Displaying publications 21 - 40 of 350 in total

Abstract:
Sort:
  1. Haiyan G, Lijuan H, Shaoyu L, Chen Z, Ashraf MA
    Saudi J Biol Sci, 2016 Jul;23(4):524-30.
    PMID: 27298587 DOI: 10.1016/j.sjbs.2016.02.020
    In the study, we evaluated chemical composition and antimicrobial, antibiofilm, and antitumor activities of essential oils from dried leaf essential oil of leaf and flower of Agastache rugosa for the first time. Essential oil of leaf and flower was evaluated with GC and GC-MS methods, and the essential oil of flower revealed the presence of 21 components, whose major compounds were pulegone (34.1%), estragole (29.5%), and p-Menthan-3-one (19.2%). 26 components from essential oil of leaf were identified, the major compounds were p-Menthan-3-one (48.8%) and estragole (20.8%). At the same time, essential oil of leaf, there is a very effective antimicrobial activity with MIC ranging from 9.4 to 42 μg ml(-1) and potential antibiofilm, antitumor activities for essential oils of flower and leaf essential oil of leaf. The study highlighted the diversity in two different parts of A. rugosa grown in Xinjiang region and other places, which have different active constituents. Our results showed that this native plant may be a good candidate for further biological and pharmacological investigations.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  2. Muhammad SA, Hayman AR, Van Hale R, Frew RD
    J Forensic Sci, 2015 Jan;60 Suppl 1:S56-65.
    PMID: 25131396 DOI: 10.1111/1556-4029.12551
    Compound-specific isotope analysis offers potential for fingerprinting of diesel fuels, however, possible confounding effects of isotopic fractionation due to evaporation need to be assessed. This study measured the fractionation of the stable carbon and hydrogen isotopes in n-alkane compounds in neat diesel fuel during evaporation. Isotope ratios were measured using a continuous flow gas chromatograph/isotope ratio mass spectrometer. Diesel samples were progressively evaporated at 24 ± 2°C for 21 days. Increasing depletion of deuterium in nC12-nC17 alkanes in the remaining liquid with increasing carbon chain length was observed. Negligible carbon isotope fractionation was observed. Preferential vaporization was measured for the shorter chain n-alkanes and the trend decreased with increasing chain length. The decrease in δ(2) H values indicates the preferential vaporization of the isotopically heavier species consistent with available quantitative data for hydrocarbons. These results are most important in the application of stable isotope technology to forensic analysis of diesel.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  3. Hadibarata T, Nor NM
    Bioprocess Biosyst Eng, 2014 Sep;37(9):1879-85.
    PMID: 24623464 DOI: 10.1007/s00449-014-1162-0
    Polyporus sp. S133 decolorized the Amaranth in 72 h (30 mg L(-1)) under static and shaking conditions. Liquid medium containing glucose has shown the highest decolorization of Amaranth by Polyporus sp. S133. When the effect of increasing inoculum concentration on decolorization of Amaranth was studied, maximum decolorization was observed with 15 % inoculum concentration. Significant increase in the enzyme production of laccase (102.2 U L(-1)) was observed over the period of Amaranth decolorization compared to lignin peroxidase and manganese peroxidase. Germination rate of Sorghum vulgare and Triticum aestivum was less with Amaranth treatment as compared to metabolites obtained after its decolorization. Based on the metabolites detected by GC-MS, it was proposed that Amaranth was bio-transformed into two intermediates, 1-hydroxy-2-naphthoic acid and 1,4-naphthaquinone. Overall findings suggested the ability of Polyporus sp. S133 for the decolorization of azo dye and ensured the ecofriendly degradation of Amaranth.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  4. Nurul Syazana MS, Gan SH, Halim AS, Shah NS, Gan SH, Sukari HA
    PMID: 24146441
    The constituents of honey's volatile compounds depend on the nectar source and differ depending on the place of origin. To date, the volatile constituents of Tualang honey have never been investigated. The objective of this study was to analyze the volatile compounds in local Malaysian Tualang honey. A continuous extraction of Tualang honey using five organic solvents was carried out starting from non-polar to polar solvents and the extracted samples were analysed using gas chromatography-mass spectrometry (GC-MS). Overall, 35 volatile compounds were detected. Hydrocarbons constitute 58.5% of the composition of Tualang honey. Other classes of chemical compounds detected included acids, aldehydes, alcohols, ketones, terpenes, furans and a miscellaneous group. Methanol yielded the highest number of extracted compounds such as acids and 5-(Hydroxymethyl) furfural (HMF). This is the first study to describe the volatile compounds in Tualang honey. The use of a simple one tube, stepwise, non-thermal liquid-liquid extraction of honey is a advantageous as it prevents sample loss. Further research to test the clinical benefits of these volatile compounds is recommended.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  5. Tajuddin SN, Yusoff MM
    Nat Prod Commun, 2010 Dec;5(12):1965-8.
    PMID: 21299133
    Volatile oils of Aquilaria malaccensis Benth. (Thymelaeaceae) from Malaysia were obtained by hydrodistillation and subjected to detailed GC-FID and GC/MS analyses to determine possible similarities and differences in their chemical composition in comparison with the commercial oil. A total of thirty-one compounds were identified compared with twenty-nine identified in the commercial oil. The major compounds identified were 4-phenyl-2-butanone (32.1%), jinkoh-eremol (6.5%) and alpha-guaiene (5.8%), while the major compounds in the commercial oil were alpha-guaiene (10.3%), caryophellene oxide (8.6%), and eudesmol (3.2%). The results of the present study showed that more than nine sesquiterpene hydrocarbons were present, which is more than previously reported. Analysis also showed that the number of oxygenated sesquiterpenes in this study were much less than previously reported. Among the compounds detected were alpha-guaiene, beta-agarofuran, alpha-bulnesene, jinkoh-eremol, kusunol, selina-3,11-dien-9-one, oxo-agarospirol and guaia-1 (10), 11-dien-15,2-olide.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  6. Abdullahi A, Ahmad K, Ismail IS, Asib N, Ahmed OH, Abubakar AI, et al.
    Plant Pathol J, 2020 Dec 01;36(6):515-535.
    PMID: 33312089 DOI: 10.5423/PPJ.RW.05.2020.0077
    Essential oils (EOs) have gained a renewed interest in many disciplines such as plant disease control and medicine. This review discusses the components of ginger EOs, their mode of action, and their potential nanotechnology applications in controlling tropical plant diseases. Gas chromatography-mass spectroscopy (GC-MS), high-performance liquid chromatography, and headspace procedures are commonly used to detect and profile their chemical compositions EOs in ginger. The ginger EOs are composed of monoterpenes (transcaryophyllene, camphene, geranial, eucalyptol, and neral) and sesquiterpene hydrocarbons (α-zingiberene, ar-curcumene, β-bisabolene, and β-sesquiphellandrene). GC-MS analysis of the EOs revealed many compounds but few compounds were revealed using the headspace approach. The EOs have a wide range of activities against many phytopathogens. EOs mode of action affects both the pathogen cell's external envelope and internal structures. The problems associated with solubility and stability of EOs had prompted the use nanotechnology such as nanoemulsions. The use of nanoemulsion to increase efficiency and supply of EOs to control plant diseases control was discussed in this present paper. The findings of this review paper may accelerate the effective use of ginger EOs in controlling tropical plant diseases.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  7. Samer Al-Battawi, Yu Bin Ho, Mohd Talib Latif, Vivien How, Karuppiah Thilakavathy
    MyJurnal
    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants with toxic effects and adverse health impacts on general population. Several methods of extraction had been applied to extract PAHs from human blood samples such as solid phase extraction (SPE). The SPE represents one of the most common techniques for extraction and clean-up procedures as it needs low quantity of solvents with less manual efforts. Similarly, various analytical instruments like gas chromatography coupled to mass spectrometry (GC-MS) was used to measure the PAHs levels. Gas chromatog- raphy is a simple, fast, and very efficient method for solvents and small organic molecules. This review provides an overview of the measured concentrations of PAHs in human blood samples through the application of SPE and GC- MS during the last ten years. While these studies used various solvents, their application of SPE method and GC-MS revealed rewarding results about the determination of PAHs levels in the human samples.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  8. Lasekan O, Teoh LS
    BMC Chem, 2019 Dec;13(1):133.
    PMID: 31891159 DOI: 10.1186/s13065-019-0650-3
    Background: The aroma chemistry and the contribution of the aroma compounds to the anti-oxidative properties of roasted yam have yet to be characterized. The growing popularity of roasted yam in regions where they are being consumed calls for a concerted effort to elucidate their aroma chemistry as well as their anti-oxidative properties.

    Results: The aroma compounds in roasted white yam (Dioscorea rotundata) were isolated and identified using static headspace-gas chromatography-mass spectrometry (SH-GC-MS) and gas chromatography-olfactometry (GC-O). In addition, the anti-oxidative activities of the most abundant volatile heterocyclic compounds (2 pyrroles, 4 furans and 3 pyrazines) were evaluated on their inhibitory effect towards the oxidation of hexanal for a period of 30 days. Twenty-nine aroma-active compounds with a flavour dilution (FD) factor range of 2-256 and an array of odour notes were obtained. Among them, the highest odour activities (FD ≥ 128) factors were determined for 2-acetyl furan and 2-acetylpyrrole. Other compounds with significant FD factors ≥ 32 were; 2-methylpyrazine, ethyl furfural, and 5-hydroxy methyl furfural.

    Conclusion: Results of the anti-oxidative activity showed that the pyrroles exhibited the greatest antioxidant activity among all the tested heterocyclic compounds. This was followed by the furans and the pyrazines which had the least antioxidant activity.

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  9. Wijayati N, Lestari LR, Wulandari LA, Mahatmanti FW, Rakainsa SK, Cahyono E, et al.
    Heliyon, 2021 Jan;7(1):e06058.
    PMID: 33553744 DOI: 10.1016/j.heliyon.2021.e06058
    Methoxylation is a relevant technological process applied in the production of high-value α-pinene derivatives. This report investigates the use of potassium alum [KAl(SO4)2 · 12H2O] as a catalyst in the methoxylation of α-pinene. In this study, the methoxylation reaction was optimized for the highest conversion of α-pinene and selectivity, assessed for the factors, catalyst loading (0.5; 1.0; and 1.5 g), volume ratio of α-pinene: methanol (1:4, 1:7, 1:10), reaction temperature (50, 55, 60 and 65 °C), and reaction time (72, 144, 216, 288, 360 min). The highest selectivity of KAl(SO4)2∙12H2O in the methoxylation of α-pinene was achieved under an optimal condition of 1 g of catalyst loading, volume ratio of 1:10, as well as the reaction temperature and incubation time of 65 °C and 6 h, respectively. GC-MS results revealed the yields of the methoxylated products from the 98.2% conversion of α-pinene, to be 59.6%, 8.9%, and 7.1% for α-terpinyl methyl ether (TME), fenchyl methyl ether (FME), bornyl methyl ether (BME), respectively. It was apparent that a lower KAl(SO4)2∙12H2O loading (0.5-1.5 g) was more economical for the methoxylation reaction. The findings seen here indicated the suitability of the KAl(SO4)2 · 12H2O to catalyze the methoxylation of α-pinene to produce an commercially important ethers.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  10. Nurlaila Ismail, Mohd Hezri Fazalul Rahiman, Mohd Nasir Taib, Mastura Ibrahim, Seema Zareen, Saiful Nizam Tajuddin
    MyJurnal
    This paper presents the application of Solid Phase Micro Extraction (SPME) coupled with Gas Chromatography - Mass Spectrometry (GC-MS) and Gas Chromatography - Flame Ionization Detector (GC-FID) in characterizing the agarwood incense. The work involved three types of SPME fibres at 30 minute sampling time. The fibres are 50/30 μm divinylbenzene-carboxen-polydimethysiloxane (DVB-CAR-PDMS), 65 μm polydi methylsiloxane-divinylbenzene (PDMS-DVB) and 85 μm carboxen-polydimethyl siloxane (CAR-PDMS). The results showed that among the many compounds extracted by GC-MS coupled with SPME, six compounds were substantially found in high quality agarwood incense due to their high percentage area (%). They are β-maaliene, α-elemol, β-selinene, 10-epi-γ-eudesmol, agarospirol and caryophellene oxide. The finding offers a new approach for establishing the volatile profile of agarwood incense components as well as for agarwood grading and discrimination.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  11. M.A.M. Ishak, M.T. Safian, Z.A. Ghani, K. Ismail
    ASM Science Journal, 2013;7(1):7-17.
    MyJurnal
    Solvent flow reactor system was introduced into the extraction system to increase the system efficiency and enhance the extraction yield by adding fresh solvent during the extraction processes. The liquefaction experiment was carried out at various flow-rates (1, 3 and 5 ml/min), reaction times (30, 45 and 60 min) and reaction temperatures (300ºC, 350ºC, 400ºC, 420ºC and 450ºC) with tetralin as solvent. Despite the ability of adding fresh solvent into the extraction process, the conversion of oil+gas was still considered to be low as there was ~25% of coal extracts left to be converted into low molecular weight compounds. One possible option to increase the oil yield is by applying catalyst that will further break up the coal extracts into small molecular weight compounds. In this study, a second reactor was introduced consisting of catalyst (NiSiO2) assuming that the catalyst would interact more effectively with coal extracts rather than the coal itself. In the
    absence of catalyst, the oil yield was 55%. By introducing the Ni catalyst, the oil yield increased by 15%. Further analysis of GCMS showed that the oil from catalytic liquefaction gave out more low molecular weight compounds in comparison to the un-catalytic liquefaction oil.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  12. Intan S. Ismail, NorAkmar Ismail, Nordin Lajis
    MyJurnal
    The preliminary ichthyotoxic test on all parts of Syzygium malaccense (Myrtaceae) revealed that the leaves fraction was the most ichthyotoxic against tilapia-fish (Tilapia oreochromis). Three compounds, namely ursolic acid (1), β-sitosterol (2) and sitost-4-en-3-one (3), were isolated and their structures were elucidated with the aid of spectroscopic data and comparison with previously reported investigations. However none of these compounds gave any significant ichthyotoxicity. The volatile constituents of the leaves and fruit were determined by Gas Chromatography-Mass Spectrometer (GC-MS), with 180 and 203 compounds being identified in the aroma concentrates, respectively.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  13. Wan Aida, W.M., Ho, C.W., Maskat, M.Y., Osman, H.
    MyJurnal
    Sensory attributes of four different palm sugars were related to gas chromatography/mass spectrometry (GC/MS) analysis using partial least squares regression (PLS). The sweet caramel and burnt-like sensory attributes were strongly associated with 2-furfural and 2-furan methanol volatile compounds. The sensory scores for roasty and nutty were also associated with the GC/MS ratings for roasty and nutty-like aroma by its highest scores obtained from 2-ethyl-5-methyl pyrazine, 2,5-dimethyl pyrazine and 2,3-dimethyl pyrazine volatile compounds along the PC1 dimension. PLS analysis did not show correlation for the character impact compound furaneol, 2-ethyl-3,5-dimethyl pyrazine (EDMP) and 2,3-diethyl-5-methyl pyrazine (DEMP), which are perceived to be responsible for the sweet caramel-like and roasty/nutty attributes of palm sugars, respectively. This lack of relationship could partially be explained by covariance among the sensory ratings for the samples.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  14. Yan D, Wong YF, Whittock SP, Koutoulis A, Shellie RA, Marriott PJ
    Anal Chem, 2018 04 17;90(8):5264-5271.
    PMID: 29575899 DOI: 10.1021/acs.analchem.8b00142
    A novel sequential three-dimensional gas chromatography-high-resolution time-of-flight mass spectrometry (3D GC-accTOFMS) approach for profiling secondary metabolites in complex plant extracts is described. This integrated system incorporates a nonpolar first-dimension (1Dnp) separation step, prior to a microfluidic heart-cut (H/C) of a targeted region(s) to a cryogenic trapping device, directly followed by the rapid reinjection of a trapped solute into a polar second-dimension (2DPEG) column for multidimensional separation (GCnp-GCPEG). For additional separation, the effluent from 2DPEG can then be modulated according to a comprehensive 2D GC process (GC×GC), using an ionic liquid phase as a third-dimension (3DIL) column, to produce a sequential GCnp-GCPEG×GCIL separation. Thus, the unresolved or poorly resolved components, or regions that require further separation, can be precisely selected and rapidly transferred for additional separation on 2D or 3D columns, based on the greater separation realized by these steps. The described integrated system can be used in a number of modes, but one useful approach is to target specific classes of compounds for improved resolution. This is demonstrated through the separation and detection of the oxygenated sesquiterpenes in hop ( Humulus lupulus L.) essential oil and agarwood ( Aquilaria malaccensis) oleoresin. Improved resolution and peak capacity were illustrated through the progressive comparison of the tentatively identified components for GCnp-GCPEG and GCnp-GCPEG×GCIL methods. Relative standard deviations of intraday retentions (1 tR, 2 tR,, and 3 tR) and peak areas of ≤0.01, 0.07, 0.71, and 7.5% were achieved. This analytical approach comprising three GC column selectivities, hyphenated with high-resolution TOFMS detection, should be a valuable adjunct for the improved characterization of complex plant samples, particularly in the area of plant metabolomics.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  15. Salema AA, Afzal MT, Bennamoun L
    Bioresour Technol, 2017 Jun;233:353-362.
    PMID: 28285228 DOI: 10.1016/j.biortech.2017.02.113
    Pyrolysis of corn stalk biomass briquettes was carried out in a developed microwave (MW) reactor supplied with 2.45GHz frequency using 3kW power generator. MW power and biomass loading were the key parameters investigated in this study. Highest bio-oil, biochar, and gas yield of 19.6%, 41.1%, and 54.0% was achieved at different process condition. In terms of quality, biochar exhibited good heating value (32MJ/kg) than bio-oil (2.47MJ/kg). Bio-oil was also characterised chemically using FTIR and GC-MS method. This work may open new dimension towards development of large-scale MW pyrolysis technology.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  16. Alara OR, Abdurahman NH
    J Food Sci Technol, 2019 Feb;56(2):580-588.
    PMID: 30906015 DOI: 10.1007/s13197-018-3512-4
    Recently, unconventional methods especially microwave-assisted hydrodistillation extraction (MAHE) is being used as an alternative technique for extracting bioactive compounds from plant materials due to its advantages over conventional methods such as Soxhlet extraction (SE). In this study, bioactive compounds were extracted from Vernonia cinerea leaf using both MAHE and SE methods. In addition, the kinetic study of MAHE and SE methods were carried out using first- and second-order kinetic models. The results obtained showed that MAHE can extract higher yield of bioactive compounds from V. cinerea leaf in a shorter time and reduced used of extracting solvent compared with SE method. Based on the results obtained, second-order kinetic models can actually describe the extraction of bioactive compounds from V. cinerea leaf through MAHE with extraction rate coefficient of 0.1172 L/gmin and extraction capacity of 1.0547 L/g as compared to SE with 0.0157 L/gmin and 1.1626 L/g of extraction rate coefficient and extraction capacity, respectively. The gas chromatography-mass spectrometry analysis of the oil showed the presence of numerous heavy fractions in the oil obtained through MAHE as compared with the SE method. Moreover, the electric consumption and environmental impacts analysis of the oil suggested that MAHE can be a suitable green technique for extracting bioactive compounds from V. cinerea leaf.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  17. Abdul Kadir FA, Azizan KA, Othman R
    Data Brief, 2020 Feb;28:104987.
    PMID: 32226799 DOI: 10.1016/j.dib.2019.104987
    Agarwood is the highly valuable fragrant resin of the wounded Aquilaria spp. trees widely used in fragrances, medicines and incenses. Among the Aquilaria spp., A. malaccensis is the primary producer and is mainly found in Indonesia and Malaysia. In normal condition, agarwood is naturally formed in Aquilaria trees as a defense mechanism upon physical damage or microbial infection on the trees, which is a slow process that occurs over several years. The high demand in agarwood has spurred the development of various artificial inoculation methods where agarwood formation is synthetically induced in a shorter period of time. However, the synthetic induction method produces agarwood with aromas different from the naturally formed agarwood. To understand the changes in the agarwoods produced from different induction conditions, metabolite profiling of agarwood essential oil from A. malaccensis has been performed. The essential oils of healthy undamaged tree trunks and, naturally formed and synthetically induced agarwoods were obtained using hydrodistillation (HS) method and analysed using gas chromatography mass spectrometer (GC-MS). These data will provide valuable resources for chemical components of agarwood produced by the species in the genus Aquilaria.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  18. Terence Ricky Chiu, Md Firoz Khan, Mohd Shahrul Mohd Nadzir, Haris Hafizal Abdul Hamid, Mohd Talib Latif, Mohd Shahrul Mohd Nadzir, et al.
    Sains Malaysiana, 2018;47:871-882.
    The individual compounds and sources of polycyclic aromatic hydrocarbon (PAHs) were studied in the surface sediments
    at 32 locations in the tourism area of Langkawi Island. A total of 15 PAHs were determined and quantified by gas
    chromatography coupled with mass spectrometry (GC-MS). The total PAH concentrations of surface sediments from
    Langkawi Island ranged from 228.13 to 990.25 ng/g and they were classified as being in the low to moderate pollution
    range. All sampling stations were dominated by high molecular weight PAHs with 4 rings (31.59%) and 5-6 rings (42.73%).
    The diagnostic ratio results showed that in most cases, the sampling stations have pyrogenic input. Further analysis
    using principal component analysis (PCA) combined with absolute principal component score (APCS) and multiple linear
    regression (MLR) showed that the natural gas emissions contributed to 57% of the total PAH concentration, 22% from the
    incomplete combustion and pyrolysis of fuel, 15% from pyrogenic and petrogenic sources and 6% from an undefined source.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  19. Rashidi Nodeh H, Wan Ibrahim WA, Kamboh MA, Sanagi MM
    Food Chem, 2018 Jan 15;239:208-216.
    PMID: 28873561 DOI: 10.1016/j.foodchem.2017.06.094
    Graphene (G) modified with magnetite (Fe3O4) and sol-gel hybrid tetraethoxysilane-methyltrimethoxysilane (TEOS-MTMOS) was used as a clean-up adsorbent in magnetic solid phase extraction (MSPE) for direct determination of acrylamide in various food samples prior to gas chromatography-mass spectrometry analysis. Good linearity (R2=0.9990) was achieved for all samples using matrix-matched calibration. The limit of detection (LOD=3×SD/m) obtained was 0.061-2.89µgkg-1 for the studied food samples. Native acrylamide was found to be highest in fried potato with bright-fleshed (900.81µgkg-1) and lowest in toasted bread (5.02µgkg-1). High acrylamide relative recovery (RR=82.7-105.2%) of acrylamide was obtained for spiked (5 and 50µgkg-1) food samples. The Fe3O4@G-TEOS-MTMOS is reusable up to 7 times as a clean-up adsorbent with good recovery (>85%). The presence of native acrylamide was confirmed by mass analysis at m/z=71 ([C3H5NO]+) and m/z=55 ([C3H3O]+).
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  20. Abd Wahil MS, Ja'afar MH, Md Isa Z
    PeerJ, 2023;11:e15132.
    PMID: 37197586 DOI: 10.7717/peerj.15132
    BACKGROUND: The presence of aluminium (Al) in the human body may impact brain neurodevelopment and function, and it is thought to contribute to autism spectrum disease (ASD). The main objective of this study was to assess the association between urinary Al and the development of ASD among Malaysian preschool children in the urban city of Kuala Lumpur.

    METHOD: This was an unmatched case-control study in which children with ASD were recruited from an autism early intervention center and typically developed (TD) children were recruited from government-run nurseries and preschools. Urine samples were collected at home, assembled temporarily at study locations, and transported to the laboratory within 24 h. The Al concentration in the children's urine samples was determined using inductively coupled plasma mass spectrometry (ICP-MS).

    RESULT: A total of 155 preschool children; 81 ASD children and 74 TD children, aged 3 to 6 years, were enlisted in the study. This study demonstrated that ASD children had significantly higher urinary Al levels than TD children (median (interquartile range (IQR): 2.89 (6.77) µg/dL versus 0.96 (2.95) µg/dL) (p 1, p 

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links