Displaying publications 21 - 40 of 47 in total

  1. Mohamed MS, Tan JS, Mohamad R, Mokhtar MN, Ariff AB
    ScientificWorldJournal, 2013;2013:948940.
    PMID: 24109209 DOI: 10.1155/2013/948940
    Mixotrophic metabolism was evaluated as an option to augment the growth and lipid production of marine microalga Tetraselmis sp. FTC 209. In this study, a five-level three-factor central composite design (CCD) was implemented in order to enrich the W-30 algal growth medium. Response surface methodology (RSM) was employed to model the effect of three medium variables, that is, glucose (organic C source), NaNO3 (primary N source), and yeast extract (supplementary N, amino acids, and vitamins) on biomass concentration, X(max), and lipid yield, P(max)/X(max). RSM capability was also weighed against an artificial neural network (ANN) approach for predicting a composition that would result in maximum lipid productivity, Pr(lipid). A quadratic regression from RSM and a Levenberg-Marquardt trained ANN network composed of 10 hidden neurons eventually produced comparable results, albeit ANN formulation was observed to yield higher values of response outputs. Finalized glucose (24.05 g/L), NaNO3 (4.70 g/L), and yeast extract (0.93 g/L) concentration, affected an increase of X(max) to 12.38 g/L and lipid a accumulation of 195.77 mg/g dcw. This contributed to a lipid productivity of 173.11 mg/L per day in the course of two-week cultivation.
    Matched MeSH terms: Microalgae/metabolism*
  2. Raman R, Mohamad SE
    Pak J Biol Sci, 2012 Dec 15;15(24):1182-6.
    PMID: 23755409
    There are numerous commercial applications of microalgae nowadays owing to their vast biotechnological and economical potential. Indisputably, astaxanthin is one of the high value product synthesized by microalgae and is achieving commercial success. Astaxanthin is a keto-carotenoid pigment found in many aquatic animals including microalgae. Astaxanthin cannot be synthesized by animals and provided in the diet is compulsory. In this study, the production of astaxanthin by the freshwater microalgae Chlorella sorokiniana and marine microalgae Tetraselmis sp. were studied. The relationship between growth and astaxanthin production by marine and freshwater microalgae cultivated under various carbon sources and concentrations, environmental conditions and nitrate concentrations was investigated in this study. Inorganic carbon source and low nitrate concentration favored the growth and production of astaxanthin by the marine microalgae Tetraselmis sp. and the freshwater microalgae Chlorella sorokiniana. Outdoor cultivation enhanced the growth of microalgae, while indoor cultivation promoted the formation of astaxanthin. The results indicated that supplementation of light, inorganic carbon and nitrate could be effectively manipulated to enhance the production of astaxanthin by both microalgae studied.
    Matched MeSH terms: Microalgae/metabolism*
  3. Mohamed MS, Wei LZ, Ariff AB
    Recent Pat Biotechnol, 2011 Aug;5(2):95-107.
    PMID: 21707527
    High cell density cultivation of microalgae via heterotrophic growth mechanism could effectively address the issues of low productivity and operational constraints presently affecting the solar driven biodiesel production. This paper reviews the progress made so far in the development of commercial-scale heterotrophic microalgae cultivation processes. The review also discusses on patentable concepts and innovations disclosed in the past four years with regards to new approaches to microalgal cultivation technique, improvisation on the process flow designs to economically produced biodiesel and genetic manipulation to confer desirable traits leading to much valued high lipid-bearing microalgae strains.
    Matched MeSH terms: Microalgae/metabolism
  4. Talebi AF, Tohidfar M, Mousavi Derazmahalleh SM, Sulaiman A, Baharuddin AS, Tabatabaei M
    Biomed Res Int, 2015;2015:597198.
    PMID: 26146623 DOI: 10.1155/2015/597198
    Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200 mg L(-1) myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L(-1) myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that "there is a there there" for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality.
    Matched MeSH terms: Microalgae/metabolism*
  5. Chen CY, Lee PJ, Tan CH, Lo YC, Huang CC, Show PL, et al.
    Biotechnol J, 2015 Jun;10(6):905-14.
    PMID: 25865941 DOI: 10.1002/biot.201400594
    Fish meal is currently the major protein source for commercial aquaculture feed. Due to its unstable supply and increasing price, fish meal is becoming more expensive and its availability is expected to face significant challenges in the near future. Therefore, feasible alternatives to fish meal are urgently required. Microalgae have been recognized as the most promising candidates to replace fish meal because the protein composition of microalgae is similar to fish meal and the supply of microalgae-based proteins is sustainable. In this study, an indigenous microalga (Chlorella vulgaris FSP-E) with high protein content was selected, and its feasibility as an aquaculture protein source was explored. An innovative photobioreactor (PBR) utilizing cold cathode fluorescent lamps as an internal light source was designed to cultivate the FSP-E strain for protein production. This PBR could achieve a maximum biomass and protein productivity of 699 and 365 mg/L/day, respectively, under an optimum urea and iron concentration of 12.4 mM and 90 μM, respectively. In addition, amino acid analysis of the microalgal protein showed that up to 70% of the proteins in this microalgal strain consist of indispensable amino acids. Thus, C. vulgaris FSP-E appears to be a viable alternative protein source for the aquaculture industry.
    Matched MeSH terms: Microalgae/metabolism*
  6. Taghizadeh SM, Berenjian A, Chew KW, Show PL, Mohd Zaid HF, Ramezani H, et al.
    Bioengineered, 2020 12;11(1):141-153.
    PMID: 31994978 DOI: 10.1080/21655979.2020.1718477
    Cell immobilization on the magnetic nanoparticles (MNPs) and magnetic harvesting is a novel approach for microalgal cells separation. To date, the effect of these nanoparticles on microalgal cells was only studied over a short period of time. More studies are hence needed for a better understanding of the magnetic harvesting proposes or environmental concerns relating to long-term exposure to nanoparticles. In this study, the impact of various concentrations of MNPs on the microalgal cells growth and their metabolic status was investigated over 12 days. More than 60% reduction in mitochondrial activity and pigments (chlorophyll a, chlorophyll b, and carotenoids) content occurred during the first 6 days of exposure to ≥50 µg/mL nanoparticles. However, more than 50% growth inhibitory effect was seen at concentrations higher than 400 µg/mL. Exposure to MNPs gradually induced cellular adaptation and after about 6 days of exposure to stress generating concentrations (˂400 µg/mL) of IONs, microalgae could overcome the imposed damages. This work provides a better understanding regarding the environmental impact of MNPs and appropriate concentrations of these particles for future algal cells magnetic immobilization and harvesting.
    Matched MeSH terms: Microalgae/metabolism
  7. Tan JS, Lee SY, Chew KW, Lam MK, Lim JW, Ho SH, et al.
    Bioengineered, 2020 12;11(1):116-129.
    PMID: 31909681 DOI: 10.1080/21655979.2020.1711626
    The richness of high-value bio-compounds derived from microalgae has made microalgae a promising and sustainable source of useful product. The present work starts with a review on the usage of open pond and photobioreactor in culturing various microalgae strains, followed by an in-depth evaluation on the common harvesting techniques used to collect microalgae from culture medium. The harvesting methods discussed include filtration, centrifugation, flocculation, and flotation. Additionally, the advanced extraction technologies using ionic liquids as extractive solvents applied to extract high-value bio-compounds such as lipids, carbohydrates, proteins, and other bioactive compounds from microalgae biomass are summarized and discussed. However, more work needs to be done to fully utilize the potential of microalgae biomass for the application in large-scale production of biofuels, food additives, and nutritive supplements.
    Matched MeSH terms: Microalgae/metabolism
  8. Cheah WY, Show PL, Yap YJ, Mohd Zaid HF, Lam MK, Lim JW, et al.
    Bioengineered, 2020 12;11(1):61-69.
    PMID: 31884878 DOI: 10.1080/21655979.2019.1704536
    Chlorella sorokiniana CY-1 was cultivated using palm oil mill effluent (POME) in a novel-designed photobioreactor (NPBR) and glass-made vessel photobioreactor (PBR). The comparison was made on biomass and lipid productions, as well as its pollutants removal efficiencies. NPBR is transparent and is developed in thin flat panels with a high surface area per volume ratio. It is equipped with microbubbling and baffles retention, ensuring effective light and CO2 utilization. The triangular shape of this reactor at the bottom serves to ease microalgae cell harvesting by sedimentation. Both biomass and lipid yields attained in NPBR were 2.3-2.9 folds higher than cultivated in PBR. The pollutants removal efficiencies achieved were 93.7% of chemical oxygen demand, 98.6% of total nitrogen and 96.0% of total phosphorus. Mathematical model revealed that effective light received and initial mass contributes toward successful microalgae cultivation. Overall, the results revealed the potential of NPBR integration in Chlorella sorokiniana CY-1 cultivation, with an aim to achieve greater feasibility in microalgal-based biofuel real application and for environmental sustainability.
    Matched MeSH terms: Microalgae/metabolism*
  9. Balasubramaniam V, Gunasegavan RD, Mustar S, Lee JC, Mohd Noh MF
    Molecules, 2021 Feb 10;26(4).
    PMID: 33579001 DOI: 10.3390/molecules26040943
    Microalgae are known as a rich source of bioactive compounds which exhibit different biological activities. Increased demand for sustainable biomass for production of important bioactive components with various potential especially therapeutic applications has resulted in noticeable interest in algae. Utilisation of microalgae in multiple scopes has been growing in various industries ranging from harnessing renewable energy to exploitation of high-value products. The focuses of this review are on production and the use of value-added components obtained from microalgae with current and potential application in the pharmaceutical, nutraceutical, cosmeceutical, energy and agri-food industries, as well as for bioremediation. Moreover, this work discusses the advantage, potential new beneficial strains, applications, limitations, research gaps and future prospect of microalgae in industry.
    Matched MeSH terms: Microalgae/metabolism*
  10. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, et al.
    J Biotechnol, 2017 Jan 10;241:175-183.
    PMID: 27914891 DOI: 10.1016/j.jbiotec.2016.11.026
    Natural antioxidants from sustainable sources are favoured to accommodate worldwide antioxidant demand. In addition to bioprospecting for natural and sustainable antioxidant sources, this study aimed to investigate the relationship between the bioactives (i.e. carotenoid and phenolic acids) and the antioxidant capacities in fucoxanthin-producing algae. Total carotenoid, phenolic acid, fucoxanthin contents and fatty acid profile of six species of algae (five microalgae and one macroalga) were quantified followed by bioactivity evaluation using four antioxidant assays. Chaetoceros calcitrans and Isochrysis galbana displayed the highest antioxidant activity, followed by Odontella sinensis and Skeletonema costatum which showed moderate bioactivities. Phaeodactylum tricornutum and Saccharina japonica exhibited the least antioxidant activities amongst the algae species examined. Pearson correlation and multiple linear regression showed that both carotenoids and phenolic acids were significantly correlated (p<0.05) with the antioxidant activities, indicating the influence of these bioactives on the algal antioxidant capacities.
    Matched MeSH terms: Microalgae/metabolism*
  11. Yousuf A, Khan MR, Islam MA, Wahid ZA, Pirozzi D
    Biotechnol Lett, 2017 Jan;39(1):13-23.
    PMID: 27659031 DOI: 10.1007/s10529-016-2217-x
    Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers' community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.
    Matched MeSH terms: Microalgae/metabolism*
  12. Azizan A, Ahamad Bustamam MS, Maulidiani M, Shaari K, Ismail IS, Nagao N, et al.
    Mar Drugs, 2018 May 07;16(5).
    PMID: 29735927 DOI: 10.3390/md16050154
    Microalgae are promising candidate resources from marine ecology for health-improving effects. Metabolite profiling of the microalgal diatom, Chaetoceros calcitrans was conducted by using robust metabolomics tools, namely ¹H nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate data analysis (MVDA). The unsupervised data analysis, using principal component analysis (PCA), resolved the five types of extracts made by solvents ranging from polar to non-polar into five different clusters. Collectively, with various extraction solvents, 11 amino acids, cholesterol, 6 fatty acids, 2 sugars, 1 osmolyte, 6 carotenoids and 2 chlorophyll pigments were identified. The fatty acids and both carotenoid pigments as well as chlorophyll, were observed in the extracts made from medium polar (acetone, chloroform) and non-polar (hexane) solvents. It is suggested that the compounds were the characteristic markers that influenced the separation between the clusters. Based on partial least square (PLS) analysis, fucoxanthin, astaxanthin, violaxanthin, zeaxanthin, canthaxanthin, and lutein displayed strong correlation to 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and nitric oxide (NO) inhibitory activity. This metabolomics study showed that solvent extractions are one of the main bottlenecks for the maximum recovery of bioactive microalgal compounds and could be a better source of natural antioxidants due to a high value of metabolites.
    Matched MeSH terms: Microalgae/metabolism*
  13. Sankaran R, Show PL, Cheng YS, Tao Y, Ao X, Nguyen TDP, et al.
    Mol Biotechnol, 2018 Oct;60(10):749-761.
    PMID: 30116991 DOI: 10.1007/s12033-018-0111-6
    Microalgae are the most promising sources of protein, which have high potential due to their high-value protein content. Conventional methods of protein harnessing required multiple steps, and they are generally complex, time consuming, and expensive. Currently, the study of integration methods for microalgae cell disruption and protein recovery process as a single-step process is attracting considerable interest. This study aims to investigate the novel approach of integration method of electrolysis and liquid biphasic flotation for protein extraction from wet biomass of Chlorella sorokiniana CY-1 and obtaining the optimal operating conditions for the protein extraction. The optimized conditions were found at 60% (v/v) of 1-propanol as top phase, 250 g/L of dipotassium hydrogen phosphate as bottom phase, crude microalgae loading of 0.1 g, air flowrate of 150 cc/min, flotation time of 10 min, voltage of 20 V and electrode's tip touching the top phase of LBEF. The protein recovery and separation efficiency after optimization were 23.4106 ± 1.2514% and 173.0870 ± 4.4752%, respectively. Comparison for LBEF with and without the aid of electric supply was also conducted, and it was found that with the aid of electrolysis, the protein recovery and separation efficiency increased compared to the LBEF without electrolysis. This novel approach minimizes the steps for overall protein recovery from microalgae, time consumption, and cost of operation, which is beneficial in bioprocessing industry.
    Matched MeSH terms: Microalgae/metabolism
  14. Zghaibi N, Omar R, Kamal SMM, Biak DRA, Harun R
    Molecules, 2019 Oct 04;24(19).
    PMID: 31590304 DOI: 10.3390/molecules24193581
    Toward attaining a sustainability and eco-friendly process, a green and low-cost solvent-brine (NaCl solution) is proposed, as microwave-assisted extraction (MAE) technique solvent to extract lipids from microalgae Nannochloropsis sp. The effect of NaCl concentration on the quantity and quality of the extracted lipid was assessed, while MAE parameters were optimized using response surface methodology (RSM). The content of fatty acid methyl esters (FAMEs) in the lipid was analyzed by using a gas chromatography-flame ionization detector (GC/FID). The highest lipid yield (16.1%) was obtained using 10% (w/v) brine at optimum extraction parameters of 5% (w/v) solid loading, 100 °C, and 30 min. The lipid extraction yield via optimized MAE-brine technique was thrice better than that Soxhlet extraction did and only 2% less than Bligh and Dyer (B&D) lipid extraction, which utilized harmful solvents. The proposed MAE-brine technique offered better quality lipids containing the highest amount of polyunsaturated fatty acids (PUFA) (44.5%) and omega-3 fatty acids (FAs) (43%). Hence, the MAE-brine solvent technique appears to be a promising extraction method for cheaper, greener, and faster extraction of a high-quality lipid for specialty food applications.
    Matched MeSH terms: Microalgae/metabolism*
  15. Fan S, Ji B, Abu Hasan H, Fan J, Guo S, Wang J, et al.
    Bioprocess Biosyst Eng, 2021 Aug;44(8):1733-1739.
    PMID: 33772637 DOI: 10.1007/s00449-021-02556-0
    Microalgal-bacterial granular sludge (MBGS) process has become a focal point in treating municipal wastewater. However, it remains elusive whether the emerging process can be applied for the treatment of aquaculture wastewater, which contains considerable concentrations of nitrate and nitrite. This study evaluated the feasibility of MBGS process for aquaculture wastewater treatment. Result showed that the MBGS process was competent to remove respective 64.8%, 84.9%, 70.8%, 50.0% and 84.2% of chemical oxygen demand, ammonia-nitrogen, nitrate-nitrogen, nitrite-nitrogen and phosphate-phosphorus under non-aerated conditions within 8 h. The dominant microalgae and bacteria were identified to be Coelastrella and Rhodobacteraceae, respectively. Further metagenomics analysis implied that microbial assimilation was the main contributor in organics, nitrogen and phosphorus removal. Specifically, considerable nitrate and nitrite removals were also obtained with the synergy between microalgae and bacteria. Consequently, this work demonstrated that the MBGS process showed a prospect of becoming an environmentally friendly and efficient alternative in aquaculture wastewater treatment.
    Matched MeSH terms: Microalgae/metabolism*
  16. Hariz HB, Takriff MS
    Environ Sci Pollut Res Int, 2017 Sep;24(25):20209-20240.
    PMID: 28791508 DOI: 10.1007/s11356-017-9742-6
    In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.
    Matched MeSH terms: Microalgae/metabolism*
  17. Hong WK, Rairakhwada D, Seo PS, Park SY, Hur BK, Kim CH, et al.
    Appl Biochem Biotechnol, 2011 Aug;164(8):1468-80.
    PMID: 21424706 DOI: 10.1007/s12010-011-9227-x
    In the present study, a novel oleaginous Thraustochytrid containing a high content of docosahexaenoic acid (DHA) was isolated from a mangrove ecosystem in Malaysia. The strain identified as an Aurantiochytrium sp. by 18S rRNA sequencing and named KRS101 used various carbon and nitrogen sources, indicating metabolic versatility. Optimal culture conditions, thus maximizing cell growth, and high levels of lipid and DHA production, were attained using glucose (60 g l⁻¹) as carbon source, corn steep solid (10 g l⁻¹) as nitrogen source, and sea salt (15 g l⁻¹). The highest biomass, lipid, and DHA production of KRS101 upon fed-batch fermentation were 50.2 g l⁻¹ (16.7 g l⁻¹ day⁻¹), 21.8 g l⁻¹ (44% DCW), and 8.8 g l⁻¹ (40% TFA), respectively. Similar values were obtained when a cheap substrate like molasses, rather than glucose, was used as the carbon source (DCW of 52.44 g l⁻¹, lipid and DHA levels of 20.2 and 8.83 g l⁻¹, respectively), indicating that production of microbial oils containing high levels of DHA can be produced economically when the novel strain is used.
    Matched MeSH terms: Microalgae/metabolism*
  18. Cha TS, Chen JW, Goh EG, Aziz A, Loh SH
    Bioresour Technol, 2011 Nov;102(22):10633-40.
    PMID: 21967717 DOI: 10.1016/j.biortech.2011.09.042
    This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (p<0.05) oil content at nitrate ranging from 0.18 to 0.66 mM with C. vulgaris produced 10.20-11.34% dw, while C. sorokiniana produced 15.44-17.32% dw. The major fatty acids detected include C16:0, C18:0, C18:1, C18:2 and C18:3. It is interesting to note that both species displayed differentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions.
    Matched MeSH terms: Microalgae/metabolism*
  19. Jusoh M, Loh SH, Aziz A, Cha TS
    Appl Biochem Biotechnol, 2019 Jun;188(2):450-459.
    PMID: 30536033 DOI: 10.1007/s12010-018-02937-4
    Microalgae lipids and oils are potential candidates for renewable biofuels and nutritional inventions. Recent studies from our lab have shown that two plant hormones, auxin and jasmonic acid, influence microalgae growth and fatty acid accumulation. Therefore, in this study, a high oil-producing strain Chlorella vulgaris UMT-M1 was selected for hormonal study using gibberellin (GA). Exogenous GA3 was applied to early stationary culture of C. vulgaris UMT-M1. Results showed that GA3 gradually increases the cell density of C. vulgaris to up to 42% on days after treatment (DAT)-8 and also capable of delaying the algal senescence. However, the increment in cell density did not enhance the total oil production albeit transient modification of fatty acid compositions was observed for saturated (SFA) and polyunsaturated (PUFA) fatty acids. This illustrates that GA3 only promotes cell division and growth but not the oil accumulation. In addition, application of GA3 in culture medium was shown to promote transient increment of palmitic (C16:0) and stearic (C18:0) acids from DAT-4 to DAT-6 and these changes are correlated with the expression of β-ketoacyl ACP synthase I (KAS I) gene.
    Matched MeSH terms: Microalgae/metabolism
  20. Yahya L, Harun R, Abdullah LC
    Sci Rep, 2020 12 18;10(1):22355.
    PMID: 33339883 DOI: 10.1038/s41598-020-79316-9
    Global warming has become a serious issue nowadays as the trend of CO2 emission is increasing by years. In Malaysia, the electricity and energy sector contributed a significant amount to the nation's CO2 emission due to fossil fuel use. Many research works have been carried out to mitigate this issue, including carbon capture and utilization (CCUS) technology and biological carbon fixation by microalgae. This study makes a preliminary effort to screen native microalgae species in the Malaysian coal-fired power plant's surrounding towards carbon fixation ability. Three dominant species, including Nannochloropsis sp., Tetraselmis sp., and Isochrysis sp. were identified and tested in the laboratory under ambient and pure CO2 condition to assess their growth and CO2 fixation ability. The results indicate Isochrysis sp. as the superior carbon fixer against other species. In continuation, the optimization study using Response Surface Methodology (RSM) was carried out to optimize the operating conditions of Isochrysis sp. using a customized lab-scale photobioreactor under simulated flue gas exposure. This species was further acclimatized and tested under actual flue gas generated by the power plant. Isochrysis sp. had shown its capability as a carbon fixer with CO2 fixation rate of 0.35 gCO2/L day under actual coal-fired flue gas exposure after cycles of acclimatization phase. This work is the first to demonstrate indigenous microalgae species' ability as a carbon fixer under Malaysian coal-fired flue gas exposure. Thus, the findings shall be useful in exploring the microalgae potential as a biological agent for carbon emission mitigation from power plants more sustainably.
    Matched MeSH terms: Microalgae/metabolism*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links