458-468.
    PMID: 31078593 DOI: 10.1016/j.ijbiomac.2019.05.054
    Nanofiber membrane chromatography integrates liquid membrane chromatography and nanofiber filtration into a single-step purification process. Nanofiber membrane can be functionalised with affinity ligands for promoting binding specificity of membrane. Dye molecules are a good affinity ligand for nanofiber membrane due to their low cost and high binding affinity. In this study, a dye-affinity nanofiber membrane (P-Chitosan-Dye membrane) was prepared by using polyacrylonitrile nanofiber membrane modified with chitosan molecules and immobilized with dye molecules. Reactive Orange 4, commercially known as Procion Orange MX2R, was found to be the best dye ligand for membrane chromatography. The binding capacity of P-Chitosan-Dye membrane for lysozyme was investigated under different operating conditions in batch mode. Furthermore, desorption of lysozyme using the P-Chitosan-Dye membrane was evaluated systematically. The recovery percentage of lysozyme was found to be ~100%. The optimal conditions obtained from batch-mode study were adopted to develop a purification process to separate lysozyme from chicken egg white. The process was operated continuously using the membrane chromatography and the characteristic of the breakthrough curve was evaluated. At a lower flow rate (i.e., 0.1 mL/min), the total recovery of lysozyme and purification factor of lysozyme were 98.59% and 56.89 folds, respectively.
    Matched MeSH terms: Enzyme Activation
  17. Ng CT, Fong LY, Sulaiman MR, Moklas MA, Yong YK, Hakim MN, et al.
    J Interferon Cytokine Res, 2015 Jul;35(7):513-22.
    PMID: 25830506 DOI: 10.1089/jir.2014.0188
    Interferon-gamma (IFN-γ) is known to potentiate the progression of inflammatory diseases, such as inflammatory bowel disease and atherosclerosis. IFN-γ has been found to disrupt the barrier integrity of epithelial and endothelial cell both in vivo and in vitro. However, the mechanisms of IFN-γ underlying increased endothelial cell permeability have not been extensively elucidated. We reported that IFN-γ exhibits a biphasic nature in increasing endothelial permeability. The changes observed in the first phase (4-8 h) involve cell retraction and rounding in addition to condensed peripheral F-actin without a significant change in the F-/G-actin ratio. However, cell elongation, stress fiber formation, and an increased F-/G-actin ratio were noticed in the second phase (16-24 h). Consistent with our finding from the permeability assay, IFN-γ induced the formation of intercellular gaps in both phases. A delayed phase of increased permeability was observed at 12 h, which paralleled the onset of cell elongation, stress fiber formation, and increased F-/G-actin ratio. In addition, IFN-γ stimulated p38 mitogen-activated protein (MAP) kinase phosphorylation over a 24 h period. Inhibition of p38 MAP kinase by SB203580 prevented increases in paracellular permeability, actin rearrangement, and increases in the F-/G-actin ratio caused by IFN-γ. Our results suggest that p38 MAP kinase is activated in response to IFN-γ and causes actin rearrangement and altered cell morphology, which in turn mediates endothelial cell hyperpermeability. The F-/G-actin ratio might be involved in the regulation of actin distribution and cell morphology rather than the increased permeability induced by IFN-γ.
    Matched MeSH terms: Enzyme Activation/drug effects
  18. Nadarajan V, Shanmugam H, Sthaneshwar P, Jayaranee S, Sultan KS, Ang C, et al.
    Int J Lab Hematol, 2011 Oct;33(5):463-70.
    PMID: 21501392 DOI: 10.1111/j.1751-553X.2011.01309.x
    INTRODUCTION:
    The glucose-6-phosphate dehydrogenase (G6PD) fluorescent spot test (FST) is a useful screening test for G6PD deficiency, but is unable to detect heterozygote G6PD-deficient females. We sought to identify whether reporting intermediate fluorescence in addition to absent and bright fluorescence on FST would improve identification of mildly deficient female heterozygotes.

    METHODS:
    A total of 1266 cord blood samples (705 male, 561 female) were screened for G6PD deficiency using FST (in-house method) and a quantitative enzyme assay. Fluorescence intensity of the FST was graded as either absent, intermediate or normal. Samples identified as showing absent or intermediate fluorescence on FST were analysed for the presence of G6PD mutations using TaqMan@SNP genotyping assays and direct nucleotide sequencing.

    RESULTS:
    Of the 1266 samples, 87 samples were found to be intermediate or deficient by FST (49 deficient, 38 intermediate). Of the 49 deficient samples, 48 had G6PD enzyme activity of ≤ 9.5 U/g Hb and one sample had normal enzyme activity. All 38 intermediate samples were from females. Of these, 21 had G6PD activity of between 20% and 60%, and 17 samples showed normal G6PD activity. Twenty-seven of the 38 samples were available for mutation analysis of which 13 had normal G6PD activity. Eleven of the 13 samples with normal G6PD activity had identifiable G6PD mutations.

    CONCLUSION:
    Glucose-6-phosphate dehydrogenase heterozygote females cannot be identified by FST if fluorescence is reported as absent or present. Distinguishing samples with intermediate fluorescence from absent and bright fluorescence improves detection of heterozygote females with mild G6PD deficiency. Mutational studies confirmed that 85% of intermediate samples with normal enzyme activity had identifiable G6PD mutations.
    Matched MeSH terms: Enzyme Activation/genetics
  19. Mohebali N, Pandurangan AK, Mustafa MR, Anandasadagopan SK, Alagumuthu T
    J Biochem Mol Toxicol, 2020 Dec;34(12):e22587.
    PMID: 32726518 DOI: 10.1002/jbt.22587
    Colorectal cancer is one of the most leading death-causing cancers in the world. Vernodalin, a cytotoxic sesquiterpene, has been reported to possess anticancer properties against human breast cancer cells. We aimed to examine the anticancer mechanism of vernodalin on human colon cancer cells. Vernodalin was used on human colon cancer cells, HT-29 and HCT116. The cytotoxicity of vernodalin on human colon cancer cells was determined through in vitro 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Small interfering RNA was used to analyze the cascade activation of mitogen-activated protein kinase (MAPK) pathway, c-Jun N-terminal kinase (JNK) in HT-29, and HCT116 cells against vernodalin treatment. The protein expressions of caspase 3, Bcl-2, and Bax were examined through Western blot analysis. Immunoblot analysis on the JNK, ERK, and p38 MAPK pathways showed increased activation due to vernodalin treatment. It was proven from the JNK and p38 inhibition test that both pathways are significantly activated by vernodalin to induce apoptosis. Our results, collectively, showed the apoptosis-induced anticancer mechanism of vernodalin on human colon cancer cells that was mediated through the activation of JNK pathway and apoptotic regulator proteins. These results suggest that vernodalin could be developed as a potent chemotherapeutic agent for human colorectal cancer treatment.
    Matched MeSH terms: Enzyme Activation
  20. Mohammed Abdul KS, Rayadurgam J, Faiz N, Jovanović A, Tan W
    J Cell Mol Med, 2020 09;24(18):10924-10934.
    PMID: 32794652 DOI: 10.1111/jcmm.15721
    In the present study, we have investigated potential cardioprotective properties of Isosteviol analogue we recently synthesized and named JC105. Treatment of heart embryonic H9c2 cells with JC105 (10 μM) significantly increased survival of cells exposed to hypoxia-reoxygenation. JC105 (10 μM) activated ERK1/2, DRP1 and increased levels of cardioprotective SUR2A in hypoxia-reoxygenation, but did not have any effects on ERK1/2, DRP1 and/or SUR2A in normoxia. U0126 (10 μM) inhibited JC105-mediated phosphorylation of ERK1/2 and DRP1 without affecting AKT or AMPK, which were also not regulated by JC105. Seahorse bioenergetic analysis demonstrated that JC105 (10 μM) did not affect mitochondria at rest, but it counteracted all mitochondrial effects of hypoxia-reoxygenation. Cytoprotection afforded by JC105 was inhibited by U0126 (10 μM). Taken all together, these demonstrate that (a) JC105 protects H9c2 cells against hypoxia-reoxygenation and that (b) this effect is mediated via ERK1/2. The unique property of JC105 is that selectively activates ERK1/2 in cells exposed to stress, but not in cells under non-stress conditions.
    Matched MeSH terms: Enzyme Activation/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links