Displaying publications 21 - 40 of 269 in total

Abstract:
Sort:
  1. Noorain Mohd Isa, Ahmad Zaharin Aris
    Sains Malaysiana, 2012;41:23-32.
    Classified as a small island, Kapas Island experiences major problems especially in supplying freshwater where groundwater abstraction is the only way to meet the demand of drinking water and domestic use. Groundwater samples were collected from seven constructed boreholes to examine the hydrochemistry properties of major ions and in-situ parameters as these could provide a basis for future reference. The chemical composition showed strong and significant correlation for each studied parameter; an indication of the effect of environmental variables to the groundwater composition. The composition changed from Ca-rich to Na-rich are explained mostly by mixing and cation exchange processes. This study provided an input for water management at Kapas Island where groundwater is a crucial resource to maintain the hydrogeological balance of the island.
    Matched MeSH terms: Fresh Water
  2. Ng TH, Dulipat J, Foon JK, Lopes-Lima M, Alexandra Zieritz, Liew TS
    Zookeys, 2017.
    PMID: 28769673 DOI: 10.3897/zookeys.673.12544
    Sabah, a Malaysian state at the north-eastern tip of Borneo, is situated in one of the Earth's biodiversity hotspots yet its freshwater gastropod diversity remains poorly known. An annotated checklist of the freshwater gastropods is presented, based on specimens deposited in the BORNEENSIS collection of the Institute for Tropical Biology and Conservation at Universiti Malaysia Sabah, Malaysia. A KMZ file is also provided, which acts as a repository of digital images and complete collection data of all examined material, so that it can be shared and adapted to facilitate future research.
    Matched MeSH terms: Fresh Water
  3. Zzaman, W., Yusoff, M.M., Yang, T.A.
    MyJurnal
    Fish crackers made from freshwater fishes is a new dimension in fish cracker industry. In this study, three species were chosen based on their general preference and acceptability by Malaysian. Together with other ingredients, these crackers were prepared using standard formulation and tested in laboratory for their proximate analysis and physical characteristic analysis includes linear expansion, oil absorption, color measurement and texture. Sensory analysis for overall acceptability was carried out among trained panelist in the school. The results for proximate composition and physical analysis showed that there were significant differences (p
    Matched MeSH terms: Fresh Water
  4. Al-Humairi ST, Lee JGM, Harvey AP, Salman AD, Juzsakova T, Van B, et al.
    Sci Total Environ, 2023 Mar 01;862:160702.
    PMID: 36481155 DOI: 10.1016/j.scitotenv.2022.160702
    The purpose of this study was to examine the application of the mathematical model of drift flux to the experimental results of the effect of cationic trimethyl-ammonium bromide (CTAB)-aided continuous foam flotation harvesting on the lipid content in Chlorella vulgaris microalgae. An experiment was conducted to determine the effect of the operating conditions on the enrichment factor (EF) and percentage recovery efficiency (%RE), where the flow rates at the inlet and bottom outlet remained constant. Data for the binary system (without algae) and ternary system (with algae) in an equal-area foam column show that the EF decreases linearly with increasing initial CTAB concentrations ranging from 30 to 75 mg/L for three levels of the studied air volumetric flow rate range (1-3) L/min. The percentage harvesting efficiency increased with increasing initial CTAB concentration and air volumetric flow rate to 96 % in the binary systems and 94 % in the ternary systems. However, in the foam column with the riser used in the three systems, a lower volume of liquid foam in the upward outlet stream resulted in a lower RE% than that of the column without the riser. The objective function of EF for the system with algae increased when the initial CTAB concentration was increased from 30 to 45 mg/L in the foam column with a riser for all air flow rates, and after 45 mg/L, a sudden drop in the microalgae EF was observed. In the comparison between the foam column with and without the riser for the system with algae, the optimum EF was 145 for the design of the column with the riser and 139 for the column without the riser.
    Matched MeSH terms: Fresh Water
  5. Chen HL, Selvam SB, Ting KN, Gibbins CN
    Environ Sci Pollut Res Int, 2021 Oct;28(39):54222-54237.
    PMID: 34386926 DOI: 10.1007/s11356-021-15826-x
    Plastics are synthetic polymers known for their outstanding durability and versatility, and have replaced traditional materials in many applications. Unfortunately, their unique traits ensure that they pose a major threat to the environment. While literature on freshwater microplastic contamination has grown over the recent years, research undertaken in rapidly developing countries, where plastic production and use are increasing dramatically, has lagged behind that in other parts of the world. In the South East Asia (SEA) region, basic information on levels of contamination is very limited and, as a consequence, the risk to human and ecological health remains hard to assess. This review synthesises what is currently known about microplastic contamination of freshwater ecosystems in SEA, with a particular focus on Malaysia. The review 1) summarises published studies that have assessed levels of contamination in freshwater systems in SEA, 2) discusses key sources and transport pathways of microplastic in freshwaters, 3) outlines what is known of the impacts of microplastic on freshwater organisms, and 4) identifies key knowledge gaps related to our understanding of the transport, fate and effects of microplastic.
    Matched MeSH terms: Fresh Water
  6. Hamid N, Junaid M, Manzoor R, Sultan M, Chuan OM, Wang J
    Sci Total Environ, 2023 Dec 20;905:167213.
    PMID: 37730032 DOI: 10.1016/j.scitotenv.2023.167213
    Per- and polyfluoroalkyl substances (PFAS) are also known as "forever chemicals" due to their persistence and ubiquitous environmental distribution. This review aims to summarize the global PFAS distribution in surface water and identify its ecological and human risks through integrated assessment. Moreover, it provides a holistic insight into the studies highlighting the human biomonitoring and toxicological screening of PFAS in freshwater and marine species using quantitative structure-activity relationship (QSAR) based models. Literature showed that PFOA and PFOS were the most prevalent chemicals found in surface water. The highest PFAS levels were reported in the US, China, and Australia. The TEST model showed relatively low LC50 of PFDA and PFOS for Pimephales promelas (0.36 and 0.91 mg/L) and high bioaccumulation factors (518 and 921), revealing an elevated associated toxicity. The risk quotients (RQs) values for P. promelas and Daphnia magna were found to be 269 and 23.7 for PFOS. Studies confirmed that long-chain PFAS such as PFOS and PFOA undergo bioaccumulation in aquatic organisms and induce toxicological effects such as oxidative stress, transgenerational epigenetic effects, disturbed genetic and enzymatic responses, perturbed immune system, hepatotoxicity, neurobehavioral toxicity, altered genetic and enzymatic responses, and metabolism abnormalities. Human biomonitoring studies found the highest PFOS, PFOA, and PFHxS levels in urine, cerebrospinal fluid, and serum samples. Further, long-chain PFOA and PFOS exposure create severe health implications such as hyperuricemia, reduced birth weight, and immunotoxicity in humans. Molecular docking analysis revealed that short-chain PFBS (-11.84 Kcal/mol) and long-chain PFUnDA (-10.53 Kcal/mol) displayed the strongest binding interactions with human serum albumin protein. Lastly, research challenges and future perspectives for PFAS toxicological implications were also discussed, which helps to mitigate associated pollution and ecological risks.
    Matched MeSH terms: Fresh Water
  7. Rojas-Castillo OA, Kepfer Rojas S, Juen L, Montag LFA, Carvalho FG, Mendes TP, et al.
    Conserv Biol, 2024 Feb;38(1):e14172.
    PMID: 37650444 DOI: 10.1111/cobi.14172
    The expansion of oil palm plantations has led to land-use change and deforestation in the tropics, which has affected biodiversity. Although the impacts of the crop on terrestrial biodiversity have been extensively reviewed, its effects on freshwater biodiversity remain relatively unexplored. We reviewed the research assessing the impacts of forest-to-oil palm conversion on freshwater biota and the mitigating effect of riparian buffers on these impacts. We searched for studies comparing taxa richness, species abundance, and community composition of macroinvertebrates, amphibians, and fish in streams in forests (primary and disturbed) and oil palm plantations with and without riparian buffers. Then, we conducted a meta-analysis to quantify the overall effect of the land-use change on the 3 taxonomic groups. Twenty-nine studies fulfilled the inclusion criteria. On average, plantations lacking buffers hosted 44% and 19% fewer stream taxa than primary and disturbed forests, respectively. Stream taxa on plantations with buffers were 24% lower than in primary forest and did not differ significantly from disturbed forest. In contrast, stream community composition differed between forests and plantations regardless of the presence of riparian buffers. These differences were attributed to agrochemical use and altered environmental conditions in the plantations, including temperature changes, worsened water conditions, microhabitat loss, and food and shelter depletion. On aggregate, abundance did not differ significantly among land uses because increases in generalist species offset the population decline of vulnerable forest specialists in the plantation. Our results reveal significant impacts of forest-to-oil palm conversion on freshwater biota, particularly taxa richness and composition (but not aggregate abundance). Although preserving riparian buffers in the plantations can mitigate the loss of various aquatic species, it cannot conserve primary forest communities. Therefore, safeguarding primary forests from the oil palm expansion is crucial, and further research is needed to address riparian buffers as a promising mitigation strategy in agricultural areas.
    Matched MeSH terms: Fresh Water
  8. Ng PKL, Wowor D
    Zootaxa, 2024 Jan 04;5397(2):218-224.
    PMID: 38221209 DOI: 10.11646/zootaxa.5397.2.3
    The gecarcinucid freshwater crab genus, Lepidothelphusa Colosi, 1920, is known only from Sarawak in northern Borneo, with six recognised species i.e. Lepidothelphusa cognettii (Nobili, 1903); L. flavochela Grinang & Ng, 2015; L. limau Grinang & Ng, 2015; L. loi Grinang & Ng, 2015; L. padawan Grinang & Ng, 2015; and L. sangon Grinang & Ng, 2015. The genus is now reported from Indonesian Borneo for the first time, from specimens recently collected from Gunung Kelam in Sintang Regency, Kalimantan Barat Province. Lepidothelphusa menneri n. sp. has a very distinctive tri-coloured pattern in life, unique among congeners. It can also easily be separated from congeners by carapace, epistome, male pleonal and male first gonopod characters.
    Matched MeSH terms: Fresh Water
  9. Hamid N, Junaid M, Sultan M, Yoganandham ST, Chuan OM
    Water Res, 2024 Feb 15;250:121044.
    PMID: 38154338 DOI: 10.1016/j.watres.2023.121044
    Due to increasing regulations on the production and consumption of legacy per- and polyfluoroalkyl substances (PFAS), the global use of PFAS substitutes increased tremendously, posing serious environmental risks owing to their bioaccumulation, toxicity, and lack of removal strategies. This review summarized the spatial distribution of alternative PFAS and their ecological risks in global freshwater and marine ecosystems. Further, toxicological effects of novel PFAS in various freshwater and marine species were highlighted. Moreover, degradation mechanisms for alternative PFAS removal from aquatic environments were compared and discussed. The spatial distribution showed that 6:2 chlorinated polyfluorinated ether sulfonate (6:2 CI-PFAES, also known as F-53B) was the most dominant emerging PFAS found in freshwater. Additionally, the highest levels of PFBS and PFBA were observed in marine waters (West Pacific Ocean). Moreover, short-chain PFAS exhibited higher concentrations than long-chain congeners. The ecological risk quotients (RQs) for phytoplankton were relatively higher >1 than invertebrates, indicating a higher risk for freshwater phytoplankton species. Similarly, in marine water, the majority of PFAS substitutes exhibited negligible risk for invertebrates and fish, and posed elevated risks for phytoplanktons. Reviewed studies showed that alternative PFAS undergo bioaccumulation and cause deleterious effects such as oxidative stress, hepatoxicity, neurotoxicity, histopathological alterations, behavioral and growth abnormalities, reproductive toxicity and metabolism defects in freshwater and marine species. Regarding PFAS treatment methods, photodegradation, photocatalysis, and adsorption showed promising degradation approaches with efficiencies as high as 90%. Finally, research gaps and future perspectives for alternative PFAS toxicological implications and their removal were offered.
    Matched MeSH terms: Fresh Water
  10. Ravizza M, Giosio D, Henderson A, Hovenden M, Hudson M, Salleh S, et al.
    Biofouling, 2016 07;32(6):685-97.
    PMID: 27244248 DOI: 10.1080/08927014.2016.1184255
    Biofouling in canals and pipelines used for hydroelectric power generation decreases the flow capacity of conduits. A pipeline rig was designed consisting of test sections of varying substrata (PVC, painted steel) and light levels (transparent, frosted, opaque). Stalk-forming diatoms were abundant in both the frosted and transparent PVC pipes but negligible in the painted steel and opaque PVC pipes. Fungi were slightly more abundant in the painted steel pipe but equally present in all the other pipes while bacterial diversity was similar in all pipes. Photosynthetically functional biofouling (mainly diatoms) was able to develop in near darkness. Different biological fouling compositions generated differing friction factors. The highest friction factor was observed in the transparent pipe (densest diatom fouling), the lowest peak friction for the opaque PVC pipe (lowest fouling biomass), and with the painted steel pipe (high fouling biomass, but composed of fungal and bacterial crusts) being intermediate between the opaque and frosted PVC pipes.
    Matched MeSH terms: Fresh Water/chemistry*
  11. Lee CW, Lim JH, Heng PL
    Environ Monit Assess, 2013 Dec;185(12):9697-704.
    PMID: 23748919 DOI: 10.1007/s10661-013-3283-3
    We sampled extensively (29 stations) at the Klang estuarine system over a 3-day scientific expedition. We measured physical and chemical variables (temperature, salinity, dissolved oxygen, total suspended solids, dissolved inorganic nutrients) and related them to the spatial distribution of phototrophic picoplankton (Ppico). Multivariate analysis of variance of the physicochemical variables showed the heterogeneity of the Klang estuarine system where the stations at each transect were significantly different (Rao's F₁₈, ₃₆ = 8.401, p < 0.001). Correlation analyses also showed that variables related to Ppico abundance and growth were mutually exclusive. Distribution of Ppico was best explained by the physical mixing between freshwater and seawater whereas Ppico growth was correlated with temperature.
    Matched MeSH terms: Fresh Water/analysis
  12. Lim WY, Aris AZ, Zakaria MP
    ScientificWorldJournal, 2012;2012:652150.
    PMID: 22919346 DOI: 10.1100/2012/652150
    This paper determines the controlling factors that influence the metals' behavior water-sediment interaction facies and distribution of elemental content ((75)As, (111)Cd, (59)Co, (52)Cr, (60)Ni, and (208)Pb) in water and sediment samples in order to assess the metal pollution status in the Langat River. A total of 90 water and sediment samples were collected simultaneously in triplicate at 30 sampling stations. Selected metals were analyzed using ICP-MS, and the metals' concentration varied among stations. Metal concentrations of water ranged between 0.08-24.71 μg/L for As, <0.01-0.53 μg/L for Cd, 0.06-6.22 μg/L for Co, 0.32-4.67 μg/L for Cr, 0.80-24.72 μg/L for Ni, and <0.005-6.99 μg/L for Pb. Meanwhile, for sediment, it ranged between 4.47-30.04 mg/kg for As, 0.02-0.18 mg/kg for Cd, 0.87-4.66 mg/kg for Co, 4.31-29.04 mg/kg for Cr, 2.33-8.25 mg/kg for Ni and 5.57-55.71 mg/kg for Pb. The average concentration of studied metals in the water was lower than the Malaysian National Standard for Drinking Water Quality proposed by the Ministry of Health. The average concentration for As in sediment was exceeding ISQG standards as proposed by the Canadian Sediment Quality Guidelines. Statistical analyses revealed that certain metals (As, Co, Ni, and Pb) were generally influenced by pH and conductivity. These results are important when making crucial decisions in determining potential hazardous levels of these metals toward humans.
    Matched MeSH terms: Fresh Water/chemistry*
  13. Lai SO, Huang J, Hopke PK, Holsen TM
    Sci Total Environ, 2011 Mar 1;409(7):1320-7.
    PMID: 21257194 DOI: 10.1016/j.scitotenv.2010.12.032
    In this project, several surrogate surfaces designed to directly measure Hg dry deposition were investigated. Static water surrogate surfaces (SWSS) containing deionized (DI), acidified water, or salt solutions, and a knife-edge surrogate surface (KSS) using quartz fiber filters (QFF), KCl-coated QFF and gold-coated QFF were evaluated as a means to directly measure mercury (Hg) dry deposition. The SWSS was hypothesized to collect deposited elemental mercury (Hg⁰), reactive gaseous/oxidized mercury (RGM), and mercury associated with particulate matter (Hg(p)) while the QFF, KCl-coated QFF, and gold-coated QFF on the KSS were hypothesized to collect Hg(p), RGM+Hg(p), and Hg⁰+RGM+Hg(p), respectively. The Hg flux measured by the DI water was significantly smaller than that captured by the acidified water, probably because Hg⁰ was oxidized to Hg²+ which stabilized the deposited Hg and decreased mass transfer resistance. Acidified BrCl, which efficiently oxidizes Hg⁰, captured significantly more Hg than other solutions. However, of all collection media, gold-coated QFFs captured 6 to 100 times greater Hg mass than the other surfaces, probably because there is no surface resistance for Hg⁰ deposition to gold surfaces. In addition, the Hg⁰ concentration is usually 100-1000 times higher than RGM and Hg(p). For all other media, co-located samples were not significantly different, and the combination of daytime plus nighttime results were comparable to 24-h samples, implying that Hg⁰, RGM and Hg(p) were not released after they deposited nor did the surfaces reach equilibrium with the atmosphere. Based on measured Hg ambient air concentrations and fluxes, dry deposition velocities of RGM and Hg⁰ to DI water and other surfaces were 5.6±5.4 and 0.005-0.68 cm s⁻¹ in this study, respectively. These results suggest surrogate surfaces can be used to measure Hg dry deposition; however, extrapolating the results to natural surface can be challenging.
    Matched MeSH terms: Fresh Water/chemistry
  14. Sohrabi T, Ismail A, Nabavi MB
    Bull Environ Contam Toxicol, 2010 Nov;85(5):502-8.
    PMID: 20957347 DOI: 10.1007/s00128-010-0112-z
    Surface sediments along the south of Caspian Sea were collected to evaluate the contamination of heavy metals. The result ranged (μg/g, Fe% dw): Pb(13.06-33.48); Ni(18.01-69.63); Cd(0.62-1.5); Zn(30.11-87.88); Cu(5.86-26.37) and Fe(1.8-4%) respectively. Cadmium showed higher EF when compared to other sites. Geoaccumulation Index value for Cd in most stations was classified as moderately contaminated and moderately to strongly contaminated, as well as the average of I(geo) of Cd (1.77 ± 0.35) suggested that surface sediments of Caspian coast were moderately polluted by this metal. The result of the Pearson correlation showed that there were significant positive associations between Ni, Cd and Zn (r = 0.44-0.76; p < 0.01).
    Matched MeSH terms: Fresh Water/chemistry*
  15. Ebrahimpour M, Mushrifah I
    Environ Monit Assess, 2008 Jun;141(1-3):297-307.
    PMID: 17891467
    The purpose of this paper are to determine the concentration of heavy metals namely cadmium (Cd), copper (Cu) and lead (Pb) in water and sediment; and to investigate the effect of sediment pH and sediment organic matter on concentration of cadmium, copper and lead in sediment at oxidation fraction. For this purpose the concentration of heavy metals were measured in water and sediments at 15 sites from Tasik Chini, Peninsular Malaysia. The sequential extraction procedure used in this study was based on defined fractions: exchangeable, acid reduction, oxidation, and residual. The concentration of heavy metals in residual fraction was higher than the other fractions. Among the non-residual fractions, the concentration of heavy metals in organic matter fraction was much higher than other fractions collected from all sampling sites. The pH of the sediment in all sites was acidic. The mean pH ranges from 4.8 to 5.5 with the higher value observed at site 15. Results of organic matter analysis showed that the percentage of organic matter present in sediment samples varies throughout the lake and all sites of sediments were relatively rich in organic matter ranging from 13.0% to 34.2%. The highest mean percentage of organic matter was measured at sampling site 15, with value of 31.78%.
    Matched MeSH terms: Fresh Water/chemistry*
  16. Sari SA, Ujang Z, Ahmad UK
    Water Sci Technol, 2006;54(11-12):289-99.
    PMID: 17302332
    The objective of this study was to investigate the cycling of arsenic in the water column of a post-mining lake. This study is part of a research project to develop health risk assessment for the surrounding population. Inductively Coupled Plasma-Mass Spectrophotometer (ICP-MS) and Capillary Electrophoresis (CE) have been used to analyze the total amount and speciation, respectively. A computer program, called MINTEOA2, which was developed by the United States Environmental Protection Agency (USEPA) was used for predicting arsenic, iron, and manganese as functions of pH and solubility. Studying the pH values and cycle of arsenic shows that the percentage of bound arsenate, As(V) species in the form of HAsO4- increases with range pH from 5 to 7, as well as Fe(II) and Mn(III). As expected phases of arsenic oxides are FeAsO4 and Mn3(AsO4), as a function of solubility, however none of these phases are over saturated and not precipitated. It means that the phases of arsenic oxides have a high solubility.
    Matched MeSH terms: Fresh Water/analysis*
  17. Shuhaimi-Othman M, Lim EC, Mushrifah I
    Environ Monit Assess, 2007 Aug;131(1-3):279-92.
    PMID: 17171269
    A study of the water quality changes of Chini Lake was conducted for 12 months, which began in May 2004 and ended in April 2005. Fifteen sampling stations were selected representing the open water body in the lake. A total of 14 water quality parameters were measured and Malaysian Department of Environment Water Quality Index (DOE-WQI) was calculated and classified according to the Interim National Water Quality Standard, Malaysia (INWQS). The physical and chemical variables were temperature, dissolved oxygen (DO), conductivity, pH, total dissolved solid (TDS), turbidity, chlorophyll-a, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), ammonia-N, nitrate, phosphate and sulphate. Results show that base on Malaysian WQI, the water in Chini Lake is classified as class II, which is suitable for recreational activities and allows body contact. With respect to the Interim National Water Quality Standard (INWQS), temperature was within the normal range, conductivity, TSS, nitrate, sulphate and TDS are categorized under class I. Parameters for DO, pH, turbidity, BOD, COD and ammonia-N are categorized under class II. Comparison with eutrophic status indicates that chlorophyll-a concentration in the lake was in mesotrophic condition. In general water quality in Chini Lake varied temporally and spatially, and the most affected water quality parameters were TSS, turbidity, chlorophyll-a, sulphate, DO, ammonia-N, pH and conductivity.
    Matched MeSH terms: Fresh Water/chemistry*
  18. Lopes-Lima M, Bolotov IN, Do VT, Aldridge DC, Fonseca MM, Gan HM, et al.
    Mol Phylogenet Evol, 2018 10;127:98-118.
    PMID: 29729933 DOI: 10.1016/j.ympev.2018.04.041
    Two Unionida (freshwater mussel) families are present in the Northern Hemisphere; the Margaritiferidae, representing the most threatened of unionid families, and the Unionidae, which include several genera of unresolved taxonomic placement. The recent reassignment of the poorly studied Lamprotula rochechouartii from the Unionidae to the Margaritiferidae motivated a new search for other potential species of margaritiferids from members of Gibbosula and Lamprotula. Based on molecular and morphological analyses conducted on newly collected specimens from Vietnam, we here assign Gibbosula crassa to the Margaritiferidae. Additionally, we reanalyzed all diagnostic characteristics of the Margaritiferidae and examined museum specimens of Lamprotula and Gibbosula. As a result, two additional species are also moved to the Margaritiferidae, i.e. Gibbosula confragosa and Gibbosula polysticta. We performed a robust five marker phylogeny with all available margaritiferid species and discuss the taxonomy within the family. The present phylogeny reveals the division of Margaritiferidae into four ancient clades with distinct morphological, biogeographical and ecological characteristics that justify the division of the Margaritiferidae into two subfamilies (Gibbosulinae and Margaritiferinae) and four genera (Gibbosula, Cumberlandia, Margaritifera, and Pseudunio). The systematics of the Margaritiferidae family is re-defined as well as their distribution, potential origin and main biogeographic patterns.
    Matched MeSH terms: Fresh Water*
  19. Saba AO, Ismail A, Zulkifli SZ, Halim MRA, Wahid NAA, Amal MNA
    Sci Rep, 2020 10 14;10(1):17205.
    PMID: 33057156 DOI: 10.1038/s41598-020-74168-9
    The ornamental fish trade has been considered as one of the most important routes of invasive alien fish introduction into native freshwater ecosystems. Therefore, the species composition and invasion risks of fish species from 60 freshwater fish pet stores in Klang Valley, Malaysia were studied. A checklist of taxa belonging to 18 orders, 53 families, and 251 species of alien fishes was documented. Fish Invasiveness Screening Test (FIST) showed that seven (30.43%), eight (34.78%) and eight (34.78%) species were considered to be high, medium and low invasion risks, respectively. After the calibration of the Fish Invasiveness Screening Kit (FISK) v2 using the Receiver Operating Characteristics, a threshold value of 17 for distinguishing between invasive and non-invasive fishes was identified. As a result, nine species (39.13%) were of high invasion risk. In this study, we found that non-native fishes dominated (85.66%) the freshwater ornamental trade in Klang Valley, while FISK is a more robust tool in assessing the risk of invasion, and for the most part, its outcome was commensurate with FIST. This study, for the first time, revealed the number of high-risk ornamental fish species that give an awareness of possible future invasion if unmonitored in Klang Valley, Malaysia.
    Matched MeSH terms: Fresh Water*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links