Displaying publications 21 - 40 of 700 in total

Abstract:
Sort:
  1. Ao S, Rashid U, Shi D, Rokhum SL, Tg Thuy L, Awad Alahmadi T, et al.
    Environ Res, 2024 Mar 15;245:118025.
    PMID: 38151153 DOI: 10.1016/j.envres.2023.118025
    The study investigates the potential of utilizing banana trunk-derived porous activated biochar enriched with SO3H- as a catalyst for eco-friendly biodiesel production from the microalga Chlorella vulgaris. An extensive analysis, employing advanced techniques such as XRD, FTIR, TGA, XPS, NH3-TPD, BET, SEM-EDX, and TEM, was conducted to elucidate the physicochemical properties of BT-SO3H catalysts. The synthesized catalyst demonstrated its efficiency in converting the total lipids of Chlorella vulgaris into biodiesel, with varying concentrations of 3%, 5%, and 7%. Notably, using a 5% BT-SO3H concentration resulted in remarkably higher biodiesel production about 58.29%. Additionally, the fatty acid profile of C. vulgaris biodiesel indicated that C16:0 was the predominant fatty acid at 24.31%, followed by C18:1 (19.68%), C18:3 (11.45%), and C16:1 (7.56%). Furthermore, the biodiesel produced via 5% BT-SO3H was estimated to have higher levels of saturated fatty acids (SFAs) at 34.28%, monounsaturated fatty acids (MUFAs) at 30.70%, and polyunsaturated fatty acids (PUFAs) at 24.24%. These findings highlight the promising potential of BT-SO3H catalysts for efficient and environmentally friendly biodiesel production from microalgal species.
    Matched MeSH terms: Fatty Acids/analysis
  2. Abd Aziz N, Azlan A, Ismail A, Mohd Alinafiah S, Razman MR
    Biomed Res Int, 2013;2013:284329.
    PMID: 23509703 DOI: 10.1155/2013/284329
    This study was conducted to quantitatively determine the fatty acid contents of 20 species of marine fish and four species of shellfish from Straits of Malacca. Most samples contained fairly high amounts of polyunsaturated fatty acids (PUFAs), especially alpha-linolenic acid (ALA, C18:3 n3), eicosapentaenoic acid (EPA, C20:5 n3), and docosahexaenoic acid (DHA, C22:6 n3). Longtail shad, yellowstripe scad, and moonfish contained significantly higher (P < 0.05) amounts of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), respectively. Meanwhile, fringescale sardinella, malabar red snapper, black pomfret, Japanese threadfin bream, giant seaperch, and sixbar grouper showed considerably high content (537.2-944.1 mg/100 g wet sample) of desirable omega-3 fatty acids. The polyunsaturated-fatty-acids/saturated-fatty-acids (P/S) ratios for most samples were higher than that of Menhaden oil (P/S = 0.58), a recommended PUFA supplement which may help to lower blood pressure. Yellowstripe scad (highest DHA, ω - 3/ω - 6 = 6.4, P/S = 1.7), moonfish (highest ALA, ω - 3/ω - 6 = 1.9, P/S = 1.0), and longtail shad (highest EPA, ω - 3/ω - 6 = 0.8, P/S = 0.4) were the samples with an outstandingly desirable overall composition of fatty acids. Overall, the marine fish and shellfish from the area contained good composition of fatty acids which offer health benefits and may be used for nutraceutical purposes in the future.
    Matched MeSH terms: Fatty Acids/analysis*; Fatty Acids, Unsaturated/analysis; Fatty Acids, Omega-3/analysis
  3. Jahangirian H, Haron MJ, Silong S, Yusof NA
    J Oleo Sci, 2011;60(6):281-6.
    PMID: 21606615
    Phenyl fatty hydroxamic acids (PFHAs) were synthesized from canola or palm oils and phenyl hydroxylamine (FHA) catalyzed by Lipozyme TL IM or RM IM. The reaction was carried out by shaking the reaction mixture at 120 rpm. The optimization was carried out by changing the reaction parameters, namely; temperature, organic solvent, amount and kind of enzyme, period of reaction and the mol ratio of reactants. The highest conversion was obtained when the reaction was carried out under the following conditions: temperature, 39°C; solvent, petroleum ether; kind and amount of lipase, 80 mg Lipozyme TL IM/mmol oil; reaction period, 72 h and FHA-oil ratio, 7.3 mmol FHA/ mmol oil. The highest conversion percentage of phenyl hydroxylaminolysis of the Ladan and Kristal brands commercial canola oils, palm stearin and palm kernel oils were 55.6, 52.2, 51.4 and 49.7 %, respectively.
    Matched MeSH terms: Fatty Acids/biosynthesis*; Fatty Acids/chemistry; Fatty Acids, Monounsaturated/metabolism*; Fatty Acids, Monounsaturated/chemistry
  4. Babji AS, Alina AR, Seri Chempaka MY, Sharmini T, Basker R, Yap SL
    Int J Food Sci Nutr, 1998 Sep;49(5):327-32.
    PMID: 10367001
    Four formulations of burgers, prepared with 65% lean meat and 15% fat consisting of RBD palm stearin (PS), Socfat 4000P and Socfat 4100P and beef fat (BF) as control were evaluated for solid fat content (SFC), slip melting point (SMP), cooking loss, proximate analysis (moisture, fat and protein), colour, i.e. lightness ('L'), redness ('a') and yellowness ('b'), free fatty acid (FFA), iodine value (IV), thiobarbituric acid (TBA) and texture profile analysis (TPA). Sensory evaluation was carried out for texture, juiciness, aroma, oiliness and overall acceptance. SFC and SMP for raw and cooked SF4000P beef burgers were closest to BF control burgers, falling into the range of 35-40 degrees C. Cooking loss was highest for PS burgers, there were no significant differences (P > 0.05) amongst BF, SF4000P and SF4100P burgers. Proximate analysis on raw burgers showed SF4000P to contain high fat and lowest moisture contents. Objective textural measurements using texture profile analysis (TPA) for all cooked burgers showed no significant differences (P > 0.05) for springiness and cohesiveness. Variation of values among the formulations for hardness, gumminess and chewiness are explained by the differences of SFC for beef burgers with various types of fats. Raw and cooked PS burgers have the lightest 'L' values compared with other fat-substituted burgers while BF, SF4000P and SF4100P indicated no significant differences (P > 0.05) for 'L', 'a' and 'b' values. Beef fat showed the highest amount of free fatty acids (FFA) compared to palm oil samples. For the iodine value (IV), SF4000P showed the highest value which means that it contained the highest level of unsaturated fatty acids followed by PS, BF and SF4100P successively. SF4000P had the highest TBA values followed successively by BF, PS and SF4100P. For sensory evaluation, PS burgers had the least oily taste. This may be due to its high cooking loss. Taste panelists could not differentiate burgers with substituted vegetable fats against the control burgers.
    Matched MeSH terms: Fatty Acids/analysis; Fatty Acids, Nonesterified/analysis; Fatty Acids, Unsaturated/analysis
  5. Cha TS, Yee W, Phua PSP, Loh SH, Aziz A
    Biotechnol Lett, 2021 Apr;43(4):803-812.
    PMID: 33438120 DOI: 10.1007/s10529-021-03077-2
    OBJECTIVE: The effects of a brief (3 days) and prolonged (6 days) period of incubation in darkness and light on the biomass content, lipid content and fatty acid profile in Chlorella vulgaris UMT-M1 were determined.

    RESULTS: Three days of incubation in darkness increased saturated fatty acid (SFA) content from 34.0 to 41.4% but decreased monounsaturated fatty acid (MUFA) content from 36.7 to 29.8%. Palmitic acid (C16:0) content was increased from 23.2 to 28.9%, whereas oleic acid (C18:1) content was reduced from 35.4 to 28.8%. Total oil content was slightly decreased from 20.4 to 18.7% after 3 days of darkness, without a significant reduction in biomass compared to 3 days of incubation in light. Biomass and oil content was highest in cultures incubated for 6 days in light, however the stimulatory and inhibitory effects of darkness (or light) on SFA and MUFA content was no longer present at 6 days of incubation.

    CONCLUSIONS: Findings from this study suggests that fatty acid composition in C. vulgaris could be modulated to favor either C16:0 or C18:1 by a brief period of either darkness or light incubation, prior to harvesting.

    Matched MeSH terms: Fatty Acids/analysis; Fatty Acids/biosynthesis*; Fatty Acids, Monounsaturated/analysis*; Fatty Acids, Monounsaturated/metabolism
  6. Hashim RB, Jamil EF, Zulkipli FH, Daud JM
    J Oleo Sci, 2015;64(2):205-9.
    PMID: 25748380 DOI: 10.5650/jos.ess14191
    Pangasius micronemus (Black Pangasius sp.) and Pangasius nasutus (Fruit Pangasius sp.) are two species of silver catfish widely consumed in Malaysia. The present study evaluated fatty acid profiles of fish muscles in these two Pangasius sp. from different farms and locations to determine which species or location is better in term of lipid quality. The results showed MUFAs (Monounsaturated fatty acid) content was highest (35.0-44.4%) followed by SFA (Saturated fatty acid) [32.0-41.5%] and PUFAs (polyunsaturated fatty acids) [9.3-19.3%]. P. micronemus of Sg. Kanchong displayed higher palmitic acid (SFA; 29.0%) than P. nasutus from Peramu (23.5%). In contrast, oleic acid (MUFA) revealed highest in P. nasutus (38.1%) while lowest in P. micronemus of Sg. Kanchong (29.7%). Additionally, utmost PUFAs belonged to P. micronemus of Sg. Kanchong (19.3%) and lower most in P. nasutus from Peramu (9.3%). P. micronemus presented with a higher EPA (eicosapentaenoic acid) [1.0-1.4%], DHA (Docosahexaenoic acid) [1.7-2.8%] and LA (Linoleic acid) [11.8-12.0%] than P. nasutus (EPA; 0.3%, DHA; 1.0%, LA; 4.8%). However, P. nasutus established higher GLA (gamma-linolenic acid) [0.4%] than P. micronemus (0.04-0.06%). Both Pangasius sp. can be regarded as good supplies of omega-3 and omega-6. Overall, P. micronemus from Sg. Kanchong is the best choice among all for reason high in EPA and DHA.
    Matched MeSH terms: Fatty Acids/analysis*; Fatty Acids, Monounsaturated/analysis*; Fatty Acids, Unsaturated/analysis*; Fatty Acids, Omega-3/analysis; Fatty Acids, Omega-6/analysis
  7. Lam MK, Lee KT, Mohamed AR
    Biotechnol Adv, 2010 Jul-Aug;28(4):500-18.
    PMID: 20362044 DOI: 10.1016/j.biotechadv.2010.03.002
    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.
    Matched MeSH terms: Fatty Acids/metabolism; Fatty Acids/chemistry*; Trans Fatty Acids/chemical synthesis; Trans Fatty Acids/metabolism; Trans Fatty Acids/chemistry*
  8. Kassem AA, Abu Bakar MZ, Yong Meng G, Mustapha NM
    ScientificWorldJournal, 2012;2012:851437.
    PMID: 22489205 DOI: 10.1100/2012/851437
    The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO): 50% cod liver oil (CLO) (1 : 1), 84% SBO: 16% CLO (6 : 1), 96% SBO: 4% CLO (30 : 1). Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat.
    Matched MeSH terms: Fatty Acids/blood; Fatty Acids/metabolism*; Fatty Acids, Omega-3/administration & dosage; Fatty Acids, Omega-3/pharmacology*; Fatty Acids, Omega-6/administration & dosage; Fatty Acids, Omega-6/pharmacology*
  9. Chua CS, Huang SY, Cheng CW, Bai CH, Hsu CY, Chiu HW, et al.
    Medicine (Baltimore), 2017 Dec;96(49):e9094.
    PMID: 29245334 DOI: 10.1097/MD.0000000000009094
    Abdominal pain is one of the key symptoms of irritable bowel syndrome (IBS). Studies have indicated an increase in the incidence of IBS in Asia. However, yet the pathophysiology of this disease remains unknown. Women are more likely to develop the condition than men, especially the constipation-predominant type. Essential fatty acid (EFA) malnutrition is one of several theories discussing the mechanism of IBS.The authors hypothesized that significant EFA deficiency may cause abdominal pain in patients with IBS. However, because patterns in the oral intake of EFAs differ between cultures, the authors narrowed this study to examine the nutritional status of Asian female patients with IBSThe authors investigated Asian female patients with IBS and compared them with a group of healthy controls. Thirty patients with IBS and 39 healthy individuals were included in this study. The participants' age, height, weight, and waist size were recorded. The 24-item Hamilton Depression Rating Scale was documented. Both erythrocyte and plasma fatty acid content were analyzed through gas-liquid chromatography.The authors found that patients with IBS exhibited significantly higher scores for depression, higher proportions of plasma saturated fatty acids and monounsaturated fatty acids, and lower proportions of docosahexaenoic acid and total omega-3 polyunsaturated fatty acids in plasma are associated with IBS in Asian female patients. Further study is indicated to confirm the causality of this association.
    Matched MeSH terms: Fatty Acids/blood*; Fatty Acids, Essential; Fatty Acids, Monounsaturated/blood; Fatty Acids, Unsaturated/blood; Fatty Acids, Omega-3/blood
  10. Rohani-Ghadikolaei K, Abdulalian E, Ng WK
    J Food Sci Technol, 2012 Dec;49(6):774-80.
    PMID: 24293698 DOI: 10.1007/s13197-010-0220-0
    The proximate, fatty acid and mineral composition were determined for green (Ulva lactuca and Enteromorpha intestinalis), brown (Sargassum ilicifolium and Colpomenia sinuosa) and red (Hypnea valentiae and Gracilaria corticata) seaweeds collected from the Persian Gulf of Iran. Results showed that the seaweeds were high in carbohydrate (31.8-59.1%, dry weight) and ash (12.4-29.9%) but low in lipid content (1.5-3.6%). The protein content of red or green seaweeds was significantly higher (p 
    Matched MeSH terms: Fatty Acids; Fatty Acids, Unsaturated; Fatty Acids, Omega-3
  11. Tarmizi AH, Lin SW, Kuntom A
    J Oleo Sci, 2008;57(5):275-85.
    PMID: 18391476
    Characterisation of fatty acids composition of three palm-based reference materials was carried out through inter-laboratory proficiency tests. Twelve laboratories collaborated in these tests and the fatty acids compositions of palm oil, palm olein and palm stearin were determined by applying the MPOB Test Methods p3.4:2004 and p3.5:2004. Determination of consensus values and their uncertainties were based on the acceptable statistical agreement of results obtained from the collaborating laboratories. The consensus values and uncertainties (%) for each palm oil reference material produced are listed as follows : 0.20% (C12:0), 1.66+/-0.05% (C14:0), 43.39+/-0.39% (C16:0), 0.14+/-0.06% (C16:1), 3.90+/-0.11% (C18:0), 40.95+/-0.23% (C18:1), 9.68+/-0.21% (C18:2), 0.16+/-0.07% (C18:3) and 0.31+/-0.08% (C20:0) for fatty acids composition of palm oil; 0.23+/-0.04% (C12:0), 1.02+/-0.04% (C14:0), 39.66+/-0.19% (C16:0), 0.18+/-0.07% (C16:1), 3.81+/-0.04% (C18:0), 44.01+/-0.08% (C18:1), 10.73+/-0.08% (C18:2), 0.20+/-0.06% (C18:3) and 0.34+/-0.04% (C20:0) for fatty acids composition of palm olein; and 0.20% (C12:0), 1.14+/-0.05% (C14:0), 49.42+/-0.25% (C16:0), 0.16+/-0.08% (C16:1), 4.15+/-0.10% (C18:0), 36.14+/-0.77% (C18:1), 7.95+/-0.29% (C18:2), 0.11+/-0.07% (C18:3) and 0.30+/-0.08% (C20:0) for fatty acids composition of palm stearin.
    Matched MeSH terms: Fatty Acids/analysis*; Fatty Acids/chemistry*
  12. Ewe JA, Loo SY
    Food Chem, 2016 Jun 15;201:29-36.
    PMID: 26868544 DOI: 10.1016/j.foodchem.2016.01.049
    The primary objective of this study was to evaluate the physicochemical and rheological properties of butter produced by Lactobacillus helveticus fermented cream. The incorporation of putative probiotic - the L. helveticus, to ferment cream prior to butter production was anticipated to alter the nutritional composition of butter. Changes in crude macronutrients and the resultant modification relating to textural properties of butter induced upon metabolic activities of L. helveticus in cream were focused in this research. Fermented butter (LH-butter) was produced by churning the cream that was fermented by lactobacilli at 37 °C for 24 h. Physicochemical analysis, proximate analysis and rheology properties of LH-butter were compared with butter produced using unfermented cream (control). LH-butter showed a significantly (P<0.05) higher fat content and acid value; lower moisture and ash; and was softer than the control. Cream fermentation modified nutritional and textural properties of butter in which LH-butter contained higher health beneficial unsaturated fatty acids than the control and thus rendered the product softer. Its enrichment with probiotics could thus further enhance its functional property.
    Matched MeSH terms: Fatty Acids, Unsaturated/metabolism; Fatty Acids, Unsaturated/chemistry
  13. Jumat Salimon, Dina Azleema Mohd Noor, Nazrizawati A, Mohd Firdaus M, Noraishah A
    The crude oil of Malaysian castor bean Ricinus communis L. seed was extracted by Soxhlet method using hexane. The physicochemical characteristics of castor bean oil were evaluated. The results showed that Malaysian castor seeds contain a relatively high percentage of total lipids content; 43.3% (per dry weight), high iodine value (84.5 mg/g) and saponification value (182.96 mg/g). The seed oil moisture content, acid value and free fatty acid percentage (% FFA) were 0.2%, 4.88 mg/g and 3.4%, respectively. The unsaturated fatty acids (UFA) content were 97.5% of the total fatty acids composition. Ricinoleic acid comprises over 84% while other fatty acids present were linoleic (7.3%), oleic (5.5%), palmitic (1.3%), stearic (1.2%) and linolenic (0.5%), respectively. Five types of castor bean seed oil triacylglycerols were identified as triricinolein, RRR (84.1%), diricinoleoylstearoylglycerol, RRS (8.2%), diricinoleoyloleoyl-glycerol, RRO (5.6%), diricinoleoyllinoleoylglycerol, RRL (1.2%) and diricinoleoylpalmitoyl-glycerol, RRP (0.9%) respectively.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Nonesterified; Fatty Acids, Unsaturated
  14. Ibrahim NUA, Abd Aziz S, Hashim N, Jamaludin D, Khaled AY
    J Food Sci, 2019 Apr;84(4):792-797.
    PMID: 30861127 DOI: 10.1111/1750-3841.14436
    Total polar compounds (TPC) and free fatty acids (FFA) are important indicators in evaluating the quality of frying oil. Conventional methods to determine TPC and FFA are often time consuming, involved laboratory analyses which required skilled personnel and used substantial amount of harmful solvent. In this study, dielectric spectroscopy technique was used to investigate the relation between dielectric property of refined, bleached and deodorized palm olein (RBDPO) during deep frying with TPC and FFA. In total, 150 batches of French fries were intermittently fried at 185 ± 5 °C for 7 hr a day over 5 consecutive days. A total of 30 frying oil samples were collected. The dielectric property of frying oil samples were measured using impedance analyzer with frequencies ranging from 100 Hz to 10 MHz. The TPC of frying oil samples were measured with a Testo 270, while the FFA analysis was done using Malaysian Palm Oil Board (MPOB) test method. Results showed that dielectric constant, TPC and FFA of RBDPO increased as the frying time increased. Dielectric constant increased from 3.09 to 3.17, while TPC and FFA increased from 9.96 to 19.52 and from 0.08% to 0.36%, respectively. Partial least square (PLS) analysis produced good prediction of TPC and FFA with the application of genetic algorithm (GA). Model developed for prediction of TPC and FFA yielded highly significant correlation with R2 of 0.91 and 0.95, respectively and both had root mean square error in cross-validation (RMSECV) of 1.06%. This study demonstrates the potential of dielectric spectroscopy in monitoring palm olein degradation during frying. PRACTICAL APPLICATION: The application of dielectric spectroscopy to detect degradation of palm olein during frying was studied. The dielectric property of palm olein during frying has successfully correlated with TPC and FFA. The model developed in this study could be used for the development of a sensing system for palm olein degradation monitoring.
    Matched MeSH terms: Fatty Acids, Nonesterified/analysis; Fatty Acids, Nonesterified/chemistry
  15. Ashique S, De Rubis G, Sirohi E, Mishra N, Rihan M, Garg A, et al.
    Chem Biol Interact, 2022 Dec 01;368:110231.
    PMID: 36288778 DOI: 10.1016/j.cbi.2022.110231
    The human microbiota is fundamental to correct immune system development and balance. Dysbiosis, or microbial content alteration in the gut and respiratory tract, is associated with immune system dysfunction and lung disease development. The microbiota's influence on human health and disease is exerted through the abundance of metabolites produced by resident microorganisms, where short-chain fatty acids (SCFAs) represent the fundamental class. SCFAs are mainly produced by the gut microbiota through anaerobic fermentation of dietary fibers, and are known to influence the homeostasis, susceptibility to and outcome of many lung diseases. This article explores the microbial species found in healthy human gastrointestinal and respiratory tracts. We investigate factors contributing to dysbiosis in lung illness, and the gut-lung axis and its association with lung diseases, with a particular focus on the functions and mechanistic roles of SCFAs in these processes. The key focus of this review is a discussion of the main metabolites of the intestinal microbiota that contribute to host-pathogen interactions: SCFAs, which are formed by anaerobic fermentation. These metabolites include propionate, acetate, and butyrate, and are crucial for the preservation of immune homeostasis. Evidence suggests that SCFAs prevent infections by directly affecting host immune signaling. This review covers the various and intricate ways through which SCFAs affect the immune system's response to infections, with a focus on pulmonary diseases including chronic obstructive pulmonary diseases, asthma, lung cystic fibrosis, and tuberculosis. The findings reviewed suggest that the immunological state of the lung may be indirectly influenced by elements produced by the gut microbiota. SCFAs represent valuable potential therapeutic candidates in this context.
    Matched MeSH terms: Fatty Acids, Volatile/metabolism; Fatty Acids, Volatile/therapeutic use
  16. Elouafy Y, El Idrissi ZL, El Yadini A, Harhar H, Alshahrani MM, Al Awadh AA, et al.
    Molecules, 2022 Nov 09;27(22).
    PMID: 36431794 DOI: 10.3390/molecules27227693
    Walnut oil, like all vegetable oils, is chemically unstable because of the sensitivity of its unsaturated fatty acids to the oxidation phenomenon. This phenomenon is based on a succession of chemical reactions, under the influence of temperature or storage conditions, that always lead to a considerable change in the quality of the oil by promoting the oxidation of unsaturated fatty acids through the degradation of their C-C double bonds, leading to the formation of secondary oxidation products that reduce the nutritional values of the oil. This research examines the oxidative stability of roasted and unroasted cold-pressed walnut oils under accelerated storage conditions. The oxidative stability of both oils was evaluated using physicochemical parameters: chemical composition (fatty acids, phytosterols, and tocopherols), pigment content (chlorophyll and carotenoids), specific extinction coefficients (K232 and K270), and quality indicators (acid and peroxide value) as well as the evaluation of radical scavenging activity by the DPPH method. The changes in these parameters were evaluated within 60 days at 60 ± 2 °C. The results showed that the levels of total phytosterols, the parameters of the acid and peroxide value, K232 and K270, increased slightly for both oils as well as the total tocopherol content and the antioxidant activity affected by the roasting process. In contrast, the fatty acid profiles did not change considerably during the 60 days of our study. After two months of oil treatment at 60 °C, the studied oils still showed an excellent physicochemical profile, which allows us to conclude that these oils are stable and can withstand such conditions. This may be due to the considerable content of tocopherols (vitamin E), which acts as an antioxidant.
    Matched MeSH terms: Fatty Acids/chemistry; Fatty Acids, Unsaturated
  17. Megat Rusydi, M.R., Noraliza, C.W., Azrina, A., Zulkhairi, A.
    MyJurnal
    Proximate content and fatty acid composition of germinated and non-germinated legumes (kidney, mung, soy bean and peanut) and rice varieties (red, black, Barrio, brown and milled) were evaluated. In germinated samples, moisture content increased significantly while carbohydrate, protein and fat were decreased significantly. Total dietary fibre was increased in germinated samples except germinated kidney and mung bean. Germination also increased saturated fatty acids (SFA) in legumes, black, red and brown rice. Monounsaturated fatty acids (MUFA) decreased in all samples except germinated kidney, soy and Barrio rice. Polyunsaturated fatty acids (PUFA) increased in some germinated samples (mung bean, peanut, red, brown, Barrio and white rice) but decreased in other legume and rice samples. Generally, palmitic acid increased while stearic, oleic and linoleic acids decreased after germination. Overall, the proximate content and fatty acids of legume and rice varieties changed after germination and may be used as alternate resources for individuals with lifestyle diseases.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Monounsaturated; Fatty Acids, Unsaturated
  18. Teoh CY, Ng WK
    J Agric Food Chem, 2013 Jun 26;61(25):6056-68.
    PMID: 23718861 DOI: 10.1021/jf400904j
    The present study aimed to investigate the potential role of dietary petroselinic acid (PSA) in enhancing the n-3 long-chain polyunsaturated fatty acid (LC-PUFA) content in fish tissues. Three isolipidic casein-based diets were formulated to comprise graded levels of PSA (0, 10, or 20% of total fatty acid) with the incremented inclusion of coriander seed oil. Fish growth and nutrient digestibility were not significantly (P > 0.05) influenced by dietary PSA level. In general, dietary PSA affected the fatty acid composition of tilapia tissues and whole-body, which reflected dietary fatty acid ratios. Dietary PSA significantly (P < 0.05) increased β-oxidation, particularly on α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6). This study provided evidence that PSA, a pseudoproduct mimicking the structure of 18:3n-6, did reduce Δ-6 desaturation on 18:2n-6 but, contrary to popular speculation, did not stimulate more Δ-6 desaturase activity on 18:3n-3. The overall Δ-6 desaturase enzyme activity may be suppressed at high dietary levels of PSA. Nevertheless, the n-3 and n-6 LC-PUFA biosynthesis was not significantly inhibited by dietary PSA, indicating that the bioconversion efficiency is not modulated only by Δ-6 desaturase. The deposition of n-3 LC-PUFA in liver and fillet lipids was higher in fish fed PSA-supplemented diets.
    Matched MeSH terms: Fatty Acids/metabolism; Fatty Acids/chemistry; Fatty Acids, Unsaturated/biosynthesis*; Fatty Acids, Unsaturated/chemistry
  19. Koo HC, Kaur S, Chan KQ, Soh WH, Ang YL, Chow WS, et al.
    J Hum Nutr Diet, 2020 10;33(5):670-677.
    PMID: 32250007 DOI: 10.1111/jhn.12753
    INTRODUCTION: Little is known about the relationship of whole-grain intake with dietary fatty acids intake. The present study aimed to assess the whole-grain intake and its relationships with dietary fatty acids intake among multiethnic schoolchildren in Kuala Lumpur, Malaysia.

    METHODS: This cross-sectional study was conducted among 392 schoolchildren aged 9-11 years, cluster sampled from five randomly selected schools in Kuala Lumpur. Whole-grain and fatty acids intakes were assessed by 3-day, 24-h diet recalls. All whole-grain foods were considered irrespective of the amount of whole grain they contained.

    RESULTS: In total, 55.6% (n = 218) were whole-grain consumers. Mean (SD) daily intake of whole grain in the total sample was 5.13 (9.75) g day-1 . In the whole-grain consumer's only sample, mean (SD) intakes reached 9.23 (11.55) g day-1 . Significant inverse associations were found between whole-grain intake and saturated fatty acid (SAFA) intake (r = -0.357; P 

    Matched MeSH terms: Fatty Acids/analysis*; Fatty Acids, Monounsaturated/analysis; Fatty Acids, Unsaturated/analysis
  20. Khor BH, Narayanan SS, Chinna K, Gafor AHA, Daud ZAM, Khosla P, et al.
    Nutrients, 2018 Sep 21;10(10).
    PMID: 30248953 DOI: 10.3390/nu10101353
    Blood fatty acids (FAs) are derived from endogenous and dietary routes. Metabolic abnormalities from kidney dysfunction, as well as cross-cultural dietary habits, may alter the FA profile of dialysis patients (DP), leading to detrimental clinical outcomes. Therefore, we aimed to (i) summarize FA status of DP from different countries, (ii) compare blood FA composition between healthy controls and DP, and (iii) evaluate FA profile and clinical endpoints in DP. Fifty-three articles from 1980 onwards, reporting FA profile in hemodialysis and peritoneal DP, were identified from PubMed, Embase, and the Cochrane library. Studies on pediatric, predialysis chronic kidney disease, acute kidney injury, and transplant patients were excluded. Moderate to high levels of n-3 polyunsaturated fatty acids (PUFA) were reported in Japan, Korea, Denmark, and Sweden. Compared to healthy adults, DP had lower proportions of n-3 and n-6 PUFA, but higher proportion of monounsaturated fatty acids. Two studies reported inverse associations between n-3 PUFAs and risks of sudden cardiac death, while one reported eicosapentaenoic acid + docosahexaenoic acid)/arachidonic acid ratio was inversely associated with cardiovascular events. The relationship between all-cause mortality and blood FA composition in DP remained inconclusive. The current evidence highlights a critical role for essential FA in nutritional management of DP.
    Matched MeSH terms: Fatty Acids, Monounsaturated/blood*; Fatty Acids, Omega-3/blood*; Fatty Acids, Omega-6/blood*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links