Displaying publications 21 - 40 of 813 in total

Abstract:
Sort:
  1. Petrányi G, Mieth H, Leitner I
    PMID: 1221502
    Infective larvae of Brugia malayi subperiodic obtained by dissection of infected Aedes togoi were injected subcutaneously into the scrotal region of Mastomys natalensis. From altogether 58 infected male M. natalensis 81% showed consistently or intermittently detectable microfilaraemia, whereas in 19% of the animals no microfilaraemia could be detected at any stage. The mean prepatent period was 136 days; the microfilarial density varied from 1 to 535 per 20 c. mm blood. In those animlas with consistently detectable and in general higher microfilaraemia an average of 13.1 live adult worms were found, against an average of 6.4 adult worms in animals with intermittent detectable and in general lower microfilaraemia. An average of 1.5 worms was found in animals which at no stage showed detectable microfilaraemia. A correlation between worm burden and prepatent period could be observed in the individual groups. From the total of 520 live adult worms recovered at necropsy, 37% were found in the lungs, 29% in the parenchyma of the testes and 34% in the lymphatic system. 47% of live fertile female worms were found in the lymphatic system, whereas the majority, i.e; 52% of infertile female worms were detected in the lungs. In addition, 380 encapsulated dead worms were found, most of them (98%) in the lymphatic system. 61% of a total of 900 live and dead worms were found in the region of the lymphatic system.
    Matched MeSH terms: Disease Models, Animal*
  2. Balogun WG, Cobham AE, Amin A, Seeni A
    Neuroscience, 2018 03 15;374:323-325.
    PMID: 29427653 DOI: 10.1016/j.neuroscience.2018.01.062
    Neuroscience research and training in many African countries are difficult due to funding and infrastructure deficit. This has resulted in few neuroscientists within Africa. However, invertebrates such as Drosophila and Caenorhabditis elegans could provide the perfect answer to these difficulties. These organisms are cheap, easy to handle and offer a comparable advantage over vertebrates in neuroscience research modeling because they have a simple nervous system and exhibit well-defined behaviors. Studies using invertebrates have helped to understand neurosciences and the complexes associated with it. If Africa wants to catch up with the rest of the world in neuroscience research, it needs to employ this innovative cost-effective approach in its research. To improve invertebrate neuroscience within the Africa continent, the authors advocated the establishment of invertebrate research centers either at regional or national level across Africa. Finally, there is also a need to provide public funding to consolidate the gains that have been made by not-for-profit international organizations over the years.
    Matched MeSH terms: Models, Animal*
  3. Agarwal R, Agarwal P, Iezhitsa I
    Expert Opin Drug Discov, 2023;18(11):1287-1300.
    PMID: 37608634 DOI: 10.1080/17460441.2023.2246892
    INTRODUCTION: Animal models are widely used in glaucoma-related research. Since the elevated intraocular pressure (IOP) is a major risk factor underlying the disease pathogenesis, animal models with high IOP are commonly used. However, models are also used to represent the clinical context of glaucomatous changes developing despite a normal IOP.

    AREAS COVERED: Herein, the authors discuss the various factors that contribute to the quality of studies using animal models based on the evaluation of studies published in 2022. The factors affecting the quality of studies using animal models, such as the animal species, age, and sex, are discussed, along with various methods and outcomes of studies involving different animal models of glaucoma.

    EXPERT OPINION: Translating animal research data to clinical applications remains challenging. Our observations in this review clearly indicate that many studies lack scientific robustness not only in their experiment conduct but also in data analysis, interpretation, and presentation. In this context, ensuring the internal validity of animal studies is the first step in quality assurance. External validity, however, is more challenging, and steps should be taken to satisfy external validity at least to some extent.

    Matched MeSH terms: Disease Models, Animal; Models, Animal
  4. Wong SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S
    Nutr Metab (Lond), 2016;13:65.
    PMID: 27708685 DOI: 10.1186/s12986-016-0123-9
    Metabolic syndrome (MetS) consists of several medical conditions that collectively predict the risk for cardiovascular disease better than the sum of individual conditions. The risk of developing MetS in human depends on synergy of both genetic and environmental factors. Being a multifactorial condition with alarming rate of prevalence nowadays, establishment of appropriate experimental animal models mimicking the disease state in humans is crucial in order to solve the difficulties in evaluating the pathophysiology of MetS in human. This review aims to summarize the underlying mechanisms involved in the pathophysiology of dietary, genetic, and pharmacological models of MetS. Furthermore, we will discuss the usefulness, suitability, pros and cons of these animal models. Even though numerous animal models of MetS have been established, further investigations on the invention of new animal model and clarification of plausible mechanisms are still necessary to confer a better understanding to researchers on the selection of animal models for their studies.
    Matched MeSH terms: Disease Models, Animal
  5. Shaju P Jacob, Sonia Nath
    MyJurnal
    Preclinical drug testing is an important area in new drug development where animals are used. An ideal animal model for this is one which is simple, reliable and can be extrapolated to humans. Topical drugs for inflammation are conventionally tested on the skin of animals after induction of inflammation. A gingival model would be simple as inflammation can be induced naturally by the action of plaque. Rats are a popular animal model for testing drugs as well as to study various diseases of the periodontium. Periodontal disease including gingival inflammation develops in
    rats in relation to indigenous plaque or experimentally induced bacterial products. A number of features of rats ranging from anatomy, histology and response to bacterial insult can be seen mirrored to a great extent in humans. There is a lot similarity in the development and resolution of inflammation as well as the gingival wound healing of rats and humans. This paper tries to explore the feasibility of using the rat gingival model for preclinical testing of drugs acting on or influencing inflammation and concludes by identifying potential areas of research using this model. The addition of such a simple and inexpensive model for preclinical testing of drugs will be welcomed by the drug developers.
    Matched MeSH terms: Models, Animal
  6. Zenab B. Hamad Mohamed, Hamad Abdulsalam Hamad Alfaris, Nor Zamila Abdullah, Norra Harun, Naznin Muhammad, Roslina Abdul Rahim
    MyJurnal
    Previous studies have proven the existence of a complex association
    between progressive kidney damage and hypercholesterolemia. Most studies focused on
    the impact of chronic high blood cholesterol levels on the kidney. Information on the
    early effect of hypercholesterolemia on the kidney is still lacking. The aim of this study
    was therefore to determine early effect of high cholesterol diet on the kidney in an
    animal model. (Copied from article).
    Matched MeSH terms: Disease Models, Animal
  7. Zenab B. Hamad Mohamed, Hamad Abdulsalam Hamad Alfarisi, Nor Zamzila Abdullah, Naznin Muhammad, Roslan Abdul Rahim
    MyJurnal
    Although there is a growing insight into the causes and mechanisms of
    kidney diseases, preventive and therapeutic measures are still few. The aim of this study
    was therefore to determine the renoprotective effect of tualang honey against high
    cholesterol diet induced acute kidney disease in an animal model. (Copied from article).
    Matched MeSH terms: Disease Models, Animal
  8. Balogun WG, Cobham AE, Amin A, Seeni A
    Metab Brain Dis, 2018 10;33(5):1431-1441.
    PMID: 29797116 DOI: 10.1007/s11011-018-0250-2
    Africa is faced with an increasing underrepresentation of her research progress in many fields of science including neuroscience. This underrepresentation stems from the very low investments directed towards research by African governments as these are thought to be high-priced. Scientists and researchers within the continent are left to compete highly for the very limited research grants or choose to fund research from their personal purse. Therefore, presenting a need for all possible strategies to make science and research approaches more affordable in Africa. This paper presents one of such strategy, which advocates the use of invertebrate animal models for neuroscience research in place of the commonly used vertebrate models. Invertebrates are cheaper, more available and easy to handle options and their use is on the rise, even in the developed societies of the world. Here, we investigate the current state of invertebrate neuroscience research in Africa looking at countries and institutions conducting neuroscience research with invertebrates and their publication output. We discuss the factors which impede invertebrate neuroscience research in Africa like lack of research infrastructure and adequate expert scientists and conclude by suggesting solutions to these challenges.
    Matched MeSH terms: Models, Animal
  9. Lian J, Lin J, Zakaria N, Yahaya BH
    Adv Exp Med Biol, 2020;1298:149-166.
    PMID: 32424492 DOI: 10.1007/5584_2020_538
    Acute lung injury (ALI) is a severe clinical condition with high morbidity and mortality that usually results in the development of multiple organ dysfunction. The complex pathophysiology of ALI seems to provide a wide range of targets that offer numerous therapeutic options. However, despite extensive studies of ALI pathophysiology and treatment, no effective pharmacotherapy is available. Increasing evidence from both preclinical and clinical studies supports the preventive and therapeutic effects of mesenchymal stem cells (MSCs) for treating ALI. As cell-based therapy poses the risk of occlusion in microvasculature or unregulated growth, MSC-derived extracellular vesicles (MSC-EVs) have been extensively studied as a new therapeutic strategy for non-cell based therapy. It is widely accepted that the therapeutic properties of MSCs are derived from soluble factors with paracrine or endocrine effects, and EVs are among the most important paracrine or endocrine vehicles that can deliver various soluble factors with a similar phenotype as the parent cell. Therapeutic effects of MSCs have been reported for various delivery approaches, diverse doses, multiple origins, and different times of administration, and MSC-EVs treatment may include but is not limited to these choices. The mechanisms by which MSCs and MSC-EVs may contribute to ALI treatment remain elusive and need further exploration. This review provides an overview of preclinical studies that support the application of MSC-EVs for treating ALI, and it discusses emerging opportunities and their associated challenges.
    Matched MeSH terms: Disease Models, Animal
  10. Liew AKY, Teo CH, Soga T
    Mol Neurobiol, 2022 Dec;59(12):7095-7118.
    PMID: 36083518 DOI: 10.1007/s12035-022-03016-w
    Environmental enrichment (EE) is an environmental paradigm encompassing sensory, cognitive, and physical stimulation at a heightened level. Previous studies have reported the beneficial effects of EE in the brain, particularly in the hippocampus. EE improves cognitive function as well as ameliorates depressive and anxiety-like behaviors, making it a potentially effective neuroprotective strategy against neurodegenerative diseases such as Alzheimer's disease (AD). Here, we summarize the current evidence for EE as a neuroprotective strategy as well as the potential molecular pathways that can explain the effects of EE from a biochemical perspective using animal models. The effectiveness of EE in enhancing brain activity against neurodegeneration is explored with a view to differences present in early and late life EE exposure, with its potential application in human being discussed. We discuss EE as one of the non pharmacological approaches in preventing or delaying the onset of AD for future research.
    Matched MeSH terms: Disease Models, Animal
  11. Chau SC, Chong PS, Jin H, Tsui KC, Khairuddin S, Tse ACK, et al.
    Int J Mol Sci, 2023 Mar 23;24(7).
    PMID: 37047062 DOI: 10.3390/ijms24076089
    Cerebellar ataxia is a neurodegenerative disorder with no definitive treatment. Although previous study demonstrated the neuroprotective effects of Hericium erinaceus (H.E.), the mechanisms of H.E. treatment on the neuroinflammatory response, neurotransmission, and related metabolites remain largely unknown. We demonstrated that 3-AP rats treated with 25 mg/kg H.E. extracts had improved motor coordination and balance in the accelerated rotarod and rod tests. We showed that the H.E. treatment upregulated the expression of Tgfb1, Tgfb2, and Smad3 genes to levels comparable to those in the non-3-AP control group. Interestingly, we also observed a significant correlation between Tgfb2 gene expression and rod test performance in the 3-AP saline group, but not in the non-3-AP control or H.E.+3-AP groups, indicating a relationship between Tgfb2 gene expression and motor balance in the 3-AP rat model. Additionally, we also found that the H.E. treatment increased mitochondrial COX-IV protein expression and normalized dopamine-serotonin neurotransmission and metabolite levels in the cerebellum of the H.E.+3-AP group compared to the 3-AP saline group. In conclusion, our findings suggest that the H.E. treatment improved motor function in the 3-AP rat model, which was potentially mediated through neuroprotective mechanisms involving TGFB2-Smad3 signaling via normalization of neurotransmission and metabolic pathways.
    Matched MeSH terms: Disease Models, Animal
  12. Sulaiman SZS, Tan WM, Radzi R, Shafie INF, Ajat M, Mansor R, et al.
    J Orthop Surg Res, 2021 Nov 08;16(1):663.
    PMID: 34749769 DOI: 10.1186/s13018-021-02781-z
    BACKGROUND: Osteoarthritis (OA) is a multifaceted condition that affects both the subchondral bones and the articular cartilage. Animal models are widely used as an effective supplement and simulation for human OA studies in investigating disease mechanisms and pathophysiology. This study is aimed to evaluate the temporal changes of bone and cartilage in surgically and chemically induced osteoarthritis using micro-computed tomography and histology.

    METHODS: Thirty rabbits underwent either anterior cruciate ligament transection (ACLT) procedure or injected intraarticularly with monosodium iodoacetate (MIA, 8 mg) at the right knee joint. The subchondral bones were scanned via micro-CT, and articular cartilage was assessed histologically at 4-, 8- and 12-week post-induction.

    RESULTS: Based on bone micro-architecture parameters, the surgically induced group revealed bone remodelling processes, indicated by increase bone volume, thickening of trabeculae, reduced trabecular separation and reduced porosity. On the other hand, the chemically induced group showed active bone resorption processes depicted by decrease bone volume, thinning of trabeculae, increased separation of trabecular and increased porosity consistently until week 12. Histologically, the chemically induced group showed more severe articular cartilage damage compared to the surgically induced group.

    CONCLUSIONS: It can be concluded that in the ACLT group, subchondral bone remodelling precedes articular cartilage damage and vice versa in the MIA group. The findings revealed distinct pathogenic pathways for both induction methods, providing insight into tailored therapeutic strategies, as well as disease progression and treatment outcomes monitoring.

    Matched MeSH terms: Disease Models, Animal
  13. Senthilkumar S, Maiya K, Jain NK, Mata S, Mangaonkar S, Prabhu P, et al.
    Curr Gene Ther, 2023;23(3):198-214.
    PMID: 36305152 DOI: 10.2174/1566523223666221027113723
    INTRODUCTION: We aim to investigate whether timed systemic administration of dental pulp stem cells (DPSCs) or bone marrow mesenchymal stem cells (BM-MSCs) with status epilepticus (SE) induced blood-brain barrier (BBB) damage could facilitate the CNS homing of DPSCs/BM-MSCs and mitigate neurodegeneration, neuroinflammation and neuropsychiatric comorbidities in an animal model of Temporal Lobe epilepsy (TLE).

    BACKGROUND: Cognitive impairments, altered emotional responsiveness, depression, and anxiety are the common neuropsychiatric co-morbidities observed in TLE patients. Mesenchymal stem cells (MSCs) transplantation has gained immense attention in treating TLE, as ~30% of patients do not respond to anti-epileptic drugs. While MSCs are known to cross the BBB, better CNS homing and therapeutic effects could be achieved when the systemic administration of MSC is timed with BBB damage following SE.

    OBJECTIVES: The objectives of the present study are to investigate the effects of systemic administration of DPSCs/BM-MSCs timed with BBB damage on CNS homing of DPSCs/BM-MSCs, neurodegeneration, neuroinflammation and neuropsychiatric comorbidities in an animal model of TLE.

    METHODOLOGY: We first assessed the BBB leakage following kainic acid-induced SE and timed the intravenous administration of DPSCs/BM-MSCs to understand the CNS homing/engraftment potential of DPSCs/BM-MSCs and their potential to mitigate neurodegeneration, neuroinflammation and neuropsychiatric comorbidities.

    RESULTS: Our results revealed that systemic administration of DPSCs/BM-MSCs attenuated neurodegeneration, neuroinflammation, and ameliorated neuropsychiatric comorbidities. Three months following intravenous administration of DPSCs/BM-MSCs, we observed a negligible number of engrafted cells in the corpus callosum, sub-granular zone, and sub-ventricular zone.

    CONCLUSION: Thus, it is evident that functional recovery is still achievable despite poor engraftment of MSCs into CNS following systemic administration.

    Matched MeSH terms: Models, Animal
  14. Mustafa NWNA, Ahmad R, Ahmad Khushaini MA, Kamar Affendi NH, Ab Ghani SM, Tan SK, et al.
    ACS Biomater Sci Eng, 2024 Jan 08;10(1):405-419.
    PMID: 38040671 DOI: 10.1021/acsbiomaterials.3c01551
    This study assessed the corrosion resistance, intracutaneous reactivity, acute systemic toxicity, and in situ tissue effect of the implantation of porous NiTi fabricated by metal injection molding in animal models. For the intracutaneous reactivity study, five intracutaneous injections were administered per site with and without the tested extract in polar and nonpolar solutions. The extract was also delivered via intravenous and intraperitoneal routes for acute systemic toxicity. TiAl6 V4 (control) and porous NiTi were implanted in rabbit femora for a period of 13 weeks to evaluate the in situ tissue response. Corrosion was evaluated through open and cyclic polarization in PBS, while biocompatibility was investigated by assessing the general conditions, skin irritation score (edema and erythema), and histopathology. No active dissolution or hysteresis loop was observed in the corrosion study. None of the animals exhibited death, moribundity, impending death, severe pain, self-mutilation, or overgrooming. No edema was observed at injection sites. Only the positive control showed an erythematous reaction at 24, 48, and 72 h observations (p < 0.001). Porous NiTi showed a low in situ biological response for inflammation, neovascularization, and fibrosis in comparison to the control implant (p = 0.247, 0.005, and 0.011, respectively). Porous NiTi also demonstrated high pitting corrosion resistance while causing no acute hypersensitivity or acute systemic toxicity. The study concludes that porous NiTi implants were unlikely to cause local sensitization, acute systemic toxicity, or chronic inflammatory reactions in an animal model. Porous NiTi also exhibited osseointegration equivalent to Ti6AI4 V of known biocompatibility.
    Matched MeSH terms: Models, Animal
  15. Agarwal R, Iezhitsa I
    Mol Aspects Med, 2023 Dec;94:101228.
    PMID: 38016252 DOI: 10.1016/j.mam.2023.101228
    Genetic rodent models are widely used in glaucoma related research. With vast amount of information revealed by human studies about genetic correlations with glaucoma, use of these models is relevant and required. In this review, we discuss the glaucoma endophenotypes and importance of their representation in an experimental animal model. Mice and rats are the most popular animal species used as genetic models due to ease of genetic manipulations in these animal species as well as the availability of their genomic information. With technological advances, induction of glaucoma related genetic mutations commonly observed in human is possible to achieve in rodents in a desirable manner. This approach helps to study the pathobiology of the disease process with the background of genetic abnormalities, reveals potential therapeutic targets and gives an opportunity to test newer therapeutic options. Various genetic manipulation leading to appearance of human relevant endophenotypes in rodents indicate their relevance in glaucoma pathology and the utility of these rodent models for exploring various aspects of the disease related to targeted mutation. The molecular pathways involved in the pathophysiology of glaucoma leading to elevated intraocular pressure and the disease hallmark, apoptosis of retinal ganglion cells and optic nerve degeneration, have been extensively explored in genetic rodent models. In this review, we discuss the consequences of various genetic manipulations based on the primary site of pathology in the anterior or the posterior segment. We discuss how these genetic manipulations produce features in rodents that can be considered a close representation of disease phenotype in human. We also highlight several molecular mechanisms revealed by using genetic rodent models of glaucoma including those involved in increased aqueous outflow resistance, loss of retinal ganglion cells and optic neuropathy. Lastly, we discuss the limitations of the use of genetic rodent models in glaucoma related research.
    Matched MeSH terms: Disease Models, Animal
  16. Islam MR, Abdullah JM
    Malays J Med Sci, 2014 Dec;21(Spec Issue):34-40.
    PMID: 25941461 MyJurnal
    Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are a prognostic genetic model of absence epilepsy. This model displays the electro-clinical, behavioural, and pharmacological features of absence seizures. Although GAERS share typical characteristics, including spike-and-wave discharges (SWDs) in the electroencephalography (EEG), age-dependent studies with these animals have not yet been reported. The aim of the present study is to perform a systematic comparison contrasting the SWDs of young and older GAERS, in terms of the number, duration, frequency, and waveform morphology of the discharges, as well as the pre-SWD EEG characteristics, using identical measurement and analysis techniques. The number, cumulative total duration and mean duration of SWDs were significantly higher in young GAERS (4 to 6 months) compared to older GAERS (12 to 14 months). Furthermore, the SWD spectra and average SWD waveforms indicated that a single cycle of the SWD contains more energy in faster components, such as increased spikes and higher power, in the SWDs of the young GAERS. Additionally, older GAERS showed weak amplitude spikes in SWDs and higher power pre-SWDs. These clear morphological differences in the EEGs of young and older GAERS rats should be further examined in future studies that explore new dimensions of genetic absence epilepsy.
    Matched MeSH terms: Disease Models, Animal
  17. Tan CH, Leong PK, Fung SY, Sim SM, Ponnudurai G, Ariaratnam C, et al.
    Acta Trop, 2011 Feb;117(2):119-24.
    PMID: 21073851 DOI: 10.1016/j.actatropica.2010.11.001
    Hypnale hypnale (hump-nosed pit viper) is a medically important venomous snake in Sri Lanka and Southwestern India. Bite of this snake may result in hemostatic dysfunction, acute kidney injury and death. Clinical studies indicated that the locally available polyvalent antivenoms produced in India are not effective against hump-nosed pit viper envenoming. Hence, there is an urgent need to search for effective antivenom. In this paper, we examined the ability of Calloselasma rhodostoma (Malayan pit viper) monovalent antivenom and the Hemato polyvalent antivenom (both produced by Thai Red Cross Society, TRCS) to neutralize the lethality and toxic effects of H. hypnale venom, as C. rhodostoma is considered a sister taxon of H. hypnale. In vitro neutralization studies showed that the Hemato polyvalent antivenom effectively neutralized the lethality of H. hypnale venom (1.52mgvenom/mL antivenom) as well as the hemorrhagic, procoagulant and necrotic activities of the venom. The monovalent C. rhodostoma antivenom could also neutralize the lethality and toxic activities of the venom, but the potency was lower. The Hemato polyvalent antivenom also effectively protected mice from the lethal and local effects of H. hypnale venom in an in vivo rodent model of envenoming. Furthermore, the polyvalent antivenom could also effectively neutralize the venom of Daboia russelii (2.50mgvenom/mL antivenom), another common cause of snake bites in Sri Lanka and South India. These findings suggested that the Hemato polyvalent antivenom may be beneficial in the antivenom treatment of H. hypnale envenoming.
    Matched MeSH terms: Disease Models, Animal
  18. Parhizkar S, Latiff LA, Parsa A
    Avicenna J Phytomed, 2016 Jan-Feb;6(1):95-103.
    PMID: 27247926
    Menopause is the condition when regular menstrual periods cease and may be accompanied by psychological and physical symptoms. The purpose of current study was to determine Nigella sativa effects on reproductive system in experimental menopause animal models.
    Matched MeSH terms: Models, Animal
  19. Qamruddin I, Alam MK, Khamis MF, Husein A
    Biomed Res Int, 2015;2015:608530.
    PMID: 26881201 DOI: 10.1155/2015/608530
    To evaluate various noninvasive and minimally invasive procedures for the enhancement of orthodontic tooth movement in animals.
    Matched MeSH terms: Disease Models, Animal
  20. Duarte-Silva M, Guerra-Pinto F, Camelo-Barbosa N, Beja-da-Costa P
    Malays Orthop J, 2019 Jul;13(2):38-41.
    PMID: 31467650 DOI: 10.5704/MOJ.1907.007
    Meniscectomy is the most common surgery in orthopaedics. The absence of meniscal tissue might be related to irreversible damage to the articular cartilage. Meniscal replacement is a tissue-engineering technique for post-meniscectomy syndrome. Its success depends on the implant integration which was vastly proven in animal model studies. Histological evidence is hard to obtain in humans due to ethical issues. We report a clinical case in which a collagen scaffold meniscal implant was harvested six months after implantation due to mechanical failure. Histological analysis was performed revealing vascularisation not only of the peripheral attachment of the implant but also on the anterior horn. These morphologic findings demonstrate that this implant allows the colonisation by precursor cells and vessels, leading to the formation of a fully functional tissue. This present report is one of the few independent reports of scaffold biological integration in the literature.
    Matched MeSH terms: Models, Animal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links