Displaying publications 21 - 40 of 55 in total

Abstract:
Sort:
  1. Karami A, Christianus A, Ishak Z, Syed MA, Courtenay SC
    Ecotoxicol Environ Saf, 2011 Sep;74(6):1558-66.
    PMID: 21636131 DOI: 10.1016/j.ecoenv.2011.05.012
    This study investigated the dose-dependent and time-course effects of intramuscular (i.m.) and intraperitoneal (i.p.) injection of benzo[a]pyrene (BaP) on the biomarkers EROD activity, GST activity, concentrations of BaP metabolites in bile, and visceral fat deposits (Lipid Somatic Index, LSI) in African catfish (Clarias gariepinus). Intraperitoneal injection resulted in 4.5 times higher accumulation of total selected biliary FACs than i.m. injection. Hepatic GST activities were inhibited by BaP via both injection methods. Dose-response relationships between BaP injection and both biliary FAC concentrations and hepatic GST activities were linear in the i.p. injected group but nonlinear in the i.m. injected fish. Hepatic EROD activity and LSI were not significantly affected by BaP exposure by either injection route. We conclude that i.p. is a more effective route of exposure than i.m. for future ecotoxicological studies of PAH exposure in C. gariepinus.
    Matched MeSH terms: Injections, Intraperitoneal
  2. Apryani E, Hidayat MT, Moklas MA, Fakurazi S, Idayu NF
    J Ethnopharmacol, 2010 Jun 16;129(3):357-60.
    PMID: 20371280 DOI: 10.1016/j.jep.2010.03.036
    AIM OF THE STUDY: Mitragyna speciosa Korth from Rubiaceae family is a tropical plant indigenous to Southeast Asia particularly in Thailand, Peninsular of Malaysia and Indonesia. The leaves have been used by natives for their opium-like effect and cocaine-like stimulant ability to combat fatigue and enhance tolerance to hard work. However there is no scientific information about the effect of mitragynine on the cognitive performances. This study is designed to examine the working memory effects of mitragynine which is extracted from Mitragyna speciosa mature leaves.

    MATERIALS AND METHODS: The cognitive effect was studied using object location task and the motor activity in open-field test. Mitragynine 5, 10 and 15 mg/kg and were administered by intraperitoneal (IP) for 28 consecutive days and evaluated on day 28 after the last dose treatment. Scopolamine was used as the control positive drug.

    RESULTS: In this study there is prominent effects on horizontal locomotor activity was observed. Mitragynine significantly reduced locomotor activity in open-field test compared with vehicle. In object location task mitragynine (5, 10 and 15 mg/kg) did not showed any significances discrimination between the object that had changed position than the object that had remain in a constant position.

    CONCLUSION: Our results suggest that chronic administration of mitragynine can altered the cognitive behavioral function in mice.

    Matched MeSH terms: Injections, Intraperitoneal
  3. Cherdchu C, Poopyruchpong N, Adchariyasucha R, Ratanabanangkoon K
    PMID: 199949
    Clinacanthus nutans Burm, a herb reputed in Thailand and Malaysia to be "snakebite antidote" has been tested in vitro and in vivo for antivenin activity. The aqueous extract of C. nutans leaves has been found to have no effect on the inhibition of neuromuscular transmission produced by purified Naja naja siamensis neurotoxin in isolated rat phrenic-nerve diaphragm preparations. The extract of C. nutans, when given orally or intraperitoneally, are ineffective in prolonging the survival time of experimental mice receiving lethal doses of N.n. siamensis crude venom. Oral administrations of the herb extracts pretreated with alpha-amylase or beta-amylase also fail to protect the animal. It is concluded that the extract of C. nutans can not antagonize the action of cobra venom.
    Matched MeSH terms: Injections, Intraperitoneal
  4. Alkhateeb Y, Jarrar QB, Abas F, Rukayadi Y, Tham CL, Hay YK, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640512 DOI: 10.3390/molecules25133069
    2,4,6-trihydroxy-3-geranylacetophenone (tHGA) is a bioactive compound that shows excellent anti-inflammatory properties. However, its pharmacokinetics and metabolism have yet to be evaluated. In this study, a sensitive LC-HRMS method was developed and validated to quantify tHGA in rat plasma. The method showed good linearity (0.5-80 ng/mL). The accuracy and precision were within 10%. Pharmacokinetic investigations were performed on three groups of six rats. The first two groups were given oral administrations of unformulated and liposome-encapsulated tHGA, respectively, while the third group received intraperitoneal administration of liposome-encapsulated tHGA. The maximum concentration (Cmax), the time required to reach Cmax (tmax), elimination half-life (t1/2) and area under curve (AUC0-24) values for intraperitoneal administration were 54.6 ng/mL, 1.5 h, 6.7 h, and 193.9 ng/mL·h, respectively. For the oral administration of unformulated and formulated tHGA, Cmax values were 5.4 and 14.5 ng/mL, tmax values were 0.25 h for both, t1/2 values were 6.9 and 6.6 h, and AUC0-24 values were 17.6 and 40.7 ng/mL·h, respectively. The liposomal formulation improved the relative oral bioavailability of tHGA from 9.1% to 21.0% which was a 2.3-fold increment. Further, a total of 12 metabolites were detected and structurally characterized. The metabolites were mainly products of oxidation and glucuronide conjugation.
    Matched MeSH terms: Injections, Intraperitoneal
  5. Ho K, Yazan LS, Ismail N, Ismail M
    Food Chem Toxicol, 2011 Jan;49(1):25-30.
    PMID: 20807560 DOI: 10.1016/j.fct.2010.08.023
    Vanillin is useful as anti-sickle cell anemia, anti-mutagen and anti-bacteria agent. However, vanillin must be administered at high concentration and cannot be oxidized by the upper gastrointestinal track of patients to be medically effective. In this study, we assessed the toxic effect of vanillin when administered in an un-oxidized form at high concentrations (150 and 300 mg/kg) via oral and intra-peritoneal injection. It was found that 300 mg/kg vanillin injection caused the rats to be unconscious without exerting any toxic effect on blood cells, kidney and liver. Besides, it showed blood protective property. Further analysis with GenomeLab GeXP genetic system on brain tissues showed that the expression of most xenobiotic metabolism, cell progression, tumor suppressor, DNA damage and inflammation genes were maintained at normal level. However, the expression of a few xenobiotic metabolism, cell cycle arrest and apoptosis genes were up-regulated by 5% ethanol injection. Nevertheless, when 5% ethanol was injected with the presence of vanillin, the expression was back to normal level. It is postulated that vanillin might have neuro-protective property. In conclusion, vanillin is not toxic at high concentration in both oral and intra-peritoneal injection and could provide blood and brain protective properties.
    Matched MeSH terms: Injections, Intraperitoneal
  6. Kue CS, Tan KY, Lam ML, Lee HB
    Exp Anim, 2015;64(2):129-38.
    PMID: 25736707 DOI: 10.1538/expanim.14-0059
    The chick embryo chorioallantoic membrane (CAM) is a preclinical model widely used for vascular and anti-vascular effects of therapeutic agents in vivo. In this study, we examine the suitability of CAM as a predictive model for acute toxicology studies of drugs by comparing it to conventional mouse and rat models for 10 FDA-approved anticancer drugs (paclitaxel, carmustine, camptothecin, cyclophosphamide, vincristine, cisplatin, aloin, mitomycin C, actinomycin-D, melphalan). Suitable formulations for intravenous administration were determined before the average of median lethal dose (LD50) and median survival dose (SD(50)) in the CAM were measured and calculated for these drugs. The resultant ideal LD(50) values were correlated to those reported in the literature using Pearson's correlation test for both intravenous and intraperitoneal routes of injection in rodents. Our results showed moderate correlations (r(2)=0.42 - 0.68, P<0.005-0.05) between the ideal LD(50) values obtained using the CAM model with LD(50) values from mice and rats models for both intravenous and intraperitoneal administrations, suggesting that the chick embryo may be a suitable alternative model for acute drug toxicity screening before embarking on full toxicological investigations in rodents in development of anticancer drugs.
    Matched MeSH terms: Injections, Intraperitoneal
  7. Ranneh Y, Akim AM, Hamid HA, Khazaai H, Mokhtarrudin N, Fadel A, et al.
    Arch Immunol Ther Exp (Warsz), 2019 Dec;67(6):385-400.
    PMID: 31278602 DOI: 10.1007/s00005-019-00553-6
    Chronic subclinical systemic inflammation has a key role in stimulating several chronic conditions associated with cardiovascular diseases, cancer, rheumatoid arthritis, diabetes, and neurodegenerative diseases. Hence, developing in vivo models of chronic subclinical systemic inflammation are essential to the study of the pathophysiology and to measure the immunomodulatory agents involved. Male Sprague-Dawley rats were subjected to intraperitoneal, intermittent injection with saline, or lipopolysaccharide (LPS) (0.5, 1, 2 mg/kg) thrice a week for 30 days. Hematological, biochemical, and inflammatory mediators were measured at different timepoints and at the end of the study. The hearts, lungs, kidneys, and livers were harvested for histological evaluation. Significant elevation in peripheral blood leukocyte includes neutrophils, monocytes, and lymphocytes, as well as the neutrophils-to-lymphocyte ratio. The pro-inflammatory mediator levels [C-reactive protein, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and IL-8] along with the biochemical profile (alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transferase, creatine kinase, creatinine, and urea) were increased significantly (P 
    Matched MeSH terms: Injections, Intraperitoneal
  8. Osman AY, Abdullah FF, Kadir AA, Saharee AA
    Microb Pathog, 2016 Nov;100:17-29.
    PMID: 27591112 DOI: 10.1016/j.micpath.2016.08.019
    Brucella melitensis is one of the major zoonotic pathogens with significant economic implications worldwide. The pathogenicity is complex and not always well understood. Lipopolysaccharide (LPS) remains the major virulent factor of B. melitensis and responsible for the mechanism by which the pathogen causes its deleterious effects. In this study, 84 mice of 6-8 weeks old of both sexes were divided equally into 3 groups; namely Brucella melitensis infected group, lipopolysaccharide (LPS) infected group and control group. The former two groups contained 36 mice each with equal gender distribution. The control group consisted of 12 mice only. Animals in B. melitensis infected group, a single inoculum of 0.4 ml containing 10(9) of B. melitensis were intraperitoneally challenged while animals in LPS group, a single dose of 0.4 ml containing LPS extracted from the B. melitensis were intraperitoneally inoculated. Animals in control group received intraperitoneally, a single dose of 0.4 ml phosphate buffered saline (PBS) of pH7. Animals that were infected intraperitoneally with B. melitensis demonstrated significant clinical presentation; gross and histo-pathological evidence than LPS infected group. However, both infected groups showed elevated levels of interleukins (IL-1β and IL6), antibody levels (IgM an IgG) as early as 3 days post-infection with predominance in LPS infected group. In contrast, low levels of sex related hormonal changes in which LPS infected group showed the least concentration were also detected throughout the experimental period. In conclusion, B. melitensis can be transmitted via gastrointestinal, respiratory and reproductive tract. Moreover, LPS stimulated significantly the innate and acquired immune system without significant systemic dysfunction, suggesting potentiality of the protective properties of this component as alternative vaccine for brucellosis infection.
    Matched MeSH terms: Injections, Intraperitoneal
  9. Amal MNA, Ismail A, Saad MZ, Md Yasin IS, Nasruddin NS, Mastor SS, et al.
    Microb Pathog, 2019 Jun;131:47-52.
    PMID: 30940607 DOI: 10.1016/j.micpath.2019.03.034
    This study determines the median lethal dose, and describes the clinico-pathological changes and disease development following Streptococcus agalactiae infection in Javanese medaka model. Javanese medakas were infected with S. agalactiae via intraperitoneal (IP) from 104 to 108 CFU/mL, and immersion (IM) route from 103 to 107 CFU/mL. The LD50-240h and clinico-pathological changes of the fish was determined until 240 h post infection (hpi). Next, the disease development was determined for 96 hpi in the fish following IP and IM infection at 103 CFU/mL and 104 CFU/mL, respectively. The LD50-240h of S. agalactiae in Javanese medaka was lower following IP injection (4.5 × 102 CFU/mL), compared to IM route (3.5 × 103 CFU/mL). The clinical signs included separating from the schooling group, swimming at the surface of water column, lethargy, erratic swimming pattern, corneal opacity and exophthalmia. Histopathological examinations revealed generalized congestion in almost all internal organs, particularly in liver and brain, while the kidney displayed tubular necrosis. Both IP and IM routes showed significant positive correlation (p 
    Matched MeSH terms: Injections, Intraperitoneal
  10. Koriem KM, Abdelhamid AZ, Younes HF
    Toxicol. Mech. Methods, 2013 Feb;23(2):134-43.
    PMID: 22992185 DOI: 10.3109/15376516.2012.730561
    Caffeic acid (CA) (3,4-dihydroxycinnamic acid) is among the major hydroxycinnamic acids. Hydroxycinnamic acid is the major subgroup of phenolic compounds. Methamphetamine (METH) is a potent addictive psychostimulant. Chronic use and acute METH intoxication can cause substantial medical consequences, including spleen, kidney, liver and heart. The objective of the present study was to evaluate the antioxidant activity of CA to protect against oxidative stress and DNA damage to various organs in METH toxicity. Thirty-two male Sprague Dawley (SD) rats were divided into four equal groups: group 1 was injected (i.p) with saline (1 mL/kg) while groups 2,3 and 4 were injected (i.p) with METH (10 mg/kg) twice a day over five days period. Where 100 & 200 mg/kg of CA were injected (i.p) into groups 3 and 4, respectively one day before exposure to METH injections. Tissue antioxidants and DNA content were evaluated in different tissues. METH decreased glutathione (GSH) and glutathione peroxidase (GPx) levels while increased malondialdehyde (MDA), catalase (CAT) and protein carbonyl levels in brain (hypothalamus), liver, and kidney tissues of rats. METH increased hyperdiploidy in these tissues and DNA damage results. Prior treatment of CA to animals exposed to METH restores the above parameters to the normal levels and preserves the DNA content of these tissues. These results were supported by histopathological investigations. In conclusion, METH induced oxidative stress and DNA damage and pretreatment of CA before METH injections prevented tissue oxidative stress and DNA damage in METH-treated animals.
    Matched MeSH terms: Injections, Intraperitoneal
  11. Saleem AM, Taufik Hidayat M, Mat Jais AM, Fakurazi S, Moklas M, Sulaiman MR, et al.
    Eur Rev Med Pharmacol Sci, 2011 Jul;15(7):795-802.
    PMID: 21780549
    Channa (C.) striatus (Malay-Haruan), is a fresh water snakehead fish, consumed as a rejuvenating diet in post-parturition period in local Malay population. The aqueous extract of C. striatus fillet (AECSF) was reported to act through serotonergic receptor system in a previous study. There is no scientific report on neuropharmacological effects of C. striatus. Based on these data, the antidepressant-like effect of C. striatus was evaluated in mice models of depression.
    Matched MeSH terms: Injections, Intraperitoneal
  12. Ming-Tatt L, Khalivulla SI, Akhtar MN, Mohamad AS, Perimal EK, Khalid MH, et al.
    Basic Clin Pharmacol Toxicol, 2012 Mar;110(3):275-82.
    PMID: 21967232 DOI: 10.1111/j.1742-7843.2011.00804.x
    This study investigated the potential antinociceptive efficacy of a novel synthetic curcuminoid analogue, 2,6-bis-(4-hydroxy-3-methoxybenzylidene)cyclohexanone (BHMC), using chemical- and thermal-induced nociception test models in mice. BHMC (0.03, 0.1, 0.3 and 1.0 mg/kg) administered via intraperitoneal route (i.p.) produced significant dose-related inhibition in the acetic acid-induced abdominal constriction test in mice with an ID(50) of 0.15 (0.13-0.18) mg/kg. It was also demonstrated that BHMC produced significant inhibition in both neurogenic (first phase) and inflammatory phases (second phase) of the formalin-induced paw licking test with an ID(50) of 0.35 (0.27-0.46) mg/kg and 0.07 (0.06-0.08) mg/kg, respectively. Similarly, BHMC also exerted significant increase in the response latency period in the hot-plate test. Moreover, the antinociceptive effect of the BHMC in the formalin-induced paw licking test and the hot-plate test was antagonized by pre-treatment with the non-selective opioid receptor antagonist, naloxone. Together, these results indicate that the compound acts both centrally and peripherally. In addition, administration of BHMC exhibited significant inhibition of the neurogenic nociception induced by intraplantar injections of glutamate and capsaicin with ID(50) of 0.66 (0.41-1.07) mg/kg and 0.42 (0.38-0.51) mg/kg, respectively. Finally, it was also shown that BHMC-induced antinociception was devoid of toxic effects and its antinociceptive effect was associated with neither muscle relaxant nor sedative action. In conclusion, BHMC at all doses investigated did not cause any toxic and sedative effects and produced pronounced central and peripheral antinociceptive activities. The central antinociceptive activity of BHMC was possibly mediated through activation of the opioid system as well as inhibition of the glutamatergic system and TRPV1 receptors, while the peripheral antinociceptive activity was perhaps mediated through inhibition of various inflammatory mediators.
    Matched MeSH terms: Injections, Intraperitoneal
  13. Islam MN, Jesmine K, Kong Sn Molh A, Hasnan J
    Leg Med (Tokyo), 2009 Apr;11 Suppl 1:S147-50.
    PMID: 19345131 DOI: 10.1016/j.legalmed.2009.02.035
    A small amount of Methamphetamine (MA) can produce behavioural changes such as euphoria, increased alertness, paranoia, decreased appetite and increased physical activity. In cardiovascular system, it can produce chest pain and hypertension which can result in cardiovascular collapse. In addition, MA causes accelerated heartbeat, elevated blood pressure. It can also cause irreversible damage to blood vessels in the brain. A number of sympathomimetic amines are capable of causing myocardial damage, but the cardio-toxic action of MA has been of particular interest since standardized dosage consistently produces myocardial lesions. As this drug is a choice of many teenagers and young adults, the damage to their health, as well as their future aspects could be greatly affected, therefore more evidence must be sought to convince them the negative root and show them the optimism of recovery and salvation. To clarify the effect of Methamphetamine (MA) on myocardium, 56 male Wister rats aged four weeks were divided equally into MA, Methamphetamine withdrawal (MW), Placebo (P) and Control (C) group were examined following daily intra-peritoneal administration of MA at a dose of 5 mg/kg body weight for 2, 4, 8 and 12 weeks. Normal saline was similarly injected in P group. Light microscopic changes was seen in the myocardium of MA treated group including eosinophilic degeneration, atrophy, hypertrophy, disarray, edema, cellular infiltration, myolysis, granulation tissue, fibrosis and vacuolization. On the other hand, the withdrawal group showed evidence of gradual recovery of those myocardial changes. Optimism is therefore generated about possibility of returning towards normal by withdrawing of this drug by the addicts.
    Matched MeSH terms: Injections, Intraperitoneal
  14. Sosroseno W
    Biomed Pharmacother, 2009 Mar;63(3):221-7.
    PMID: 18534811 DOI: 10.1016/j.biopha.2008.04.004
    The aim of the present study was to test the hypothesis that colchicine may alter Aggregatibacter actinomycetemcomitans-induced immune response and abscess formation in mice. BALB/c mice were either sham-immunized or immunized with heat-killed A. actinomycetemcomitans. Spleen cells were stimulated with heat-killed A. actinomycetemcomitans in the presence or absence of colchicine. Specific IgG subclass antibodies, interferon-gamma (IFN-gamma), interleukin-4 (IL-4) and cell proliferation were determined. The animals were sham-immunized (group I) or immunized with heat-killed A. actinomycetemcomitans (groups II-VII). Colchicine was administered intraperitoneally before (group III), on the same day of (group IV), or after (group V) the primary immunization and on the same day of (group VI) or after (group VII) the secondary immunization. All groups were challenged with viable A. actinomycetemcomitans. The levels of serum-specific IgG subclasses and both IFN-gamma and IL-4 before and after bacterial challenge were assessed. The diameter of skin lesions was assessed. The results showed that colchicine augmented splenic-specific IgG1 and IL-4 as well as cell proliferation but suppressed specific IgG2a and IFN-gamma levels. Enhancement of serum-specific IgG1 and IL-4 levels, suppression of specific IgG2a and IFN-gamma levels as well as DTH response, and delayed healing of the lesions were observed in groups IV and VI, but not in the remaining groups of animals. Therefore, these results suggest that colchicine may induce a T helper 2 (Th2)-like immunity specific to A. actinomycetemcomitans in vitro and that colchicine administered on the same day as the immunization may stimulate a non-protective Th2-like immunity in A. actinomycetemcomitans-induced infections in mice.
    Matched MeSH terms: Injections, Intraperitoneal
  15. Tian Y, Li P, Xiao Z, Zhou J, Xue X, Jiang N, et al.
    Transl Lung Cancer Res, 2021 Feb;10(2):1007-1019.
    PMID: 33718039 DOI: 10.21037/tlcr-21-145
    Background: Chemotherapy is one of the primary treatments for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), however, chemoresistance develops over time and is a bottleneck to effective chemotherapy worldwide. Therefore, the development of new potent therapeutic agents to overcome chemoresistance is of utmost importance. Triptolide is a natural component extracted from Tripterygium Wilfordii, a Chinese plant; our study aimed to evaluate its anti-tumor effects in taxol-resistant human lung adenocarcinoma and investigate its molecular mechanisms of chemoresistance.

    Methods: Triptolide's inhibition of cell viability was detected by sulforhodamine B (SRB) assay. Cell cycle was measured by flow cytometry and cell apoptosis was assessed by flow cytometry and western blot. Expression of β-catenin was analyzed by western blot and immunofluorescence (IF). The anti-tumor effects of triptolide were determined using a subcutaneous in-vivo model. Cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. The expression level of p-p70S6K and p-GSK-3α/β was evaluated by western blot and IHC.

    Results: Triptolide inhibited cell proliferation, induced S-phase cell cycle arrest and apoptosis in taxol-resistant A549 (A549/TaxR) cells. Moreover, intraperitoneal injection of triptolide resulted in a significant delay of tumor growth without obvious systemic toxicity in mice. Additionally, triptolide reversed epithelial-mesenchymal transition (EMT) through repression of the p70S6K/GSK3/β-catenin signaling pathway.

    Conclusions: Our study provides evidence that triptolide can reverse EMT in taxol-resistant lung adenocarcinoma cells and impairs tumor growth by inhibiting the p70S6K/GSK3/β-catenin pathway, indicating that triptolide has potential to be used as a new therapeutic agent for taxol-resistant lung adenocarcinoma.

    Matched MeSH terms: Injections, Intraperitoneal
  16. Abdelaziz DH, Boraii S, Cheema E, Elnaem MH, Omar T, Abdelraouf A, et al.
    Biomed Pharmacother, 2021 Aug;140:111725.
    PMID: 34015580 DOI: 10.1016/j.biopha.2021.111725
    BACKGROUND: Pain after laparoscopic cholecystectomy remains a major challenge. Ondansetron blocks sodium channels and may have local anesthetic properties.

    AIMS: To investigate the effect of intraperitoneal administration of ondansetron for postoperative pain management as an adjuvant to intravenous acetaminophen in patients undergoing laparoscopic cholecystectomy.

    METHODS: Patients scheduled for elective laparoscopic cholecystectomy were randomized into two groups (n = 25 each) to receive either intraperitoneal ondansetron or saline injected in the gall bladder bed at the end of the procedure. The primary outcome was the difference in pain from baseline to 24-h post-operative assessed by comparing the area under the curve of visual analog score between the two groups.

    RESULTS: The derived area under response curve of visual analog scores in the ondansetron group (735.8 ± 418.3) was 33.97% lower than (p = 0.005) that calculated for the control group (1114.4 ± 423.9). The need for rescue analgesia was significantly lower in the ondansetron (16%) versus in the control group (54.17%) (p = 0.005), indicating better pain control. The correlation between the time for unassisted mobilization and the area under response curve of visual analog scores signified the positive analgesic influence of ondansetron (rs =0.315, p = 0.028). The frequency of nausea and vomiting was significantly lower in patients who received ondansetron than that reported in the control group (p = 0.023 (8 h), and 0.016 (24 h) respectively).

    CONCLUSIONS: The added positive impact of ondansetron on postoperative pain control alongside its anti-emetic effect made it a unique novel option for patients undergoing laparoscopic cholecystectomy.

    Matched MeSH terms: Injections, Intraperitoneal
  17. Sosroseno W, Herminajeng E
    J Med Microbiol, 2002 Jul;51(7):581-8.
    PMID: 12132775
    The aim of this study was to determine the role of macrophages in the Actinobacillus actinomycetemcomitans-induced murine immune response. BALB/c mice were given carrageenan solution by intraperitoneal injection before immunisation with heat-killed A. actinomycetemcomitans. Mice immunised with antigens and phosphate-buffered saline served as positive and negative controls, respectively. One week after the last immunisation, the delayed-type hypersensitivity (DTH) response was assessed by measurement of footpad swelling. Serum IgG and IgM anti-A. actinomycetemcomitans antibody levels and culture supernate levels of interferon (IFN)-gamma were determined by ELISA. The diameter of abscess formation was determined every 5 days. Sham-immunised spleen cells were transferred to carrageenan-untreated recipients (groups A and B) and to carrageenan-treated recipients (group D). Antigen-immunised spleen cells were transferred to carrageenan-untreated (group C) and carrageenan-treated (group E) recipients. The carrageenan-treated recipients in groups F and G received macrophages from antigen- and sham-immunised mice respectively. All mice except those in group A were immunised with antigen 24 h after cell transfer. After 1 week, a partial suppression of DTH response, reduced levels of IFN-gamma, serum IgG and IgM anti-A. actinomycetemcomitans antibodies and delayed healing were seen in carrageenan-treated mice when compared with the positive control. The immune response to A. actinomycetemcomitans in groups A, B and D was lower than that in groups C and E. Healing of the lesion in the former groups was also delayed when compared with the latter groups. The immune response and the healing of the lesion could be partially restored in carrageenan-treated mice that received antigen-pulsed macrophages (group F) but not in those that received naive macrophages (group G). These results suggest that macrophages play a partial role in the induction of the murine immune response to A. actinomycetemcomitans.
    Matched MeSH terms: Injections, Intraperitoneal
  18. Ping CP, Tengku Mohamad TAS, Akhtar MN, Perimal EK, Akira A, Israf Ali DA, et al.
    Molecules, 2018 Sep 03;23(9).
    PMID: 30177603 DOI: 10.3390/molecules23092237
    Pain is one of the most common cause for hospital visits. It plays an important role in inflammation and serves as a warning sign to avoid further injury. Analgesics are used to manage pain and provide comfort to patients. However, prolonged usage of pain treatments like opioids and NSAIDs are accompanied with undesirable side effects. Therefore, research to identify novel compounds that produce analgesia with lesser side effects are necessary. The present study investigated the antinociceptive potentials of a natural compound, cardamonin, isolated from Boesenbergia rotunda (L) Mansf. using chemical and thermal models of nociception. Our findings showed that intraperitoneal and oral administration of cardamonin (0.3, 1, 3, and 10 mg/kg) produced significant and dose-dependent inhibition of pain in abdominal writhing responses induced by acetic acid. The present study also demonstrated that cardamonin produced significant analgesia in formalin-, capsaicin-, and glutamate-induced paw licking tests. In the thermal-induced nociception model, cardamonin exhibited significant increase in response latency time of animals subjected to hot-plate thermal stimuli. The rota-rod assessment confirmed that the antinociceptive activities elicited by cardamonin was not related to muscle relaxant or sedative effects of the compound. In conclusion, the present findings showed that cardamonin exerted significant peripheral and central antinociception through chemical- and thermal-induced nociception in mice through the involvement of TRPV₁, glutamate, and opioid receptors.
    Matched MeSH terms: Injections, Intraperitoneal
  19. Alomari G, Al-Trad B, Hamdan S, Aljabali A, Al-Zoubi M, Bataineh N, et al.
    Drug Deliv Transl Res, 2020 Feb;10(1):216-226.
    PMID: 31637677 DOI: 10.1007/s13346-019-00675-6
    Several recent studies have reported that gold nanoparticles (AuNPs) attenuate hyperglycemia in diabetic animal models without any observed side effects. The present study was intended to provide insight into the effects of 50-nm AuNPs on diabetic kidney disease. Adult male rats were divided into three groups (n = 7/group): control (non-diabetic, ND), diabetic (D), and diabetic treated intraperitoneally with 50-nm AuNPs (AuNPs + D; 2.5 mg/kg/day) for 7 weeks. Diabetes was induced by a single-dose injection of 55 mg/kg streptozotocin. The result showed that AuNP treatment prevented diabetes-associated increases in the blood glucose level. Reduction in 24-h urinary albumin excretion rate, glomerular basement membrane thickness, foot process width, and renal oxidative stress markers was also demonstrated in the AuNP-treated group. In addition, the results showed downregulation effect of AuNPs in renal mRNA or protein expression of transforming growth factor β1 (TGF-β1), fibronectin, collagen IV, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor-A (VEGF-A). Moreover, the protein expression of nephrin and podocin, podocyte markers, in glomeruli was increased in the AuNPs + D group compared with the D group. These results provide evidence that 50-nm AuNPs can ameliorate renal damage in experimental models of diabetic nephropathy through improving the renal function and downregulating extracellular matrix protein accumulation, along with inhibiting renal oxidative stress and amelioration of podocyte injury.
    Matched MeSH terms: Injections, Intraperitoneal
  20. Ismail NI, Ming-Tatt L, Lajis N, Akhtar MN, Akira A, Perimal EK, et al.
    Molecules, 2016 Aug 22;21(8).
    PMID: 27556438 DOI: 10.3390/molecules21081077
    The antinociceptive effects produced by intraperitoneal administration of a novel synthetic chalcone, 3-(2,3-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMFP), were investigated in several mouse models of induced nociception. The administration of DMFP (0.1, 0.5, 1.0 and 5.0 mg/kg) produced significant attenuation on the acetic acid-induced abdominal-writhing test. It also produced a significant increase in response latency time in the hot-plate test and a marked reduction in time spent licking the injected paw in both phases of the formalin-induced paw-licking test. In addition, it was also demonstrated that DMFP exhibited significant inhibition of the neurogenic nociceptive response induced by intraplantar injections of capsaicin and glutamate. Moreover, the antinociceptive effect of DMFP in the acetic acid-induced abdominal-writhing test and the hot-plate test was not antagonized by pretreatment with a non-selective opioid receptor antagonist, naloxone. Finally, DMFP did not show any toxic effects and/or mortality in a study of acute toxicity and did not interfere with motor coordination during the Rota-rod test. Our present results show that DMFP exhibits both peripheral and central antinociceptive effects. It was suggested that its peripheral antinociceptive activity is associated with attenuated production and/or release of NO and various pro-inflammatory mediators, while central antinociceptive activity seems to be unrelated to the opioidergic system, but could involve, at least in part, an interaction with the inhibition of capsaicin-sensitive fibers and the glutamatergic system.
    Matched MeSH terms: Injections, Intraperitoneal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links