Displaying publications 21 - 40 of 69 in total

Abstract:
Sort:
  1. Ibrahim Ahmed Alhothily, Nazri Che Dom, Siti Aekbal Salleh, Anila Ali
    MyJurnal
    Introduction: Aedes albopictus is known for its aggressiveness towards human and recently expanded to more coun- tries outside the native regions. Thus, the demographic parameters of Aedes albopictus are important to determine the characteristics of this species mosquitoes in terms of the reproduction rates and dispersal distance. Materials and Methods: This study, was performed using a Shah Alam strain of Aedes albopictus originally collected in twenty district areas of the central zone of Shah Alam. This research applies field work-study with a cross-sectional design to investigate the demographic parameters of Aedes albopictus. The demographic evaluation of Aedes albopictus was conducted under the control environment in insectarium. Results: Investigation on the demographic parameters of Aedes albopictus clearly showed that there is a significance different observed in the total number of mosquito eggs produced in both high and low incidence rate IR areas (p=0.03). In contrast, other parameters showed insignificant value between high and low IR areas. Conclusion: The key to control the mosquito vectors population is by tracking the vector’s life cycle including its survival. Therefore, the outcome of this study may provide as a baseline to esti- mate the dengue outbreak in the current episystem.
    Matched MeSH terms: Life Cycle Stages
  2. Kunathasan Chelliah M, Šlapeta J
    Vet Parasitol Reg Stud Reports, 2019 04;16:100272.
    PMID: 31027591 DOI: 10.1016/j.vprsr.2019.100272
    Malaysia is considered a hyperendemic area for canine heartworm (Dirofilaria immitis) due to its favorable climate for the completion of the parasite life cycle. This study provides an updated prevalence data on D. immitis in owned dogs from Kuala Lumpur, Malaysia and compares the trends of D. immitis in Malaysia. In the period between December 2017 and June 2018, 3.85% (5/130) dog blood samples tested positive for the presence of D. immitis antigen. A majority of the tested dogs (122/130) were not on rigorous heartworm prevention. After collating and analyzing information from 10 historical studies (1970-2017), we identified a significant decline in prevalence of D. immitis antigen in Malaysia, after the year 2000. Historically, the prevalence of D. immits antigen in owned dogs was significantly lower than the prevalence seen in stray dogs in Malaysia. This study demonstrates that D. immitis remains active in Kuala Lumpur, implying that accurate compliance of heartworm prevention is essential in Malaysia.
    Matched MeSH terms: Life Cycle Stages
  3. Devadas VV, Khoo KS, Chia WY, Chew KW, Munawaroh HSH, Lam MK, et al.
    Bioresour Technol, 2021 Apr;325:124702.
    PMID: 33487515 DOI: 10.1016/j.biortech.2021.124702
    The accumulation of conventional petroleum-based polymers has increased exponentially over the years. Therefore, algae-based biopolymer has gained interest among researchers as one of the alternative approaches in achieving a sustainable circular economy around the world. The benefits of microalgae biopolymer over other feedstock is its autotrophic complex to reduce the greenhouse gases emission, rapid growing ability with flexibility in diverse environments and its ability to compost that gives greenhouse gas credits. In contrast, this review provides a comprehensive understanding of algae-based biopolymer in the evaluation of microalgae strains, bioplastic characterization and bioplastic blending technologies. The future prospects and challenges on the algae circular bioeconomy which includes the challenges faced in circular economy, issues regard to the scale-up and operating cost of microalgae cultivation and the life cycle assessment on algal-based biopolymer were highlighted. The aim of this review is to provide insights of algae-based biopolymer towards a sustainable circular bioeconomy.
    Matched MeSH terms: Life Cycle Stages
  4. Hamid SA, Rawi CS, Ahmad AH
    Trop Life Sci Res, 2016 Feb;27(1):43-62.
    PMID: 27019681 MyJurnal
    The life history and the influence of environmental parameters on Thalerosphyrus were investigated in two first-order rivers-the Batu Hampar River and the Teroi River of Gunung Jerai, Kedah-in northern peninsular Malaysia. Based on nymphal body length, Thalerosphyrus was found to be trivoltine in both rivers, regardless of the altitudinal difference, but its population abundance was four times higher in the Teroi River, presumably related to its better survival in the lower water temperature. At least nine instars of Thalerosphyrus were detected in the field-collected nymphs. Its life cycle was completed within 2.5-3.0 months, with overlapping cohorts and continual emergence of up to 3 months. The main driving factors of the high abundance of Thalerosphyrus were the water temperature and habitat quality.
    Matched MeSH terms: Life Cycle Stages
  5. Basari N, Mustafa NS, Yusrihan NEN, Yean CW, Ibrahim Z
    Trop Life Sci Res, 2019 Jan;30(1):23-31.
    PMID: 30847031 MyJurnal DOI: 10.21315/tlsr2019.30.1.2
    Ficus plants are commonly planted as ornamentals along roadsides in Malaysia. In 2010, Ficus plants in Kuala Terengganu were found to be attacked by a moth, identified as Trilocha varians. The larvae of this moth fed on Ficus leaves causing up to 100% defoliation. This study was conducted to determine the life cycle of T. varians under two different environmental temperatures and to control this pest using two different insecticides. Our findings showed that there were significant differences in the time taken for eggs to hatch and larval and pupation period between low and high environmental temperatures. Results also showed that fipronil had lower LT50 and LT95 than malathion. This study provides new information on the life history of T. varians under two different conditions and the efficiency in controlling T. varians larvae using insecticides. The results of this study are important for future management in controlling T. varians population especially in Kuala Terengganu, Malaysia.
    Matched MeSH terms: Life Cycle Stages
  6. Lin S, Ng SF, Ong WJ
    Environ Pollut, 2021 Nov 01;288:117677.
    PMID: 34273765 DOI: 10.1016/j.envpol.2021.117677
    This study aimed to analyze the environmental impacts of the oxidative desulfurization (ODS) process catalyzed by metal-free reduced graphene oxide (rGO) through life cycle assessment (LCA). The environmental impacts study containing the rGO production process, the ODS process, the comparison of different oxidants and solvents was developed. This study was performed by using ReCiPe 2016 V1.03 Hierarchist midpoint as well as endpoint approach and SimaPro software. For the production of 1 kg rGO, the results showed that hydrochloric acid (washing), sulfuric acid (mixing), hydrazine (reduction) and electricity were four main contributors in this process, and this process showed a significant impact on human health 14.21 Pt followed by ecosystem 0.845 Pt and resources 0.164 Pt. For the production of 1 kg desulfurized oil (400 ppm), main environmental impacts were terrestrial ecotoxicity (43.256 kg 1,4-DCB), global warming (41.058 kg CO2), human non-carcinogenic toxicity (19.570 kg 1,4-DCB) and fossil resource scarcity (13.178 kg oil), and the main contributors were electricity, diesel oil and acetonitrile. The whole ODS process also showed a greatest effect on human health. For two common oxidants hydrogen peroxide and oxygen used in ODS, hydrogen peroxide showed a greater impact than oxygen. On the other hand, for three common solvents employed in ODS, N-methyl-2-pyrrolidone had a more serious impact on human health followed by acetonitrile and N,N-dimethylformamide. As such, LCA results demonstrated the detailed environmental impacts originated from the catalytic ODS, hence elucidating systematic guidance for its future development toward practicality.
    Matched MeSH terms: Life Cycle Stages
  7. Mohd Dzaki, Mohd Amir, Sanuri, Ishak
    MyJurnal
    Magnetic actuator driven switchgear is a new medium voltage switchgear technology. In this switchgear, the conventional spring mechanism which is used to operate the circuit breaker is replaced with a magnetic actuator mechanism. The suitability of this technology in the Malaysian utility network specifically in highly loaded areas with frequent switching was assessed via a field evaluation. Preliminary results indicated that magnetic actuator driven switchgear perform commendably on the safety aspect, on-site performance monitoring and online diagnostic test results. However, there are several concerns that need to be addressed such as the ease of installation, substation system requirements, high life cycle cost and reliability of components, before this technology can be used widely.
    Matched MeSH terms: Life Cycle Stages
  8. Balasbaneh AT, Yeoh D, Juki MI, Ibrahim MHW, Abidin ARZ
    PMID: 33712956 DOI: 10.1007/s11356-021-13190-4
    This research aims to assess the sustainability of the most common earth-retaining walls (Gravity Walls and Cantilever Walls) in terms of environmental impacts, economic issues, and their combination. Gravity walls observed in this study consist of Gabion Wall, Crib Wall, and Rubble Masonry Wall, while Cantilever Walls include Reinforced Concrete Wall. Six different criteria were taken into account, including global warming potential, fossil depletion potential, eutrophication potential, acidification potential, human toxicity potential, and cost. To achieve the aim of this study, life cycle assessments, life cycle costs, and multi-criteria decision-making methods were implemented. The results showed that the most environmental-friendly option among all alternatives was the Gabion Wall, followed by the Rubble Masonry Wall. However, in terms of economic aspects, the Cantilever Concrete Wall was the best option, costing about 17% less than the Gabion Wall. On the other hand, the results of multi-criteria decision-making showed that the Gabion Wall was the most sustainable choice. This study addressed the research gap by carrying out a sustainability assessment of different retaining walls while considering cost and environmental impacts at the same time.
    Matched MeSH terms: Life Cycle Stages
  9. Leong WH, Lim JW, Rawindran H, Liew CS, Lam MK, Ho YC, et al.
    Chemosphere, 2023 Nov;341:139953.
    PMID: 37634592 DOI: 10.1016/j.chemosphere.2023.139953
    Life cycle assessments of microalgal cultivation systems are often conducted to evaluate the sustainability and feasibility factors of the entire production chain. Unlike widely reported conventional microalgal cultivation systems, the present work adopted a microalgal-bacterial cultivation approach which was upscaled into a pilot-scale continuous photobioreactor for microalgal biomass production into biodiesel from wastewater resources. A multiple cradle-to-cradle system ranging from microalgal biomass-to-lipid-to-biodiesel was evaluated to provide insights into the energy demand of each processes making up the microalgae-to-biodiesel value chain system. Energy feasibility studies revealed positive NER values (4.95-8.38) for producing microalgal biomass but deficit values for microalgal-to-biodiesel (0.14-0.23), stemming from the high energy input requirements in the downstream processes for converting biomass into lipid and biodiesel accounting to 88-90% of the cumulative energy demand. Although the energy balance for microalgae-to-biodiesel is in the deficits, it is comparable with other reported biodiesel production case studies (0.12-0.40). Nevertheless, the approach to using microalgal-bacterial cultivation system has improved the overall energy efficiency especially in the upstream processes compared to conventional microalgal cultivation systems. Energy life cycle assessments with other microalgal based biofuel systems also proposed effective measures in increasing the energy feasibility either by utilizing the residual biomass and less energy demanding downstream extraction processes from microalgal biomass. The microalgal-bacterial cultivation system is anticipated to offer both environmental and economic prospects for upscaling by effectively exploiting the low-cost nutrients from wastewaters via bioconversion into valuable microalgal biomass and biodiesel.
    Matched MeSH terms: Life Cycle Stages
  10. He Y, Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Gupta VK, Peng W, Lam SS, et al.
    Environ Pollut, 2024 Feb 01;342:123081.
    PMID: 38072018 DOI: 10.1016/j.envpol.2023.123081
    E-waste, encompassing discarded materials from outdated electronic equipment, often ends up intermixed with municipal solid waste, leading to improper disposal through burial and incineration. This improper handling releases hazardous substances into water, soil, and air, posing significant risks to ecosystems and human health, ultimately entering the food chain and water supply. Formal e-waste recycling, guided by circular economy models and zero-discharge principles, offers potential solutions to this critical challenge. However, implementing a circular economy for e-waste management due to chemical and energy consumption may cause environmental impacts. Consequently, advanced sustainability assessment tools, such as Life Cycle Assessment (LCA), have been applied to investigate e-waste management strategies. While LCA is a standardized methodology, researchers have employed various routes for environmental assessment of different e-waste management methods. However, to the authors' knowledge, there lacks a comprehensive study focusing on LCA studies to discern the opportunities and limitations of this method in formal e-waste management strategies. Hence, this review aims to survey the existing literature on the LCA of e-waste management under a circular economy, shedding light on the current state of research, identifying research gaps, and proposing future research directions. It first explains various methods of managing e-waste in the circular economy. This review then evaluates and scrutinizes the LCA approach in implementing the circular bioeconomy for e-waste management. Finally, it proposes frameworks and procedures to enhance the applicability of the LCA method to future e-waste management research. The literature on the LCA of e-waste management reveals a wide variation in implementing LCA in formal e-waste management, resulting in diverse results and findings in this field. This paper underscores that LCA can pinpoint the environmental hotspots for various pathways of formal e-waste recycling, particularly focusing on metals. It can help address these concerns and achieve greater sustainability in e-waste recycling, especially in pyrometallurgical and hydrometallurgical pathways. The recovery of high-value metals is more environmentally justified compared to other metals. However, biometallurgical pathways remain limited in terms of environmental studies. Despite the potential for recycling e-waste into plastic or glass, there is a dearth of robust background in LCA studies within this sector. This review concludes that LCA can offer valuable insights for decision-making and policy processes on e-waste management, promoting environmentally sound e-waste recycling practices. However, the accuracy of LCA results in e-waste recycling, owing to data requirements, subjectivity, impact category weighting, and other factors, remains debatable, emphasizing the need for more uncertainty analysis in this field.
    Matched MeSH terms: Life Cycle Stages
  11. Ismail N, Ohtsuka S, Maran BA, Tasumi S, Zaleha K, Yamashita H
    Parasite, 2013;20:42.
    PMID: 24165196 DOI: 10.1051/parasite/2013041
    The complete life cycle of a pennellid copepod Peniculus minuticaudae Shiino, 1956 is proposed based on the discovery of all post-embryonic stages together with the post-metamorphic adult females infecting the fins of threadsail filefish Stephanolepis cirrhifer (Monacanthidae) cultured in a fish farm at Ehime Prefecture, Japan. The hatching stage was the infective copepodid. The life cycle of P. minuticaudae consists of six stages separated by moults: the copepodid, four chalimi and adult. In this study, the adult males were observed frequently in precopulatory amplexus with various stages of females however, copulation occurs only between adults. Fertilized pre-metamorphic adult females carrying spermatophores may detach from the host and settle again before undergoing massive differential growth into the post-metamorphic adult female. Comparison of the life cycle of P. minuticaudae has been made with three known pennellids: Lernaeocera branchialis (Linnaeus, 1767), Cardiodectes medusaeus (Wilson, 1908) and Lernaeenicus sprattae (Sowerby, 1806). Among the compared species, P. minuticaudae is the first ectoparasitic pennellid to be discovered to complete its life cycle on a single host without any change in infection site preferences between infective copepodid and fertilized pre-metamorphic female.
    Matched MeSH terms: Life Cycle Stages*
  12. How YF, Lee CY
    J Med Entomol, 2010 May;47(3):305-12.
    PMID: 20496576
    This study examined the effects of different life stages (first, second, third, fourth, and five instars; adult females and adult males) and feeding regimes (starved and blood fed) on the active movement activity of the tropical bed bug, Cimex hemipterus (F.), under mixed-stage conditions. We used an extended arena made from Tygon tube coils and observed the movement frequency and movement distance at selected time intervals up to 120 h. The fifth instars and adult males and females showed significantly (P < 0.01) greater movement frequency compared with the other stages. The first and second instars showed limited movement (< 8 m) over the experimental period. Starved bed bugs showed greater movement frequency compared with blood-fed bed bugs, with the exception of adult females. Blood-fed adult females exhibited significantly (P < 0.01) greater movement frequency and distance compared with starved females. Blood-fed females moved up to 42.3 m over 120 h. Regression analysis between movement distance of the fifth instars and adults and the time intervals revealed a positive relationship (r2 = 0.6583; P < 0.01), suggesting that delays in bed bug control efforts will increase the risk of the greater infestation. During bed bug inspection, the presence of only late instars and adults in premises would indicate a new infestation, whereas an established infestation likely would consist of mixed stages.
    Matched MeSH terms: Life Cycle Stages/physiology
  13. Azidah AA, Sofian-Azirun M
    Bull. Entomol. Res., 2006 Dec;96(6):613-8.
    PMID: 17201979
    The incubation period of Spodoptera exigua (Hübner) was not influenced by the host plant, whereas larval development time and pupal period were affected. Larval development time was longest on shallot and lady's finger, followed by cabbage and long bean. Larvae did not develop beyond the first instar when fed on chilli. The pupal period was longer on lady's finger than on cabbage, shallot and long bean. Overall, adult longevity was not influenced by the host plant but there was a difference between female and male longevity among the host plants. Survival of S. exigua was affected by the host plant at the larval stage. The number of larval instars varied between 5 and 8 within and between the studied host plants. Long bean was found to be the most suitable host plant and provide the best food quality for S. exigua compared to the other host plants, as it allowed faster development, fewer larval instars and a higher survival rate.
    Matched MeSH terms: Life Cycle Stages/physiology*
  14. Yapp DT, Yap SY
    J Ethnopharmacol, 2003 Mar;85(1):145-50.
    PMID: 12576213
    Malaria remains a global problem in the light of chloroquine-resistant strains of Plasmodium falciparum. New compounds are needed for the development of novel antimalarial drugs. Seed, leaf, and fruit skin extracts of Lansium domesticum, a common fruit tree in South-East Asia, are used by indigenous tribes in Sabah, Malaysia for treating malaria. The skin and aqueous leaf extracts of the tree were found to reduce parasite populations of the drug sensitive strain (3D7) and the chloroquine-resistant strain (T9) of P. falciparum equally well. The skin extracts were also found to interrupt the lifecycle of the parasite. The data reported here indicate that extracts of L. domesticum are a potential source for compounds with activity towards chloroquine-resistant strains of P. falciparum.
    Matched MeSH terms: Life Cycle Stages/drug effects
  15. Tsubouchi Y
    Tonan Ajia Kenkyu, 1993 Jun;31(1):3-17.
    PMID: 12157851
    The author describes changes in the size and characteristics of multiple-household compounds in Kelantan, Malaysia, during the period 1971-1991. It is found that "in Malay villages, multihouseholdcompounds were in earlier times...based on a bilateral residence rule in which one or more children, either male or female, would stay in the compound of their parents....A recent trend has been for more females to remain in the parental compound than males, reflecting the orientation toward independence among the males." (SUMMARY IN ENG)
    Matched MeSH terms: Life Cycle Stages*
  16. Lawson JM, Foster SJ, Lim AC, Chong VC, Vincent AC
    J Fish Biol, 2015 Jan;86(1):1-15.
    PMID: 25307290 DOI: 10.1111/jfb.12527
    Life-history variables for three incidentally captured species of seahorse (Kellogg's seahorse Hippocampus kelloggi, the hedgehog seahorse Hippocampus spinosissimus and the three-spot seahorse Hippocampus trimaculatus) were established using specimens obtained from 33 fisheries landing sites in Peninsular Malaysia. When samples were pooled by species across the peninsula, sex ratios were not significantly different from unity, and height and mass relationships were significant for all species. For two of these species, height at physical maturity (HM ) was smaller than the height at which reproductive activity (HR ) commenced: H. spinosissimus (HM = 99·6 mm, HR = 123·2 mm) and H. trimaculatus (HM = 90·5 mm, HR = 121·8 mm). For H. kelloggi, HM could not be estimated as all individuals were physically mature, while HR = 167·4 mm. It appears that all three Hippocampus spp. were, on average, caught before reproducing; height at 50% capture (HC ) was ≥HM but ≤HR . The results from this study probe the effectiveness of assessment techniques for data-poor fisheries that rely heavily on estimates of length at maturity, especially if maturity is poorly defined. Findings also question the sustainability of H. trimaculatus catches in the south-west region of Peninsular Malaysia, where landed specimens had a notably smaller mean height (86·2 mm) and markedly skewed sex ratio (6% males) compared with samples from the south-east and north-west of the peninsula.
    Matched MeSH terms: Life Cycle Stages
  17. Ithoi I, Ahmad AF, Mak JW, Nissapatorn V, Lau YL, Mahmud R
    PMID: 22299400
    Seven stains were studied to determine the best color and contrast for staining the developmental stages of free living pathogenic Acanthamoeba and Naegleria species. The acid-fast bacilli stain (AFB) produced a blue color without contrast; trichrome-eosin and modified Field's showed various color contrasts; Giemsa, iron-hematoxylin, modified AFB and Gram produced only one color which distinguished the nucleus, nucleolus, cytoplasm, food- and water-vacuoles. The motile organs (acanthopodia, pseudopodia, lobopodia and flagella) were also clearly differentiated but produced a similar color as the cytoplasm. These motile organelles were first induced by incubating at 37 degrees C for at least 15 minutes and then fixing with methanol in order to preserve the protruding morphology prior to staining. The trichrome-eosin and iron-hematoxylin stains showed good color contrast for detecting all three stages, the trophozoite, cyst and flagellate; Giemsa and Gram stained the trophozoite and flagellate stages; the modified Field's and modified AFB stains stained only the trophozoite stage. Depending on the purpose, all these stains (except the AFB stain) can be used to identify the developmental stages of Acanthamoeba and Naegleria for clinical, epidemiological or public health use.
    Matched MeSH terms: Life Cycle Stages
  18. Poinar GO, Jackson TA, Bell NL, Wahid MB
    Syst Parasitol, 2002 Jul;52(3):219-25.
    PMID: 12075153
    A new nematode, Elaeolenchus parthenonema n. g., n. sp., is described from the palm-pollinating weevil Elaeidobius kamerunicus Faust. The new genus is placed in the Anandranematidae n. fam., which, together with the genus Anandranema Poinar et al., 1993, is characterised by nematodes having only a single autotokous generation in the insect host. This is the first report of a member of this superfamily reproducing only parthenogenetically. The development of E. parthenonema and its effect on the weevil host is discussed, along with a phylogenetic synopsis of the families of the Sphaerularioidea Lubbock 1861. The Beddingiidae n. fam. is proposed for Beddingia Blinova & Korenchenko, 1986, comprising the original Deladenus parasites of Hymenoptera that possess both free-living and parasitic amphimictic generations in their life-cycles. This family is considered to have the most primitive type of development in the superfamily.
    Matched MeSH terms: Life Cycle Stages
  19. Rashid SS, Liu YQ
    Sci Total Environ, 2021 Feb 20;756:143849.
    PMID: 33248794 DOI: 10.1016/j.scitotenv.2020.143849
    The occurrence of various micropollutants such as pharmaceuticals personal care products, endocrine disrupting chemicals (PPCPs/EDCs) and metals in municipal wastewater, and their poor removal efficiencies can lead to toxicity impact on humans, and freshwater and terrestrial ecosystems. Life cycle assessment is an efficient and effective tool to evaluate the environmental impact of wastewater treatment plants, but guidelines for toxicity assessment are lacking due to the complexity. This study aims to evaluate both life cycle inventory by including metals and PEC, and life cycle toxicity assessment (LCIA) methods namely CML-IA, Recipe, USEtox, EDIP 2003 and IMPACT 2002+ in midpoint category with a large centralised wastewater treatment plant in Malaysia as a case study. The removal efficiencies of metals and PPCPs/EDCs in the wastewater ranged from 9% to 99% and no clear patterns were found about occurrence and removal efficiencies of metals and PPCPs/EDCs in developing and developed countries. The inclusion of metals and PPCPs/EDCs in effluent resulted in 76% increase in freshwater ecotoxicity potential (FEP) and 88% increase in terrestrial ecotoxicity potential (TEP) while only 4% increase in human toxicity potential (HTP). The results indicate the importance of including direct emissions such as metals and PPCPs/EDCs even in low-strength municipal wastewater for environmental toxicity assessment. The comparison of five LCIA methods suggests that HTP assessment is more challenging due to inconsistency between five LCIA methods while CML-IA, Recipe, and IMPACT 2002+ achieved consistent human toxicity and ecotoxicity assessment results in the WWTP. The results highlight the importance of sampling and inclusion of metals and PPCPs/EDCs data especially prioritised micropollutants for life cycle toxicity assessment and recommends LCIA methods for ecotoxicity assessment of WWTPs in the current scientific development situation on toxicity studies, which can provide guidance to researchers for life cycle toxicity assessment of wastewater treatment.
    Matched MeSH terms: Life Cycle Stages
  20. Shodipo MO, Sikkel PC, Smit NJ, Hadfield KA
    Int J Parasitol Parasites Wildl, 2021 Apr;14:355-367.
    PMID: 33898237 DOI: 10.1016/j.ijppaw.2021.03.004
    Due to their unusual life cycle that includes parasitic larval and free living adult stages, gnathiid isopods are typically overlooked in biodiversity surveys, even those that focus on parasites. While the Philippines sits within the region of highest marine biodiversity in the world, the coral triangle, no gnathiid species have been identified or described from that region. Here we present the first records of two gnathiid species collected from the Visayas, central Philippines: Gnathia malaysiensis Müller, 1993, previously described from Malaysia, and G. camuripenis Tanaka, 2004, previously described from southern Japan. This paper provides detailed morphological redescriptions, drawings and scanning electron microscope images as well as the first molecular characterisation of both species, Furthermore, a summary of the Central-Indo Pacific Gnathia species is provided.
    Matched MeSH terms: Life Cycle Stages
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links