Displaying publications 21 - 40 of 49 in total

Abstract:
Sort:
  1. Goli A, Shamiri A, Talaiekhozani A, Eshtiaghi N, Aghamohammadi N, Aroua MK
    J Environ Manage, 2016 Dec 01;183:41-58.
    PMID: 27576148 DOI: 10.1016/j.jenvman.2016.08.054
    The extensive amount of available information on global warming suggests that this issue has become prevalent worldwide. Majority of countries have issued laws and policies in response to this concern by requiring their industrial sectors to reduce greenhouse gas emissions, such as CO2. Thus, introducing new and more effective treatment methods, such as biological techniques, is crucial to control the emission of greenhouse gases. Many studies have demonstrated CO2 fixation using photo-bioreactors and raceway ponds, but a comprehensive review is yet to be published on biological CO2 fixation. A comprehensive review of CO2 fixation through biological process is presented in this paper as biological processes are ideal to control both organic and inorganic pollutants. This process can also cover the classification of methods, functional mechanisms, designs, and their operational parameters, which are crucial for efficient CO2 fixation. This review also suggests the bio-trickling filter process as an appropriate approach in CO2 fixation to assist in creating a pollution-free environment. Finally, this paper introduces optimum designs, growth rate models, and CO2 fixation of microalgae, functions, and operations in biological CO2 fixation.
    Matched MeSH terms: Microalgae/metabolism
  2. Yousuf A, Khan MR, Islam MA, Wahid ZA, Pirozzi D
    Biotechnol Lett, 2017 Jan;39(1):13-23.
    PMID: 27659031 DOI: 10.1007/s10529-016-2217-x
    Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers' community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.
    Matched MeSH terms: Microalgae/metabolism*
  3. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, et al.
    J Biotechnol, 2017 Jan 10;241:175-183.
    PMID: 27914891 DOI: 10.1016/j.jbiotec.2016.11.026
    Natural antioxidants from sustainable sources are favoured to accommodate worldwide antioxidant demand. In addition to bioprospecting for natural and sustainable antioxidant sources, this study aimed to investigate the relationship between the bioactives (i.e. carotenoid and phenolic acids) and the antioxidant capacities in fucoxanthin-producing algae. Total carotenoid, phenolic acid, fucoxanthin contents and fatty acid profile of six species of algae (five microalgae and one macroalga) were quantified followed by bioactivity evaluation using four antioxidant assays. Chaetoceros calcitrans and Isochrysis galbana displayed the highest antioxidant activity, followed by Odontella sinensis and Skeletonema costatum which showed moderate bioactivities. Phaeodactylum tricornutum and Saccharina japonica exhibited the least antioxidant activities amongst the algae species examined. Pearson correlation and multiple linear regression showed that both carotenoids and phenolic acids were significantly correlated (p<0.05) with the antioxidant activities, indicating the influence of these bioactives on the algal antioxidant capacities.
    Matched MeSH terms: Microalgae/metabolism*
  4. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al.
    Bioresour Technol, 2017 Apr;229:53-62.
    PMID: 28107722 DOI: 10.1016/j.biortech.2017.01.006
    Microalgae have received much interest as a biofuel feedstock in response to the uprising energy crisis, climate change and depletion of natural sources. Development of microalgal biofuels from microalgae does not satisfy the economic feasibility of overwhelming capital investments and operations. Hence, high-value co-products have been produced through the extraction of a fraction of algae to improve the economics of a microalgae biorefinery. Examples of these high-value products are pigments, proteins, lipids, carbohydrates, vitamins and anti-oxidants, with applications in cosmetics, nutritional and pharmaceuticals industries. To promote the sustainability of this process, an innovative microalgae biorefinery structure is implemented through the production of multiple products in the form of high value products and biofuel. This review presents the current challenges in the extraction of high value products from microalgae and its integration in the biorefinery. The economic potential assessment of microalgae biorefinery was evaluated to highlight the feasibility of the process.
    Matched MeSH terms: Microalgae/metabolism*
  5. Kassim MA, Meng TK
    Sci Total Environ, 2017 Apr 15;584-585:1121-1129.
    PMID: 28169025 DOI: 10.1016/j.scitotenv.2017.01.172
    Carbon dioxide (CO2) using biological process is one of the promising approaches for CO2 capture and storage. Recently, biological sequestration using microalgae has gained many interest due to its capability to utilize CO2 as carbon source and biomass produced can be used as a feedstock for other value added product for instance biofuel and chemicals. In this study, the CO2 biofixation by two microalgae species, Chlorella sp. and Tetraselmis suecica was investigated using different elevated CO2 concentration. The effect of CO2 concentration on microalgae growth kinetic, biofixation and its chemical composition were determined using 0.04, 5, 15 and 30% CO2. The variation of initial pH value and its relationship on CO2 concentration toward cultivation medium was also investigated. The present study indicated that both microalgae displayed different tolerance toward CO2 concentration. The maximum biomass production and biofixation for Chlorella sp. of 0.64gL-1 and 96.89mgL-1d-1 was obtained when the cultivation was carried out using 5 and 15% CO2, respectively. In contrast, the maximum biomass production and CO2 biofixation for T. suecica of 0.72gL-1 and 111.26mgL-1d-1 were obtained from cultivation using 15 and 5% CO2. The pH value for the cultivation medium using CO2 was between 7.5 and 9, which is favorable for microalgal growth. The potential of biomass obtained from the cultivation as a biorefinery feedstock was also evaluated. An anaerobic fermentation of the microalgae biomass by bacteria Clostridium saccharoperbutylacenaticum N1-4 produced various type of value added product such as organic acid and solvent. Approximately 0.27 and 0.90gL-1 of organic acid, which corresponding to acetic and butyric acid were produced from the fermentation of Chlorella sp. and T. suecica biomass. Overall, this study suggests that Chlorella sp. and T. suecica are efficient microorganism that can be used for CO2 biofixation and as a feedstock for chemical production.
    Matched MeSH terms: Microalgae/metabolism*
  6. Hariz HB, Takriff MS
    Environ Sci Pollut Res Int, 2017 Sep;24(25):20209-20240.
    PMID: 28791508 DOI: 10.1007/s11356-017-9742-6
    In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.
    Matched MeSH terms: Microalgae/metabolism*
  7. Al-Gheethi AA, Mohamed RM, Jais NM, Efaq AN, Abd Halid A, Wurochekke AA, et al.
    J Water Health, 2017 Oct;15(5):741-756.
    PMID: 29040077 DOI: 10.2166/wh.2017.080
    The present study aims to investigate the influence of Staphylococcus aureus, Escherichia coli and Enterococcus faecalis in public market wastewater on the removal of nutrients in terms of ammonium (NH4-) and orthophosphate (PO43) using Scenedesmus sp. The removal rates of NH4- and orthophosphate PO43- and batch kinetic coefficient of Scenedesmus sp. were investigated. The phycoremediation process was carried out at ambient temperature for 6 days. The results revealed that the pathogenic bacteria exhibited survival potential in the presence of microalgae but they were reduced by 3-4 log at the end of the treatment process. The specific removal rates of NH4- and PO43- have a strong relationship with initial concentration in the public market wastewater (R2 = 0.86 and 0.80, respectively). The kinetic coefficient of NH4- removal by Scenedesmus sp. was determined as k = 4.28 mg NH4- 1 log10 cell mL-1 d-1 and km = 52.01 mg L-1 (R2 = 0.94) while the coefficient of PO43- removal was noted as k = 1.09 mg NH4- 1 log10 cell mL-1 d-1 and km = 85.56 mg L-1 (R2 = 0.92). It can be concluded that Scenedesmus sp. has high competition from indigenous bacteria in the public market wastewater to remove nutrients, with a higher coefficient of removal of NH4- than PO43.
    Matched MeSH terms: Microalgae/metabolism
  8. Azizan A, Ahamad Bustamam MS, Maulidiani M, Shaari K, Ismail IS, Nagao N, et al.
    Mar Drugs, 2018 May 07;16(5).
    PMID: 29735927 DOI: 10.3390/md16050154
    Microalgae are promising candidate resources from marine ecology for health-improving effects. Metabolite profiling of the microalgal diatom, Chaetoceros calcitrans was conducted by using robust metabolomics tools, namely ¹H nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate data analysis (MVDA). The unsupervised data analysis, using principal component analysis (PCA), resolved the five types of extracts made by solvents ranging from polar to non-polar into five different clusters. Collectively, with various extraction solvents, 11 amino acids, cholesterol, 6 fatty acids, 2 sugars, 1 osmolyte, 6 carotenoids and 2 chlorophyll pigments were identified. The fatty acids and both carotenoid pigments as well as chlorophyll, were observed in the extracts made from medium polar (acetone, chloroform) and non-polar (hexane) solvents. It is suggested that the compounds were the characteristic markers that influenced the separation between the clusters. Based on partial least square (PLS) analysis, fucoxanthin, astaxanthin, violaxanthin, zeaxanthin, canthaxanthin, and lutein displayed strong correlation to 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and nitric oxide (NO) inhibitory activity. This metabolomics study showed that solvent extractions are one of the main bottlenecks for the maximum recovery of bioactive microalgal compounds and could be a better source of natural antioxidants due to a high value of metabolites.
    Matched MeSH terms: Microalgae/metabolism*
  9. Sankaran R, Show PL, Cheng YS, Tao Y, Ao X, Nguyen TDP, et al.
    Mol Biotechnol, 2018 Oct;60(10):749-761.
    PMID: 30116991 DOI: 10.1007/s12033-018-0111-6
    Microalgae are the most promising sources of protein, which have high potential due to their high-value protein content. Conventional methods of protein harnessing required multiple steps, and they are generally complex, time consuming, and expensive. Currently, the study of integration methods for microalgae cell disruption and protein recovery process as a single-step process is attracting considerable interest. This study aims to investigate the novel approach of integration method of electrolysis and liquid biphasic flotation for protein extraction from wet biomass of Chlorella sorokiniana CY-1 and obtaining the optimal operating conditions for the protein extraction. The optimized conditions were found at 60% (v/v) of 1-propanol as top phase, 250 g/L of dipotassium hydrogen phosphate as bottom phase, crude microalgae loading of 0.1 g, air flowrate of 150 cc/min, flotation time of 10 min, voltage of 20 V and electrode's tip touching the top phase of LBEF. The protein recovery and separation efficiency after optimization were 23.4106 ± 1.2514% and 173.0870 ± 4.4752%, respectively. Comparison for LBEF with and without the aid of electric supply was also conducted, and it was found that with the aid of electrolysis, the protein recovery and separation efficiency increased compared to the LBEF without electrolysis. This novel approach minimizes the steps for overall protein recovery from microalgae, time consumption, and cost of operation, which is beneficial in bioprocessing industry.
    Matched MeSH terms: Microalgae/metabolism
  10. Chang YK, Show PL, Lan JC, Tsai JC, Huang CR
    Bioresour Technol, 2018 Dec;270:320-327.
    PMID: 30241065 DOI: 10.1016/j.biortech.2018.07.138
    An aqueous two-phase system (ATPS) with ionic liquids (ILs) was used for the isolate of C-phycocyanin (CPC) from Spirulina platensis microalga. Various imidazolium ILs and potassium salts were studied. The effect of ILs-ATPS on the extraction efficiency of CPC was also studied. The experimental parameters like pH, loading volume, algae concentration, temperature, and alkyl chain length of IL were well-covered in this report. The experimental results showed that the extraction efficiency, the partition coefficient, and the separation factor for CPC were 99%, 36.6, and 5.8, respectively, for an optimal pH value of 7 and a temperature of 308 K. The order of extraction efficiency for CPC using IL-ATPS was: 1-octyl-3-methylimidazolium bromide (C8MIM-Br) > 1-hexyl-3-methylimidazolium bromide (C6MIM-Br) > 1-butyl-3-methylimidazolium bromide (C4MIM-Br). The isolation process followed the pseudo second-order kinetic model and the thermodynamic results were obviously spontaneous.
    Matched MeSH terms: Microalgae/metabolism*
  11. Nguyen TDP, Le TVA, Show PL, Nguyen TT, Tran MH, Tran TNT, et al.
    Bioresour Technol, 2019 Jan;272:34-39.
    PMID: 30308405 DOI: 10.1016/j.biortech.2018.09.146
    Microalgal bacterial flocs can be a promising approach for microalgae harvesting and wastewater treatment. The present study provides an insight on the bioflocs formation to enhance harvesting of Chlorella vulgaris and the removal of nutrients from seafood wastewater effluent. The results showed that the untreated seafood wastewater was the optimal culture medium for the cultivation and bioflocculation of C. vulgaris, with the flocculating activity of 92.0 ± 6.0%, total suspended solids removal of 93.0 ± 5.5%, and nutrient removal of 88.0 ± 2.2%. The bioflocs collected under this optimal condition contained dry matter of 107.2 ± 5.6 g·L-1 and chlorophyll content of 25.5 ± 0.2 mg·L-1. The results were promising when compared to those obtained from the auto-flocculation process that induced by the addition of calcium chloride and pH adjustment. Additionally, bacteria present in the wastewater aided to promote the formation of bioflocculation process.
    Matched MeSH terms: Microalgae/metabolism*
  12. Yaakob MA, Mohamed RMSR, Al-Gheethi A, Tiey A, Kassim AHM
    Environ Sci Pollut Res Int, 2019 Apr;26(12):12089-12108.
    PMID: 30827020 DOI: 10.1007/s11356-019-04633-0
    Production of Scenedesmus sp. biomass in chicken slaughterhouse wastewater (CSWW) is a promising alternative technique for commercial culture medium due to the high nutritional content of the generated biomass to be used as fish feeds. The current work deals with optimising of biomass production in CSWW using response surface methodology (RSM) as a function of two independent variables, namely temperature (10-30 °C) and photoperiod (6-24 h). The potential application of biomass yield as fish feeds was evaluated based on carbohydrate, protein and lipid contents. The results revealed that the best operating parameters for Scenedesmus sp. biomass production with high contents of carbohydrates, proteins and lipids were determined at 30 °C and after 24 h. The actual and predicted values were 2.47 vs. 3.09 g, 1.44 vs. 1.27 μg/mL, 29.9 vs. 31.60% and 25.75 vs. 28.44%, respectively. Moreover, the produced biomass has a high concentration of fatty acid methyl ester (FAME) as follows: 35.91% of C15:1; 17.58% of C24:1 and 14.11% of C18:1N9T. The biomass yields have 7.98% of eicosapentaenoic acid (EPA, C20:5N3) which is more appropriate as fish feeds. The Fourier transform infrared (FTIR) analysis of biomass revealed that the main functional groups included hydroxyl (OH), aldehyde (=C-H), alkanes and acyl chain groups. Scanning electron micrograph (SEM) and energy-dispersive X-ray spectroscopic analysis (EDS) indicated that the surface morphology and element distribution in biomass produced in BBM and CSWW were varied. The findings have indicated that the biomass produced in CSWW has high potential as fish feeds.
    Matched MeSH terms: Microalgae/metabolism
  13. Jusoh M, Loh SH, Aziz A, Cha TS
    Appl Biochem Biotechnol, 2019 Jun;188(2):450-459.
    PMID: 30536033 DOI: 10.1007/s12010-018-02937-4
    Microalgae lipids and oils are potential candidates for renewable biofuels and nutritional inventions. Recent studies from our lab have shown that two plant hormones, auxin and jasmonic acid, influence microalgae growth and fatty acid accumulation. Therefore, in this study, a high oil-producing strain Chlorella vulgaris UMT-M1 was selected for hormonal study using gibberellin (GA). Exogenous GA3 was applied to early stationary culture of C. vulgaris UMT-M1. Results showed that GA3 gradually increases the cell density of C. vulgaris to up to 42% on days after treatment (DAT)-8 and also capable of delaying the algal senescence. However, the increment in cell density did not enhance the total oil production albeit transient modification of fatty acid compositions was observed for saturated (SFA) and polyunsaturated (PUFA) fatty acids. This illustrates that GA3 only promotes cell division and growth but not the oil accumulation. In addition, application of GA3 in culture medium was shown to promote transient increment of palmitic (C16:0) and stearic (C18:0) acids from DAT-4 to DAT-6 and these changes are correlated with the expression of β-ketoacyl ACP synthase I (KAS I) gene.
    Matched MeSH terms: Microalgae/metabolism
  14. Zghaibi N, Omar R, Kamal SMM, Biak DRA, Harun R
    Molecules, 2019 Oct 04;24(19).
    PMID: 31590304 DOI: 10.3390/molecules24193581
    Toward attaining a sustainability and eco-friendly process, a green and low-cost solvent-brine (NaCl solution) is proposed, as microwave-assisted extraction (MAE) technique solvent to extract lipids from microalgae Nannochloropsis sp. The effect of NaCl concentration on the quantity and quality of the extracted lipid was assessed, while MAE parameters were optimized using response surface methodology (RSM). The content of fatty acid methyl esters (FAMEs) in the lipid was analyzed by using a gas chromatography-flame ionization detector (GC/FID). The highest lipid yield (16.1%) was obtained using 10% (w/v) brine at optimum extraction parameters of 5% (w/v) solid loading, 100 °C, and 30 min. The lipid extraction yield via optimized MAE-brine technique was thrice better than that Soxhlet extraction did and only 2% less than Bligh and Dyer (B&D) lipid extraction, which utilized harmful solvents. The proposed MAE-brine technique offered better quality lipids containing the highest amount of polyunsaturated fatty acids (PUFA) (44.5%) and omega-3 fatty acids (FAs) (43%). Hence, the MAE-brine solvent technique appears to be a promising extraction method for cheaper, greener, and faster extraction of a high-quality lipid for specialty food applications.
    Matched MeSH terms: Microalgae/metabolism*
  15. Tan YH, Lim PE, Beardall J, Poong SW, Phang SM
    Aquat Toxicol, 2019 Dec;217:105349.
    PMID: 31734626 DOI: 10.1016/j.aquatox.2019.105349
    Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 d-1), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg cell-1) and carotenoid (0.06 fg cell-1) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.
    Matched MeSH terms: Microalgae/metabolism*
  16. Koyande AK, Show PL, Guo R, Tang B, Ogino C, Chang JS
    Bioengineered, 2019 Dec;10(1):574-592.
    PMID: 31668124 DOI: 10.1080/21655979.2019.1679697
    Microalgae biomass contains various useful bio-active components. Microalgae derived biodiesel has been researched for almost two decades. However, sole biodiesel extraction from microalgae is time-consuming and is not economically feasible due to competitive fossil fuel prices. Microalgae also contains proteins and carbohydrates in abundance. Microalgae are likewise utilized to extract high-value products such as pigments, anti-oxidants and long-chain polyunsaturated fatty acids which are useful in cosmetic, pharmaceutical and nutraceutical industry. These compounds can be extracted simultaneously or sequentially after biodiesel extraction to reduce the total expenditure involved in the process. This approach of bio-refinery is necessary to promote microalgae in the commercial market. Researchers have been keen on utilizing the bio-refinery approach to exploit the valuable components encased by microalgae. Apart from all the beneficial components housed by microalgae, they also help in reducing the anthropogenic CO2 levels of the atmosphere while utilizing saline or wastewater. These benefits enable microalgae as a potential source for bio-refinery approach. Although life-cycle analysis and economic assessment do not favor the use of microalgae biomass feedstock to produce biofuel and co-products with the existing techniques, this review still aims to highlight the beneficial components of microalgae and their importance to humans. In addition, this article also focuses on current and future aspects of improving the feasibility of bio-processing for microalgae bio-refinery.
    Matched MeSH terms: Microalgae/metabolism*
  17. Anne-Marie K, Yee W, Loh SH, Aziz A, Cha TS
    World J Microbiol Biotechnol, 2020 Jan 07;36(1):17.
    PMID: 31912247 DOI: 10.1007/s11274-019-2790-y
    In this study, the effects of limited and excess nitrate on biomass, lipid production, and fatty acid profile in Messastrum gracile SE-MC4 were determined. The expression of fatty acid desaturase genes, namely stearoyl-ACP desaturase (SAD), omega-6 fatty acid desaturase (ω-6 FAD), omega-3 fatty acid desaturase isoform 1 (ω-3 FADi1), and omega-3 fatty acid desaturase isoform 2 (ω-3 FADi2) was also assessed. It was found that nitrate limitation generally increased the total oil, α-linolenic acid (C18:3n3) and total polyunsaturated fatty acid (PUFA) contents in M. gracile. The reduction of nitrate concentration from 1.76 to 0.11 mM increased the total oil content significantly from 32.5 to 41.85% (dry weight). Palmitic (C16:0) and oleic (C18:1) acids as the predominant fatty acids in this microalgae constituted between 82 and 87% of the total oil content and were relatively consistent throughout all nitrate concentrations tested. The expression of SAD, ω-6 FAD, and ω-3 FADi2 genes increased under nitrate limitation, especially at 0.11 mM nitrate. The ω-3 FADi1 demonstrated a binary up-regulation pattern of expression under both nitrate-deficient (0.11 mM) and -excess (3.55 mM) conditions. Thus, findings from this study suggested that limited or excess nitrate could be used as part of a cultivation strategy to increase oil and PUFA content following media optimisation and more efficient culture methodology. Data obtained from the expression of desaturase genes would provide valuable insights into their roles under excess and limited nitrate conditions in M. gracile, potentially paving the way for future genetic modifications.
    Matched MeSH terms: Microalgae/metabolism
  18. Karthikeyan C, Jenita Rani G, Ng FL, Periasamy V, Pappathi M, Jothi Rajan M, et al.
    Appl Biochem Biotechnol, 2020 Nov;192(3):751-769.
    PMID: 32557232 DOI: 10.1007/s12010-020-03352-4
    A facile chemical reduction approach is adopted for the synthesis of iron tungstate (FeWO4)/ceria (CeO2)-decorated reduced graphene oxide (rGO) nanocomposite. Surface morphological studies of rGO/FeWO4/CeO2 composite reveal the formation of hierarchical FeWO4 flower-like microstructures on rGO sheets, in which the CeO2 nanoparticles are decorated over the FeWO4 microstructures. The distinct anodic peaks observed for the cyclic voltammograms of studied electrodes under light/dark regimes validate the electroactive proteins present in the microalgae. With the cumulative endeavors of three-dimensional FeWO4 microstructures, phase effect between rGO sheet and FeWO4/CeO2, highly exposed surface area, and light harvesting property of CeO2 nanoparticles, the relevant rGO/FeWO4/CeO2 nanocomposite demonstrates high power and stable biophotovoltaic energy generation compared with those of previous reports. Thus, these findings construct a distinct horizon to tailor a ternary nanocomposite with high electrochemical activity for the construction of cost-efficient and environmentally benign fuel cells.
    Matched MeSH terms: Microalgae/metabolism*
  19. Katayama T, Nagao N, Kasan NA, Khatoon H, Rahman NA, Takahashi K, et al.
    J Biotechnol, 2020 Nov 10;323:113-120.
    PMID: 32768414 DOI: 10.1016/j.jbiotec.2020.08.001
    We isolated fifty-two strains from the marine aquaculture ponds in Malaysia that were evaluated for their lipid production and ammonium tolerance and four isolates were selected as new ammonium tolerant microalgae with high-lipid production: TRG10-p102 Oocystis heteromucosa (Chlorophyceae); TRG10-p103 and TRG10-p105 Thalassiosira weissflogii (Bacillariophyceae); and TRG10-p201 Amphora coffeiformis (Bacillariophyceae). Eicosapentenoic acid (EPA) in three diatom strain was between 2.6 and 18.6 % of total fatty acids, which were higher than in O. heteromucosa. Only A. coffeiformi possessed arachidonic acid. Oocystis heteromucosa naturally grew at high ammonium concentrations (1.4-10 mM), whereas the growth of the other strains, T. weissflogii and A. coffeiformi, were visibly inhibited at high ammonium concentrations (>1.4 mM-NH4). However, two strains of T. weissflogii were able to grow at up to 10 mM-NH4 by gradually acclimating to higher ammonium concentrations. The ammonium tolerant strains, especially T. weissflogii which have high EPA contents, were identified as a valuable candidate for biomass production utilizing NH4-N media, such as ammonium-rich wastewater.
    Matched MeSH terms: Microalgae/metabolism*
  20. Taghizadeh SM, Berenjian A, Chew KW, Show PL, Mohd Zaid HF, Ramezani H, et al.
    Bioengineered, 2020 12;11(1):141-153.
    PMID: 31994978 DOI: 10.1080/21655979.2020.1718477
    Cell immobilization on the magnetic nanoparticles (MNPs) and magnetic harvesting is a novel approach for microalgal cells separation. To date, the effect of these nanoparticles on microalgal cells was only studied over a short period of time. More studies are hence needed for a better understanding of the magnetic harvesting proposes or environmental concerns relating to long-term exposure to nanoparticles. In this study, the impact of various concentrations of MNPs on the microalgal cells growth and their metabolic status was investigated over 12 days. More than 60% reduction in mitochondrial activity and pigments (chlorophyll a, chlorophyll b, and carotenoids) content occurred during the first 6 days of exposure to ≥50 µg/mL nanoparticles. However, more than 50% growth inhibitory effect was seen at concentrations higher than 400 µg/mL. Exposure to MNPs gradually induced cellular adaptation and after about 6 days of exposure to stress generating concentrations (˂400 µg/mL) of IONs, microalgae could overcome the imposed damages. This work provides a better understanding regarding the environmental impact of MNPs and appropriate concentrations of these particles for future algal cells magnetic immobilization and harvesting.
    Matched MeSH terms: Microalgae/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links