Displaying publications 21 - 40 of 821 in total

Abstract:
Sort:
  1. Ho WS, Tan LK, Ooi PT, Yeo CC, Thong KL
    BMC Vet Res, 2013;9:109.
    PMID: 23731465 DOI: 10.1186/1746-6148-9-109
    Postweaning diarrhea caused by pathogenic Escherichia coli, in particular verotoxigenic E. coli (VTEC), has caused significant economic losses in the pig farming industry worldwide. However, there is limited information on VTEC in Malaysia. The objective of this study was to characterize pathogenic E. coli isolated from post-weaning piglets and growers with respect to their antibiograms, carriage of extended-spectrum beta-lactamases, pathotypes, production of hemolysins and fimbrial adhesins, serotypes, and genotypes.
    Matched MeSH terms: Escherichia coli Infections/microbiology; Escherichia coli Infections/epidemiology; Escherichia coli Infections/veterinary*; Shiga-Toxigenic Escherichia coli/classification; Shiga-Toxigenic Escherichia coli/genetics; Shiga-Toxigenic Escherichia coli/isolation & purification*; Shiga-Toxigenic Escherichia coli/pathogenicity
  2. Chen SL, Ding Y, Apisarnthanarak A, Kalimuddin S, Archuleta S, Omar SFS, et al.
    Sci Rep, 2019 09 13;9(1):13245.
    PMID: 31519972 DOI: 10.1038/s41598-019-49467-5
    The ST131 multilocus sequence type (MLST) of Escherichia coli is a globally successful pathogen whose dissemination is increasing rates of antibiotic resistance. Numerous global surveys have demonstrated the pervasiveness of this clone; in some regions ST131 accounts for up to 30% of all E. coli isolates. However, many regions are underrepresented in these published surveys, including Africa, South America, and Asia. We collected consecutive bloodstream E. coli isolates from three countries in Southeast Asia; ST131 was the most common MLST type. As in other studies, the C2/H30Rx clade accounted for the majority of ST131 strains. Clinical risk factors were similar to other reported studies. However, we found that nearly all of the C2 strains in this study were closely related, forming what we denote the SEA-C2 clone. The SEA-C2 clone is enriched for strains from Asia, particularly Southeast Asia and Singapore. The SEA-C2 clone accounts for all of the excess resistance and virulence of ST131 relative to non-ST131 E. coli. The SEA-C2 strains appear to be locally circulating and dominant in Southeast Asia, despite the intuition that high international connectivity and travel would enable frequent opportunities for other strains to establish themselves.
    Matched MeSH terms: Escherichia coli/enzymology*; Escherichia coli/genetics; Escherichia coli/isolation & purification; Escherichia coli Infections/drug therapy; Escherichia coli Infections/genetics; Escherichia coli Infections/microbiology; Escherichia coli Infections/epidemiology*
  3. Ahmad KA, Mohanmmed AS, Abas F, Chin SC
    Virol Sin, 2015 Feb;30(1):73-5.
    PMID: 25662886 DOI: 10.1007/s12250-014-3541-8
    Matched MeSH terms: Escherichia coli/enzymology; Escherichia coli/genetics; Escherichia coli/virology*; Escherichia coli Infections/microbiology*; Escherichia coli Proteins/genetics; Escherichia coli Proteins/metabolism
  4. Teh AH, Wang Y, Dykes GA
    Can J Microbiol, 2014 Feb;60(2):105-11.
    PMID: 24498987 DOI: 10.1139/cjm-2013-0633
    Urinary tract infections (UTI) caused by uropathogenic Escherichia coli are one of the most common forms of human disease. In this study, the effect of the presence of newly acquired antibiotic resistance genes on biofilm formation of UTI-associated E. coli strains was examined. Two clinical UTI-associated E. coli strains (SMC18 and SMC20) carrying different combinations of virulence genes were transformed with pGEM-T, pGEM-T::KmΔAmp, or pGEM-T::Km to construct ampicillin-resistant (Km(S)Amp(R)), kanamycin-resistant (Km(R)Amp(S)), or ampicillin- and kanamycin-resistant (Km(R)Amp(R)) strains. Transformed and wild-type strains were characterized for biofilm formation, bacterial surface hydrophobicity, auto-aggregation, morphology, and attachment to abiotic surfaces. Transformation with a plasmid carrying an ampicillin resistance gene alone decreased (p < 0.05) biofilm formation by SMC18 (8 virulence marker genes) but increased (p < 0.05) biofilm formation by SMC20 (5 virulence marker genes). On the other hand, transformation with a plasmid carrying a kanamycin resistance gene alone or both ampicillin and kanamycin resistance genes resulted in a decrease (p < 0.05) in biofilm formation by SMC18 but did not affect (p > 0.05) the biofilm formation by SMC20. Our results suggest that transformation of UTI-associated E. coli with plasmids carrying different antibiotic resistance gene(s) had a significant impact on biofilm formation and that these effects were both strain dependent and varied between different antibiotics.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/physiology*; Escherichia coli Infections/microbiology
  5. Koh CL, Kok CH
    PMID: 6377513
    Fifteen independent E. coli strains of avian, bovine and porcine origin in Peninsular Malaysia were tested for antibiotic resistance and conjugative R plasmids. Eight (53%) isolates were found to be antibiotic resistant. Among them, 37.5% were mono-resistant and 62.5% were resistant to three or more antibiotics, i.e., multi-resistant. All of them were resistant to Tc and sensitive to Gm and Nx. Three of the eight antibiotic resistant strains were able to transfer all or part of their resistance to an E. coli K12 recipient by conjugation. The transfer frequencies of Km, Sm and Tc resistance of the three donors varied between 4.5 X 10(-8) to 6.8 X 10(-7). Analysis of the plasmid profiles of all the three donors and their respective transconjugants after agarose gel electrophoresis provided conclusive evidence that the transferable resistance traits were plasmid-mediated.
    Matched MeSH terms: Escherichia coli/drug effects*; Escherichia coli/genetics; Escherichia coli Infections/drug therapy
  6. Mienda BS
    J Biomol Struct Dyn, 2017 Jul;35(9):1863-1873.
    PMID: 27251747 DOI: 10.1080/07391102.2016.1197153
    Genome-scale metabolic models (GEMs) have been developed and used in guiding systems' metabolic engineering strategies for strain design and development. This strategy has been used in fermentative production of bio-based industrial chemicals and fuels from alternative carbon sources. However, computer-aided hypotheses building using established algorithms and software platforms for biological discovery can be integrated into the pipeline for strain design strategy to create superior strains of microorganisms for targeted biosynthetic goals. Here, I described an integrated workflow strategy using GEMs for strain design and biological discovery. Specific case studies of strain design and biological discovery using Escherichia coli genome-scale model are presented and discussed. The integrated workflow presented herein, when applied carefully would help guide future design strategies for high-performance microbial strains that have existing and forthcoming genome-scale metabolic models.
    Matched MeSH terms: Escherichia coli/genetics*; Escherichia coli/metabolism
  7. Habibi N, Mohd Hashim SZ, Norouzi A, Samian MR
    BMC Bioinformatics, 2014;15:134.
    PMID: 24885721 DOI: 10.1186/1471-2105-15-134
    Over the last 20 years in biotechnology, the production of recombinant proteins has been a crucial bioprocess in both biopharmaceutical and research arena in terms of human health, scientific impact and economic volume. Although logical strategies of genetic engineering have been established, protein overexpression is still an art. In particular, heterologous expression is often hindered by low level of production and frequent fail due to opaque reasons. The problem is accentuated because there is no generic solution available to enhance heterologous overexpression. For a given protein, the extent of its solubility can indicate the quality of its function. Over 30% of synthesized proteins are not soluble. In certain experimental circumstances, including temperature, expression host, etc., protein solubility is a feature eventually defined by its sequence. Until now, numerous methods based on machine learning are proposed to predict the solubility of protein merely from its amino acid sequence. In spite of the 20 years of research on the matter, no comprehensive review is available on the published methods.
    Matched MeSH terms: Escherichia coli/genetics*; Escherichia coli/metabolism
  8. Goulter RM, Taran E, Gentle IR, Gobius KS, Dykes GA
    Colloids Surf B Biointerfaces, 2014 Jul 1;119:90-8.
    PMID: 24880987 DOI: 10.1016/j.colsurfb.2014.04.003
    The role of Escherichia coli H antigens in hydrophobicity and attachment to glass, Teflon and stainless steel (SS) surfaces was investigated through construction of fliC knockout mutants in E. coli O157:H7, O1:H7 and O157:H12. Loss of FliC(H12) in E. coli O157:H12 decreased attachment to glass, Teflon and stainless steel surfaces (p<0.05). Complementing E. coli O157:H12 ΔfliC(H12) with cloned wildtype (wt) fliC(H12) restored attachment to wt levels. The loss of FliCH7 in E. coli O157:H7 and O1:H7 did not always alter attachment (p>0.05), but complementation with cloned fliC(H12), as opposed to cloned fliCH7, significantly increased attachment for both strains compared with wt counterparts (p<0.05). Hydrophobicity determined using bacterial adherence to hydrocarbons and contact angle measurements differed with fliC expression but was not correlated to the attachment to materials included in this study. Purified FliC was used to functionalise silicone nitride atomic force microscopy probes, which were used to measure adhesion forces between FliC and substrates. Although no significant difference in adhesion force was observed between FliC(H12) and FliCH7 probes, differences in force curves suggest different mechanism of attachment for FliC(H12) compared with FliCH7. These results indicate that E. coli strains expressing flagellar H12 antigens have an increased ability to attach to certain abiotic surfaces compared with E. coli strains expressing H7 antigens.
    Matched MeSH terms: Adhesins, Escherichia coli/genetics; Adhesins, Escherichia coli/metabolism; Adhesins, Escherichia coli/chemistry*; Escherichia coli O157/genetics; Escherichia coli O157/metabolism; Escherichia coli O157/chemistry*; Escherichia coli Proteins/genetics; Escherichia coli Proteins/metabolism; Escherichia coli Proteins/chemistry*
  9. Choon YW, Mohamad MS, Deris S, Illias RM, Chong CK, Chai LE
    Bioprocess Biosyst Eng, 2014 Mar;37(3):521-32.
    PMID: 23892659 DOI: 10.1007/s00449-013-1019-y
    Microbial strain optimization focuses on improving technological properties of the strain of microorganisms. However, the complexities of the metabolic networks, which lead to data ambiguity, often cause genetic modification on the desirable phenotypes difficult to predict. Furthermore, vast number of reactions in cellular metabolism lead to the combinatorial problem in obtaining optimal gene deletion strategy. Consequently, the computation time increases exponentially with the increase in the size of the problem. Hence, we propose an extension of a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) by integrating OptKnock into BAFBA to validate the result. This paper presents a number of computational experiments to test on the performance and capability of BAFBA. Escherichia coli, Bacillus subtilis and Clostridium thermocellum are the model organisms in this paper. Also included is the identification of potential reactions to improve the production of succinic acid, lactic acid and ethanol, plus the discussion on the changes in the flux distribution of the predicted mutants. BAFBA shows potential in suggesting the non-intuitive gene knockout strategies and a low variability among the several runs. The results show that BAFBA is suitable, reliable and applicable in predicting optimal gene knockout strategy.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism*
  10. Lee SK, Tan KW, Ng SW
    J Inorg Biochem, 2016 06;159:14-21.
    PMID: 26901628 DOI: 10.1016/j.jinorgbio.2016.02.010
    Three transition metal derivatives (Zn, Cu, and Ni) of 2-[2-bromoethyliminomethyl]-4-[ethoxymethyl]phenol (L) were synthesized by the reaction of the metal salts with the Schiff base ligand in one pot. In the crystal structure of [Zn(L)Br], the Schiff base ligand binds to the metal center through its phenolate oxygen and imine nitrogen, and adopts a distorted tetrahedral geometry. These compounds were found to inhibit topoisomerase I (topo I) activity, induce DNA cleavage and show DNA binding activity. Moreover, these compounds were found to be cytotoxic towards several cancer cell lines (A2780, MCF-7, HT29, HepG2, A549, PC3, LNCaP) and prevent metastasis of PC3. Collectively, Cu(II) complex 2 shows superior activity relative to its Zn(II) and Ni(II) analogs.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism*
  11. Ng WK, Lim TS, Lai NS
    Protein Expr. Purif., 2016 11;127:73-80.
    PMID: 27412717 DOI: 10.1016/j.pep.2016.07.004
    Neonatal Fc-receptor (FcRn) with its affinity to immunoglobulin G (IgG) has been the subject of many pharmacokinetic studies in the past century. This protein is well known for its unique feature in maintaining the circulating IgG from degradation in blood plasma. FcRn is formed by non-covalent association between the α-chain with the β-2-microglobulin (β2m). Many studies have been conducted to produce FcRn in the laboratory, mainly using mammalian tissue culture as host for recombinant protein expression. In this study, we demonstrate a novel strategy to express the α-chain of FcRn using Escherichia coli as the expression host. The expression vector that carries the cDNA of the α-chain was transformed into expression host, Rosetta-gami 2 strain for inducible expression. The bacterial culture was grown in a modified growth medium which constitutes of terrific broth, sodium chloride (NaCl), glucose and betaine. A brief heat shock at 45 °C was carried out after induction, before the temperature for expression was reduced to 22 °C and grown for 16 h. The soluble form of the α-chain of FcRn expressed was tested in the ELISA and dot blot immunoassay to confirm its native functionality. The results implied that the α-chain of FcRn expressed using this method is functional and retains its pH-dependent affinity to IgG. Our study significantly suggests that the activity of human FcRn remain active and functional in the absence of β2m.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/growth & development*
  12. Kaikabo AA, AbdulKarim SM, Abas F
    Poult Sci, 2017 Feb 01;96(2):295-302.
    PMID: 27702916 DOI: 10.3382/ps/pew255
    Disease inflicted by avian pathogenic Escherichia coli (APEC) causes economic losses and burden to the poultry industry worldwide. In this study, the efficacy of chitosan nanoparticles loaded ΦKAZ14 (C-ΦKAZ14 NPs) as an oral biological therapy for Colibacillosis was evaluated. C-ΦKAZ14 NPs containing 10(7) PFU/ml of ΦKAZ14 (Myoviridae; T4-like coliphage) bacteriophage were used to treat experimentally APEC-infected COBB 500 broiler chicks. C-ΦKAZ14 NPs and ΦKAZ14 bacteriophage were administered orally in a single dose. The clinical symptoms, mortality, and pathology in the infected birds were recorded and compared with those of control birds that did not receive C-ΦKAZ14 NPs or naked ΦKAZ14 bacteriophage. The results showed that C-ΦKAZ14 NP intervention decreased mortality from 58.33 to 16.7% with an increase in the protection rate from 42.00 to 83.33%. The bacterial colonization of the intestines of infected birds was significantly higher in the untreated control than in the C-ΦKAZ14 NP-treated group (2.30×10(9) ± 0.02 and 0.79×10(3) ± 0.10 CFU/mL, respectively) (P ≤ 0.05). Similarly, a significant difference in the fecal shedding of Escherichia coli was observed on d 7 post challenge between the untreated control and the C-ΦKAZ14 NP-treated group (2.35×10(9) ± 0.05 and 1.58×10(3) ± 0.06 CFU/mL, respectively) (P ≤ 0.05). Similar trends were observed from d 14 until d 21 when the experiment was terminated. Treatment with C-ΦKAZ14 NPs improved the body weights of the infected chicks. A difference in body weight on d 7 post challenge was observed between the untreated control and the C-ΦKAZ14 NP-treated group (140 ± 20 g and 160 ± 20 g, respectively). The increase was significant (P ≤ 0.05) on d 21 between the 2 groups (240 ± 30 g and 600 ± 80 g, respectively). Consequently, the clinical signs and symptoms were ameliorated upon treatment with C-ΦKAZ14 NPs compared with infected untreated birds. In all, based on the results, it can be concluded that the encapsulation of bacteriophage could enhance bacteriophage therapy and is a valuable approach for controlling APEC infections in poultry.
    Matched MeSH terms: Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins
  13. Gul R, Hanif MU, Gul F, Rehman HM, Saleem M, Ahmad MS, et al.
    Mol Biotechnol, 2023 Jul;65(7):1062-1075.
    PMID: 36437440 DOI: 10.1007/s12033-022-00612-y
    The current study focuses on molecular cloning, expression and structural characterization of growth hormone-receptor (GHR) and its extracellular domain as growth hormone binding protein (GHBP) from the liver of Nili-Ravi buffalo (Bubalus bubalis; Bb). RNA was isolated, genes were amplified by reverse transcriptase-polymerase chain reaction and sequence was characterized. The BbGHR sequence showed three amino acid variations in the extracellular domain when compared with Indian BbGHR. For the production of full length BbGHR and BbGHBP in Escherichia coli (E. coli) BL21 (RIPL) Codon Plus, expression plasmids were constructed under the control of T7lac promoter and isopropyl β-D thiogalactopyranoside was used as an inducer. BbGHR and BbGHBP were expressed as inclusion bodies at ~ 40% and > 30% of the total E. coli proteins, respectively. The BbGHBP was solubilized and refolded by dilution method using cysteine-cystine redox potential. The recombinant BbGHBP was purified and biological activity was checked on HeLa cell lines showing increase cell proliferation in the presence of ovine GH (oGH), hence justifying the increase in the half-life of GH in the presence of BbGHBP. For the molecular interactions of oGH-BbGHBP multiple docking programs were employed to explore the subsequent interactions which showed high binding affinity and presence of large number of hydrogen bonds. Molecular Dynamics studies performed to examine the stability of proteins and exhibited stable structures along with favorable molecular interactions. This study has described the sequence characterization of BbGHR in Nili-Ravi buffaloes and hence provided the basis for the assessment of GH-GHR binding in other Bovidae species.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  14. Tan FH, Ng JF, Mohamed Alitheen NB, Muhamad A, Yong CY, Lee KW
    J Virol Methods, 2023 Sep;319:114771.
    PMID: 37437780 DOI: 10.1016/j.jviromet.2023.114771
    Virus-like particles (VLPs) is one of the most favourable subjects of study, especially in the field of nanobiotechnology and vaccine development because they possess good immunogenicity and self-adjuvant properties. Conventionally, VLPs can be tagged and purified using affinity chromatography or density gradient ultracentrifugation which is costly and time-consuming. Turnip yellow mosaic virus (TYMV) is a plant virus, where expression of the viral coat protein (TYMVc) in Escherichia coli (E. coli) has been shown to form VLP. In this study, we report a non-chromatographic method for VLP purification using C-terminally His-tagged TYMVc (TYMVcHis6) as a protein model. Firstly, the TYMVcHis6 was cloned and expressed in E. coli. Upon clarification of cell lysate, nickel (II) chloride [NiCl2; 15 µM or equivalent to 0.0000194% (w/v)] was added to precipitate TYMVcHis6. Following centrifugation, the pellet was resuspended in buffer containing 1 mM EDTA to chelate Ni2+, which is then removed via dialysis. A total of 50% of TYMVcHis6 was successfully recovered with purity above 0.90. Later, the purified TYMVcHis6 was analysed with sucrose density ultracentrifugation, dynamic light scattering (DLS), and transmission electron microscopy (TEM) to confirm VLP formation, which is comparable to TYMVcHis6 purified using the standard immobilized metal affinity chromatography (IMAC) column. As the current method omitted the need for IMAC column and beads while significantly reducing the time needed for column washing, nickel affinity precipitation represents a novel method for the purification of VLPs displaying poly-histidine tags (His-tags).
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  15. Radu S, Abdul Mutalib S, Rusul G, Ahmad Z, Morigaki T, Asai N, et al.
    Appl Environ Microbiol, 1998 Mar;64(3):1153-6.
    PMID: 9501454
    Twelve strains of Escherichia coli O157:H7 were isolated from 9 of 25 beef samples purchased from retail stores in Malaysia. These strains produced Shiga toxin 2 with or without Shiga toxin 1 and had the eae gene and a 60-MDa plasmid. The antibiograms and the profiles of the arbitrarily primed PCR of the strains were diverse, suggesting that the strains may have originated from diverse sources.
    Matched MeSH terms: Escherichia coli O157/isolation & purification*; Escherichia coli O157/pathogenicity
  16. Heidary S, Rahim RA, Eissazadeh S, Moeini H, Chor AL, Abdullah MP
    Biotechnol Lett, 2014 Jul;36(7):1479-84.
    PMID: 24652546 DOI: 10.1007/s10529-014-1504-7
    The periplasmic proteome of recombinant E. coli cells expressing human interferon-α2b (INF-α2b) was analysed by 2D-gel electrophoresis to find the most altered proteins. Of some unique up- and down-regulated proteins in the proteome, ten were identified by MS. The majority of the proteins belonged to the ABC transporter protein family. Other affected proteins were ones involved in the regulation of transcription such as DNA-binding response regulator, stress-related proteins and ecotin. Thus, the production of INF-α2b acts as a stress on the cells and results in the induction of various transporters and stress related proteins.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism*; Escherichia coli/chemistry*; Escherichia coli Proteins/analysis*
  17. Mienda BS, Shamsir MS, Md Illias R
    J Biomol Struct Dyn, 2016 Aug;34(8):1705-16.
    PMID: 26513379 DOI: 10.1080/07391102.2015.1090341
    Succinic acid is an important platform chemical with a variety of applications. Model-guided metabolic engineering strategies in Escherichia coli for strain improvement to increase succinic acid production using glucose and glycerol remain largely unexplored. Herein, we report what are, to our knowledge, the first metabolic knockout of the atpE gene to have increased succinic acid production using both glucose and alternative glycerol carbon sources in E. coli. Guided by a genome-scale metabolic model, we engineered the E. coli host to enhance anaerobic production of succinic acid by deleting the atpE gene, thereby generating additional reducing equivalents by blocking H(+) conduction across the mutant cell membrane. This strategy produced 1.58 and .49 g l(-1) of succinic acid from glycerol and glucose substrate, respectively. This work further elucidates a model-guided and/or system-based metabolic engineering, involving only a single-gene deletion strategy for enhanced succinic acid production in E. coli.
    Matched MeSH terms: Escherichia coli/genetics*; Escherichia coli/metabolism*; Escherichia coli Proteins/genetics*; Escherichia coli Proteins/metabolism*
  18. Lai YM, Zaw MT, Shamsudin SB, Lin Z
    J Microbiol Immunol Infect, 2016 Aug;49(4):591-4.
    PMID: 26212311 DOI: 10.1016/j.jmii.2015.06.002
    The putative pathogenicity island (PAI) containing the uropathogenic specific protein (usp) gene and three small open reading frames (orfU1, orfU2, and orfU3) encoding 98, 97, and 96 amino acid proteins is widely distributed among uropathogenic Escherichia coli (UPEC) strains. This PAI was designated as PAIusp. Sequencing analysis of PAIusp has revealed that the usp gene can be divided into two types - uspI and uspII - based on sequence variation at the 3' terminal region and the number and position of orfUs differ from strain to strain. Based on usp gene types and orfU sequential patterns, PAIusp can be divided into four subtypes. Subtyping of PAIusp is a useful method to characterize UPEC strains. In this study, we developed a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to differentiate usp gene types. This method could correctly identify the usp gene type in usp-positive UPEC strains in our laboratory.
    Matched MeSH terms: Escherichia coli Infections/microbiology; Escherichia coli Proteins/genetics*; Uropathogenic Escherichia coli/genetics*
  19. Asi AM, Rahman NA, Merican AF
    J Mol Graph Model, 2004 Mar;22(4):249-62.
    PMID: 15177077
    Protein-ligand binding free energy values of wild-type and mutant C-terminal domain of Escherichia coli arginine repressor (ArgRc) protein systems bound to L-arginine or L-citrulline molecules were calculated using the linear interaction energy (LIE) method by molecular dynamics (MD) simulation. The binding behaviour predicted by the dissociation constant (K(d)) calculations from the binding free energy values showed preferences for binding of L-arginine to the wild-type ArgRc but not to the mutant ArgRc(D128N). On the other hand, L-citrulline do not favour binding to wild-type ArgRc but prefer binding to mutant ArgRc(D128N). The dissociation constant for the wild-type ArgRc-L-arginine complex obtained in this study is in agreement with reported experimental results. Our results also support the experimental data for the binding of L-citrulline to the mutant ArgRc(D128N). These showed that LIE method for protein-ligand binding free energy calculation could be applied to the wild-type and the mutant E. coli ArgRc-L-arginine and ArgRc-L-citrulline protein-ligand complexes and possibly to other transcriptional repressor-co-repressor systems as well.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism; Escherichia coli Proteins/genetics; Escherichia coli Proteins/metabolism*
  20. Ho WS, Gan HM, Yap KP, Balan G, Yeo CC, Thong KL
    J Bacteriol, 2012 Dec;194(23):6691-2.
    PMID: 23144425 DOI: 10.1128/JB.01804-12
    Escherichia coli is an important etiologic agent of lower respiratory tract infections (LRTI). Multidrug-resistant E. coli EC302/04 was isolated from a tracheal aspirate, and its genome sequence is expected to provide insights into antimicrobial resistance as well as adaptive and virulence mechanisms of E. coli involved in LRTI.
    Matched MeSH terms: Escherichia coli/drug effects; Escherichia coli/genetics*; Escherichia coli/isolation & purification; Escherichia coli Infections/microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links