Displaying publications 21 - 40 of 337 in total

Abstract:
Sort:
  1. Anuar NS, Shafie SA, Maznan MAF, Zin NSNM, Azmi NAS, Raoof RA, et al.
    Toxicol Appl Pharmacol, 2023 Jul 01;470:116558.
    PMID: 37211320 DOI: 10.1016/j.taap.2023.116558
    Lauric acid, a 12‑carbon atom medium chain fatty acid (MCFA) has strong antioxidant and antidiabetic activities. However, whether lauric acid can ameliorate hyperglycaemia-induced male reproductive damage remains unclear. The study aimed to determine the optimal dose of lauric acid with glucose-lowering activity, antioxidant potential and tissue-protective effects on the testis and epididymis of streptozotocin (STZ)-induced diabetic rats. Hyperglycaemia was induced in Sprague Dawley rats by an intravenous injection of STZ at a dose of 40 mg/kg body weight (bwt). Lauric acid (25, 50 and 100 mg/kg bwt) was administered orally for eight weeks. Weekly fasting blood glucose (FBG), glucose tolerance and insulin sensitivity were examined. Hormonal profiles (insulin and testosterone), lipid peroxidation (MDA) and antioxidant enzyme (SOD and CAT) activities were measured in the serum, testis and epididymis. The reproductive analyses were evaluated based on sperm quality and histomorphometry. Lauric acid administration significantly improved FBG levels, glucose tolerance, hormones-related fertility and oxidant-antioxidant balance in the serum, testis and epididymis compared to untreated diabetic rats. Treatment with lauric acid preserved the testicular and epididymal histomorphometry, along with the significant improvements in sperm characteristics. It is shown for the first time that lauric acid treatment at 50 mg/kg bwt is the optimal dose for ameliorating hyperglycaemia-induced male reproductive complications. We conclude that lauric acid reduced hyperglycaemia by restoring insulin and glucose homeostasis, which attributes to the regeneration of tissue damage and sperm quality in STZ-induced diabetic rats. These findings support the correlation between oxidative stress and hyperglycaemia-induced male reproductive dysfunctions.
    Matched MeSH terms: Glucose/metabolism
  2. Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, et al.
    Drug Des Devel Ther, 2023;17:1907-1932.
    PMID: 37397787 DOI: 10.2147/DDDT.S409373
    Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
    Matched MeSH terms: Glucose/metabolism
  3. Zuhri UM, Yuliana ND, Fadilah F, Erlina L, Purwaningsih EH, Khatib A
    J Ethnopharmacol, 2024 Jan 30;319(Pt 3):117296.
    PMID: 37820996 DOI: 10.1016/j.jep.2023.117296
    ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora crispa (L.) Hook. f. & Thomson stem (TCS) has long been used as folk medicine for the treatment of diabetes mellitus. Previous study revealed that TCS possesses multi-ingredients and multi-targets characteristic potential as insulin sensitizer activity. However, its mechanisms of action and molecular targets are still obscure.

    AIM OF THE STUDY: In the present study, we investigated the effects of TCS against insulin resistance in muscle cells through integrating in vitro experiment and identifying its active biomarker using metabolomics and in molecular docking validation.

    MATERIALS AND METHODS: We used centrifugal partition chromatography (CPC) to isolate 33 fractions from methanolic extract of TCS, and then used UHPLC-Orbitrap-HRMS to identify the detectable metabolites in each fraction. We assessed the insulin sensitization activity of each fraction using enzyme-linked immunosorbent assay (ELISA), and then used confocal immunocytochemistry microscopy to measure the translocation of glucose transporter 4 (GLUT4) to the cell membrane. The identified active metabolites were further simulated for its molecular docking interaction using Autodock Tools.

    RESULTS: The polar fractions of TCS significantly increased insulin sensitivity, as measured by the inhibition of phosphorylated insulin receptor substrate-1 (pIRS1) at serine-312 residue (ser312) also the increasing number of translocated GLUT4 and glycogen content. We identified 58 metabolites of TCS, including glycosides, flavonoids, alkaloids, coumarins, and nucleotides groups. The metabolomics and molecular docking simulations showed the presence of minor metabolites consisting of tinoscorside D, higenamine, and tinoscorside A as the active compounds.

    CONCLUSIONS: Our findings suggest that TCS is a promising new treatment for insulin resistance and the identification of the active metabolites in TCS could lead to the development of new drugs therapies for diabetes that target these pathways.

    Matched MeSH terms: Glucose/metabolism
  4. Zamani AI, Barig S, Ibrahim S, Mohd Yusof H, Ibrahim J, Low JYS, et al.
    Microb Cell Fact, 2020 Sep 09;19(1):179.
    PMID: 32907579 DOI: 10.1186/s12934-020-01434-w
    BACKGROUND: Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently. Hence, this study aimed to investigate the overall metabolite changes of an omnipotent fungus and to reveal changes at central carbon metabolism corresponding to both carbon sources.

    RESULTS: Targeted and non-targeted metabolomics for both polar and semi-polar metabolites of Phialemonium curvatum AWO2 (DSM 23903) cultivated in MSM with palm oil (MSM-P) or glucose (MSM-G) as carbon sources were obtained. Targeted metabolomics on central carbon metabolism of tricarboxylic acid (TCA) cycle and glyoxylate cycle were analysed using LC-MS/MS-TripleQ and GC-MS, while untargeted metabolite profiling was performed using LC-MS/MS-QTOF followed by multivariate analysis. Targeted metabolomics analysis showed that glyoxylate pathway and TCA cycle were recruited at central carbon metabolism for triglyceride and glucose catabolism, respectively. Significant differences in organic acids concentration of about 4- to 8-fold were observed for citric acid, succinic acid, malic acid, and oxaloacetic acid. Correlation of organic acids concentration and key enzymes involved in the central carbon metabolism was further determined by enzymatic assays. On the other hand, the untargeted profiling revealed seven metabolites undergoing significant changes between MSM-P and MSM-G cultures.

    CONCLUSIONS: Overall, this study has provided insights on the understanding on the effect of triglycerides and sugar as carbon source in fungi global metabolic pathway, which might become important for future optimization of carbon flux engineering in fungi to improve organic acids production when vegetable oil is applied as the sole carbon source.

    Matched MeSH terms: Glucose/metabolism*
  5. Azaman SNA, Wong DCJ, Tan SW, Yusoff FM, Nagao N, Yeap SK
    Sci Rep, 2020 Oct 15;10(1):17331.
    PMID: 33060668 DOI: 10.1038/s41598-020-74410-4
    Chlorella can produce an unusually wide range of metabolites under various nutrient availability, carbon source, and light availability. Glucose, an essential molecule for the growth of microorganisms, also contributes significantly to the metabolism of various metabolic compounds produced by Chlorella. In addition, manipulation of light intensity also induces the formation of secondary metabolites such as pigments, and carotenoids in Chlorella. This study will focus on the effect of glucose addition, and moderate light on the regulation of carotenoid, lipid, starch, and other key metabolic pathways in Chlorella sorokiniana. To gain knowledge about this, we performed transcriptome profiling on C. sorokiniana strain NIES-2168 in response to moderate light stress supplemented with glucose under mixotrophic conditions. A total of 60,982,352 raw paired-end (PE) reads 100 bp in length was obtained from both normal, and mixotrophic samples of C. sorokiniana. After pre-processing, 93.63% high-quality PE reads were obtained, and 18,310 predicted full-length transcripts were assembled. Differential gene expression showed that a total of 937, and 1124 genes were upregulated, and downregulated in mixotrophic samples, respectively. Transcriptome analysis revealed that the mixotrophic condition caused upregulation of genes involved in carotenoids production (specifically lutein biosynthesis), fatty acid biosynthesis, TAG accumulation, and the majority of the carbon fixation pathways. Conversely, starch biosynthesis, sucrose biosynthesis, and isoprenoid biosynthesis were downregulated. Novel insights into the pathways that link the enhanced production of valuable metabolites (such as carotenoids in C. sorokiniana) grown under mixotrophic conditions is presented.
    Matched MeSH terms: Glucose/metabolism*
  6. Yusof BN, Abd Talib R, Karim NA, Kamarudin NA, Arshad F
    Int J Food Sci Nutr, 2009 Sep;60(6):487-96.
    PMID: 18785052 DOI: 10.1080/09637480701804268
    This study was carried out to determine the blood glucose response and glycaemic index (GI) values of four types of commercially available breads in Malaysia. Twelve healthy volunteers (six men, six women; body mass index, 21.9±1.6 kg/m(2); age, 22.9±1.7 years) participated in this study. The breads tested were multi-grains bread (M-Grains), wholemeal bread (WM), wholemeal bread with oatmeal (WM-Oat) and white bread (WB). The subjects were studied on seven different occasions (four tests for the tested breads and three repeated tests of the reference food) after an overnight fast. Capillary blood samples were taken immediately before (0 min) and 15, 30, 45, 60, 90 and 120 min after consumption of the test foods. The blood glucose response was obtained by calculating the incremental area under the curve. The GI values were determined according to the standardized methodology. Our results showed that the M-Grains and WM-Oat could be categorized as intermediate GI while the WM and WB breads were high GI foods, respectively. The GI of M-Grains (56±6.2) and WM-Oat (67±6.9) were significantly lower than the reference food (glucose; GI = 100) (P < 0.05). No significant difference in GI value was seen between the reference food and the GI of WM (85±5.9) and WB (82±6.5) (P > 0.05). Among the tested breads, the GI values of M-Grains and WM-Oat were significantly lower (P < 0.05) than those of WM and WB. There was no relationship between the dietary fibre content of the bread with the incremental area under the curve (r = 0.15, P = 0.15) or their GI values (r = 0.17, P = 0.12), indicating that the GI value of the test breads were unaffected by the fibre content of the breads. The result of this study will provide useful nutritional information for dieticians and the public alike who may prefer low-GI over high-GI foods.
    Matched MeSH terms: Blood Glucose/metabolism*; Glucose/metabolism
  7. Rampal S, Yang MH, Sung J, Son HJ, Choi YH, Lee JH, et al.
    Gastroenterology, 2014 Jul;147(1):78-87.e3.
    PMID: 24632359 DOI: 10.1053/j.gastro.2014.03.006
    BACKGROUND & AIMS: Diabetes is a risk factor for colorectal cancer. We studied the association between markers of glucose metabolism and metabolic syndrome and the presence of colorectal adenomas in a large number of asymptomatic men and women attending a health screening program in South Korea. We also investigated whether these associations depend on adenoma location.
    METHODS: In a cross-sectional study, we measured fasting levels of glucose, insulin, hemoglobin A1c, and C-peptide and calculated homeostatic model assessment (HOMA) values (used to quantify insulin resistance) for 19,361 asymptomatic South Korean subjects who underwent colonoscopy examinations from January 2006 to June 2009. Participants completed a standardized self-administered health questionnaire and a validated semiquantitative food frequency questionnaire. Blood samples were collected on the day of the colonoscopy; fasting blood samples were also collected. Robust Poisson regression was used to model the associations of glucose markers with the prevalence of any adenoma.
    RESULTS: Using detailed multivariable-adjusted dose-response models, the prevalence ratios (aPR, 95% confidence interval [CI]) for any adenoma, comparing the 90th with the 10th percentile, were 1.08 (1.00-1.16; P = .04) for fasting glucose, 1.07 (0.99-1.15; P = .10) for insulin, 1.09 (1.02-1.18, P = .02) for HOMA, 1.09 (1.01-1.17; P = .02) for hemoglobin A1c, and 1.14 (1.05-1.24; P = .002) for C-peptide. The corresponding ratios for nonadvanced adenomas were 1.11 (0.99-1.25; P = .08), 1.10 (0.98-1.24; P = .12), 1.15 (1.02-1.29; P = .02), 1.14 (1.01-1.28; P = .03), and 1.20 (1.05-1.37; P = .007), respectively. The corresponding ratios for advanced adenomas were 1.32 (0.94-1.84; P = .11), 1.23 (0.87-1.75; P = .24), 1.30 (0.92-1.85; P = .14), 1.13 (0.79-1.61; P = .50), and 1.67 (1.15-2.42; P = .007), respectively. Metabolic syndrome was associated with the prevalence of any adenoma (aPR, 1.18; 95% CI, 1.13-1.24; P < .001), nonadvanced adenoma (aPR, 1.30; 95% CI, 1.20-1.40; P < .001), and advanced adenoma (aPR, 1.42; 95% CI, 1.14-1.78; P = .002). Associations were similar for adenomas located in the distal versus proximal colon.
    CONCLUSIONS: Increasing levels of glucose, HOMA values, levels of hemoglobin A1c and C-peptide, and metabolic syndrome are significantly associated with the prevalence of adenomas. Adenomas should be added to the list of consequences of altered glucose metabolism.
    Matched MeSH terms: Blood Glucose/metabolism*; Glucose/metabolism*
  8. Noor H, Hammonds P, Sutton R, Ashcroft SJ
    Diabetologia, 1989 Jun;32(6):354-9.
    PMID: 2668082
    In Malaysia, Tinospora crispa extract is taken orally by Type 2 (non-insulin-dependent) diabetic patients to treat hyperglycaemia. We have evaluated the claimed hypoglycaemic property by adding aqueous extract to the drinking water of normal and alloxan-diabetic rats. After one week, fasting blood glucose levels were significantly (p less than 0.01) lower and serum insulin levels were significantly (p less than 0.01) higher in treated diabetic animals (10.4 +/- 1.0 mmol/l and 12.8 +/- 1.1 muU/ml respectively) compared to untreated diabetic controls (17.4 +/- 1.7 mmol/l and 8.0 +/- 0.7 muU/ml respectively). The insulinotropic action of T. crispa was further investigated in vitro using isolated human or rat islets of Langerhans and HIT-T15 cells. In static incubations with rat islets and HIT-T15 B cells, the extract induced a dosage dependent stimulation and potentiation of basal and glucose-stimulated insulin secretion respectively. This insulinotropic effect was also evident in perifused human and rat islets and HIT-T5 B-cells. The observations that (i) in all three models insulin secretory rates rapidly returned to basal levels on removal of the extract and (ii) in rat islets, a second challenge with T. crispa induced an additional, stimulated response, are all consistent with physiological release of insulin by B cells. Moreover, the rate of HIT-T15 glucose utilisation was not affected by incubation with T. crispa, suggesting that the cells were viable throughout. These are the first studies to provide biochemical evidence which substantiates the traditional claims for an oral hypoglycaemic effect of Tinospora crispa, and which also show that the hypoglycaemic effect is associated with increased insulin secretion.
    Matched MeSH terms: Blood Glucose/metabolism; Glucose/metabolism*
  9. Muda NA, Ramlan H, Damanhuri HA
    Neuro Endocrinol. Lett., 2017 Jul;38(3):224-235.
    PMID: 28759191
    OBJECTIVES: Impairment in glucose homeostasis is one of the factors that may alter the feeding drive, hunger and satiety signals, which essential to maintain a sufficient level of energy for daily activities especially among the elderly. Adrenal medulla is one of the important organs that involves in glucose homeostasis through secretion of catecholamines. The catecholamines biosynthesis pathway utilizes various enzymes and protein kinases. The aims of this study are to investigate the effects of age on the biosynthetic pathway of catecholamines in adrenal medulla by determining the level of blood glucose and blood catecholamines, the gene and protein expression of biosynthetic catecholamine enzymes (TH, DBH and PNMT) as well as protein kinase substrates that involved in the phosphorylation of TH in 2DG-induced rats.

    METHODS: Adrenal medulla from male Sprague Dawley rats at the age of 3-months (n=12) and 24-months (n=12) were further divided into two groups: 1) treatment group with 2DG to create glucoprivation condition and 2) the vehicle group which received normal saline as control.

    RESULTS: The results showed that the level of glucose, adrenaline and noradrenaline were increased in response to acute glucoprivation conditions in both young and old rats. No age-related differences were found in the basal gene expression of the enzymes that involved in the catecholamines biosynthesis pathway. Interestingly the expressions of TH and DBH protein as well as the level of TH phosphorylation at Ser40, PKA, PKC and ERK1/2 substrates were higher in basal condition of the aged rats. However, contradicted findings were obtained in glucoprivic condition, which the protein expressions of DBH, pERK1/2 and substrates for pPKC were increased in young rats. Only substrate for pCDK was highly expressed in the old rats in the glucoprivic condition, while pPKC and pERK1/2 were decreased significantly. The results demonstrate that adrenal medulla of young and old rats are responsive to glucose deficit and capable to restore the blood glucose level by increasing the levels of blood catecholamines.

    CONCLUSION: The present findings also suggest that, at least in rats, aging alters the protein expression of the biosynthetic catecholamine enzymes as well as protein kinase substrates that may attenuate the response to glucoprivation.

    Matched MeSH terms: Blood Glucose/metabolism; Glucose/metabolism*
  10. Samsudin MD, Mat Don M
    Bioresour Technol, 2015 Jan;175:417-23.
    PMID: 25459850 DOI: 10.1016/j.biortech.2014.10.116
    Oil palm trunk (OPT) sap was utilized for growth and bioethanol production by Saccharomycescerevisiae with addition of palm oil mill effluent (POME) as nutrients supplier. Maximum yield (YP/S) was attained at 0.464g bioethanol/g glucose presence in the OPT sap-POME-based media. However, OPT sap and POME are heterogeneous in properties and fermentation performance might change if it is repeated. Contribution of parametric uncertainty analysis on bioethanol fermentation performance was then assessed using Monte Carlo simulation (stochastic variable) to determine probability distributions due to fluctuation and variation of kinetic model parameters. Results showed that based on 100,000 samples tested, the yield (YP/S) ranged 0.423-0.501g/g. Sensitivity analysis was also done to evaluate the impact of each kinetic parameter on the fermentation performance. It is found that bioethanol fermentation highly depend on growth of the tested yeast.
    Matched MeSH terms: Glucose/metabolism
  11. Hong YH, Betik AC, McConell GK
    Exp Physiol, 2014 Dec 1;99(12):1569-73.
    PMID: 25192731 DOI: 10.1113/expphysiol.2014.079202
    Nitric oxide is produced within skeletal muscle fibres and has various functions in skeletal muscle. There is evidence that NO may be essential for normal increases in skeletal muscle glucose uptake during contraction/exercise. Although there have been some discrepant results, it has been consistently demonstrated that inhibition of NO synthase (NOS) attenuates the increase in skeletal muscle glucose uptake during contraction in mouse and rat muscle ex vivo, during in situ contraction in rats and during exercise in humans. The NO-mediated increase in skeletal muscle glucose uptake during contraction/exercise is probably due to the modulation of intramuscular signalling that ultimately increases glucose transporter 4 (GLUT4) translocation and is, surprisingly, independent of blood flow. In this review, we discuss the evidence for and against a role of NO in regulating skeletal muscle glucose uptake during contraction/exercise and outline the possible mechanism(s) involved. Emerging findings regarding the role of neuronal NOS mu (nNOSμ) in this process are also discussed.
    Matched MeSH terms: Glucose/metabolism*
  12. Ganjali Dashti M, Abdeshahian P, Wan Yusoff WM, Kalil MS, Abdul Hamid A
    Biomed Res Int, 2014;2014:831783.
    PMID: 25147817 DOI: 10.1155/2014/831783
    The biosynthesis of biomedical products including lipid and gamma-linolenic acid (GLA) by Cunninghamella bainieri 2A1 was studied in repeated batch fermentation. Three key process variables, namely, glucose concentration, ammonium tartrate concentration, and harvesting time, were optimized using response surface methodology. Repeated batch fermentation was carried out by the cultivation of Cunninghamella bainieri 2A1 in nitrogen-limited medium with various nitrogen concentration (1-4 g/L) and glucose concentration (20-40 g/L) at three time intervals (12 h, 24 h, and 48 h). Experimental results showed that the highest lipid concentration of 6.2 g/L and the highest GLA concentration of 0.4 g/L were obtained in optimum conditions, where 20.2 g/L glucose, 2.12 g/L ammonium tartrate, and 48 h harvesting time were utilized. Statistical results showed that the interaction between glucose and ammonium tartrate concentration had highly significant effects on lipid and GLA biosynthesis (P < 0.01). Moreover, harvesting time had a significant interaction effect with glucose and ammonium tartrate concentration on lipid production (P < 0.05).
    Matched MeSH terms: Glucose/metabolism
  13. Harun R, Danquah MK, Thiruvenkadam S
    Biomed Res Int, 2014;2014:435631.
    PMID: 24971327 DOI: 10.1155/2014/435631
    Effective optimization of microalgae-to-bioethanol process systems hinges on an in-depth characterization of key process parameters relevant to the overall bioprocess engineering. One of the such important variables is the biomass particle size distribution and the effects on saccharification levels and bioethanol titres. This study examined the effects of three different microalgal biomass particle size ranges, 35 μm ≤ x ≤ 90 μm, 125 μm ≤ x ≤ 180 μm, and 295 μm ≤ x ≤ 425 μm, on the degree of enzymatic hydrolysis and bioethanol production. Two scenarios were investigated: single enzyme hydrolysis (cellulase) and double enzyme hydrolysis (cellulase and cellobiase). The glucose yield from biomass in the smallest particle size range (35 μm ≤ x ≤ 90 μm) was the highest, 134.73 mg glucose/g algae, while the yield from biomass in the larger particle size range (295 μm ≤ x ≤ 425 μm) was 75.45 mg glucose/g algae. A similar trend was observed for bioethanol yield, with the highest yield of 0.47 g EtOH/g glucose obtained from biomass in the smallest particle size range. The results have shown that the microalgal biomass particle size has a significant effect on enzymatic hydrolysis and bioethanol yield.
    Matched MeSH terms: Glucose/metabolism
  14. Mohammed AA, Mohammad GA, Mohamed A, Mohamed A, Ahmed M
    Chin J Nat Med, 2013 Sep;11(5):488-93.
    PMID: 24359772 DOI: 10.1016/S1875-5364(13)60089-8
    The anticoagulant effect of leech saliva was traditionally employed in the treatment of diabetes mellitus complications such as peripheral vascular complications. This study was carried out to examine the effect of leech saliva extract (LSE) on blood glucose levels in alloxan-induced diabetic rats. First, LSE was collected from leeches which were fed on a phagostimulatory solution. Second, total protein concentration was estimated using the Bradford assay. Third, diabetic rats were injected subcutaneously (sc) with LSE at doses of 500 and 1 000 μg·kg(-1) body weight (bw). Other diabetic rats were injected sc with insulin at doses of 10 and 20 U·kg(-1) bw. Another group was injected simultaneously with LSE (250 μg·kg(-1) bw) and insulin (10 U·kg(-1) bw). Fasting blood glucose (FBG) concentrations were monitored during a study period of eight hours at regular intervals. Findings showed that both doses of LSE resulted in a significant and gradual decrease in FBG starting from 10%-18% downfall after two hours of injection reaching the maximal reduction activity of 58% after eight hours. Remarkably, LSE was sufficient to bring the rats to a near norm-glycemic state. The high dose of insulin induced a severe hypoglycemic condition after 2-4 h of injection. The lower dose was able to decline FBG for 2-6 h in rats which became diabetic again after 8 h. On the other hand, the concurrent injection of low doses of LSE and insulin produced a hypoglycemic effect with all rats showing normal FBG levels. Taken together, these findings indicated that the subcutaneous injection of LSE of the medicinal Malaysian leech was able to provide better glycemic control compared with insulin. Moreover, the synergism between LSE and insulin suggests that LSE could be utilized as an adjuvant medication in order to reduce insulin dosage or to achieve better control of blood glucose.
    Matched MeSH terms: Blood Glucose/metabolism
  15. Mohd Yusof BN, Firouzi S, Mohd Shariff Z, Mustafa N, Mohamed Ismail NA, Kamaruddin NA
    Int J Food Sci Nutr, 2014 Mar;65(2):144-50.
    PMID: 24517860 DOI: 10.3109/09637486.2013.845652
    This review aims to evaluate the effectiveness of low glycemic index (GI) dietary intervention for the treatment of gestational diabetes mellitus (GDM), specifically from the Asian perspective. A systematic review of the literature using multiple databases without time restriction was conducted. Three studies were retrieved based upon a priori inclusion criteria. While there was a trend towards improvement, no significant differences were observed in overall glycemic control and pregnancy outcomes in GDM women. However, a tendency for lower birth weight and birth centile if the intervention began earlier was noted. Low GI diets were well accepted and had identical macro-micronutrient compositions as the control diets. However, due to genetic, environment and especially food pattern discrepancies between Western countries and Asians, these results may not be contributed to Asian context. Clearly, there are limited studies focusing on the effect of low GI dietary intervention in women with GDM, particularly in Asia.
    Matched MeSH terms: Blood Glucose/metabolism*
  16. Lee YY, Tang TK, Ab Karim NA, Alitheen NB, Lai OM
    Food Funct, 2014 Jan;5(1):57-64.
    PMID: 24247642 DOI: 10.1039/c3fo60358j
    Structured lipid medium- and long-chain triacylglycerols (MLCT) are claimed to be able to manage obesity. The present study investigated the body fat influence of enzymatically interesterifed palm-based medium- and long-chain triacylglycerols (P-MLCT) on diet-induced obesity (DIO) C57BL/6J mice compared with commercial MLCT oil (C-MLCT) and a control, which was the non enzymatically modified palm kernel and palm oil blend (PKO-PO blend). It also investigated the low fat and high fat effects of P-MLCT. DIO C57BL/6J mice were fed ad libitum with low fat (7%) and high fat (30%) experimental diets for 8 weeks before being sacrificed to obtain blood serum for analysis. From the results, there is a trend that P-MLCT fed mice were found to have the lowest body weight, body weight gain, total fat pad accumulation (perirenal, retroperitoneal, epididymal and mesenteric), total triglyceride levels and efficiency in controlling blood glucose level, compared with C-MLCT and the PKO-PO blend in both low fat and high fat diets. Nevertheless, the PKO-PO blend and P-MLCT caused significantly (P < 0.05) higher total cholesterol levels compared to C-MLCT. P-MLCT present in low fat and high fat dosage were shown to be able to suppress body fat accumulation. This effect is more prominent with the low fat dosage.
    Matched MeSH terms: Blood Glucose/metabolism
  17. Mohd Yusoff MZ, Hashiguchi Y, Maeda T, Wood TK
    Biochem Biophys Res Commun, 2013 Oct 4;439(4):576-9.
    PMID: 24025676 DOI: 10.1016/j.bbrc.2013.09.016
    Pseudogenes are considered to be nonfunctional genes that lack a physiological role. By screening 3985 Escherichia coli mutants using chemochromic membranes, we found four pseudogenes involved in hydrogen metabolism. Knockouts of pseudogenes ydfW and ypdJ had a defective hydrogen phenotype on glucose and formate, respectively. Also, the knockout of pseudogene yqiG formed hydrogen from formate but not from glucose. For the yqiG mutant, 100% hydrogen recovery was obtained by the complementation of YqiG via a plasmid. The knockout of pseudogene ylcE showed hydrogen deficiency in minimal media which suggested that the role of YlcE is associated with cell growth. Hence, the products of these four pseudogenes play an important physiological role in hydrogen production in E. coli.
    Matched MeSH terms: Glucose/metabolism
  18. Bayat O, Baradaran A, Ariff A, Mohamad R, Rahim RA
    Biotechnol Lett, 2014 Mar;36(3):581-5.
    PMID: 24185903 DOI: 10.1007/s10529-013-1390-4
    Human interferon alpha (IFN-α) was expressed in two strains of Lactococcus lactis by aid of two promoters (P32 and Pnis) giving rise to two recombinant strains: MG:IFN and NZ:IFN, respectively. The expression of IFN was confirmed by ELISA and western blotting. Highest production was achieved using glucose for growth of both recombinant strains with nisin, used for induction of the recombinant strain with Pnis promoter, at 30 ng/ml. The optimum time for MG:IFN was 9 h and for NZ:IFN was 4.5 h. The highest productions by MG:IFN and NZ:IFN were 1.9 and 2.4 μg IFN/l, respectively. Both of the expressed IFNs showed bioactivities of 1.9 × 10(6) IU/mg that were acceptable for further clinical studies.
    Matched MeSH terms: Glucose/metabolism
  19. Mohamed MS, Tan JS, Mohamad R, Mokhtar MN, Ariff AB
    ScientificWorldJournal, 2013;2013:948940.
    PMID: 24109209 DOI: 10.1155/2013/948940
    Mixotrophic metabolism was evaluated as an option to augment the growth and lipid production of marine microalga Tetraselmis sp. FTC 209. In this study, a five-level three-factor central composite design (CCD) was implemented in order to enrich the W-30 algal growth medium. Response surface methodology (RSM) was employed to model the effect of three medium variables, that is, glucose (organic C source), NaNO3 (primary N source), and yeast extract (supplementary N, amino acids, and vitamins) on biomass concentration, X(max), and lipid yield, P(max)/X(max). RSM capability was also weighed against an artificial neural network (ANN) approach for predicting a composition that would result in maximum lipid productivity, Pr(lipid). A quadratic regression from RSM and a Levenberg-Marquardt trained ANN network composed of 10 hidden neurons eventually produced comparable results, albeit ANN formulation was observed to yield higher values of response outputs. Finalized glucose (24.05 g/L), NaNO3 (4.70 g/L), and yeast extract (0.93 g/L) concentration, affected an increase of X(max) to 12.38 g/L and lipid a accumulation of 195.77 mg/g dcw. This contributed to a lipid productivity of 173.11 mg/L per day in the course of two-week cultivation.
    Matched MeSH terms: Glucose/metabolism
  20. Chin KY, Ima-Nirwana S, Mohamed IN, Aminuddin A, Ngah WZ
    Exp. Clin. Endocrinol. Diabetes, 2013 Jul;121(7):407-12.
    PMID: 23765753 DOI: 10.1055/s-0033-1345164
    Testosterone and sex hormone-binding globulin (SHBG) have been shown to be associated with metabolic syndrome (MS) in men. This study aimed at validating these relationships in a group of middle-aged and elderly men and assessing their strength of association to MS. A cross-sectional study of 332 Malaysian men aged 40 years and above was conducted. The blood of subject was collected under fasting condition for determination of testosterone, SHBG, glucose and lipid levels. Their medical history, smoking and alcohol consumption status, waist circumference (WC), body mass index (BMI) and blood pressure (BP) were recorded. All testosterone and SHBG levels were significantly reduced in MS subjects compared to non-MS subjects (p<0.05). Testosterone and SHBG were correlated significantly with most of the MS indicators without adjustments. In multiple regression analysis, the triglyceride level was the only MS indicator that was significantly, inversely and independently associated with all testosterone measurements and SHBG (p<0.05). Waist circumference was significantly and negatively associated with SHBG level (p<0.05) though not independent of BMI. Total testosterone and SHBG were significantly and inversely associated with the presence of MS. Testosterone and SHBG are potential intervention targets for the prevention of MS in men.
    Matched MeSH terms: Blood Glucose/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links