Displaying publications 21 - 40 of 44 in total

Abstract:
Sort:
  1. Mohammad F, Yusof NA
    J Colloid Interface Sci, 2014 Nov 15;434:89-97.
    PMID: 25170601 DOI: 10.1016/j.jcis.2014.07.025
    In the present work, nanohybrid of an anticancer drug, doxorubicin (Dox) loaded gold-coated superparamagnetic iron oxide nanoparticles (SPIONs@Au) were prepared for a combination therapy of cancer by means of both hyperthermia and drug delivery. The Dox molecules were conjugated to SPIONs@Au nanoparticles with the help of cysteamine (Cyst) as a non-covalent space linker and the Dox loading efficiency was investigated to be as high as 0.32 mg/mg. Thus synthesized particles were characterized by HRTEM, UV-Vis, FT-IR, SQUID magnetic studies and further tested for heat and drug release at low frequency oscillatory magnetic fields. The hyperthermia studies investigated to be strongly influenced by the applied frequency and the solvents used. The Dox delivery studies indicated that the drug release efficacy is strongly improved by maintaining the acidic pH conditions and the oscillatory magnetic fields, i.e. an enhancement in the Dox release was observed from the oscillation of particles due to the applied frequency, and is not effected by heating of the solution. Finally, the in vitro cell viability and proliferation studies were conducted using two different immortalized cell lines containing a cancerous (MCF-7 breast cancer) and non-cancerous H9c2 cardiac cell type.
    Matched MeSH terms: Magnetite Nanoparticles/therapeutic use*
  2. Dua K, Gupta G, Chellapan DK, Bebawy M, Collet T
    Panminerva Med, 2018 Dec;60(4):237-238.
    PMID: 30563307 DOI: 10.23736/S0031-0808.18.03435-3
    Matched MeSH terms: Nanoparticles/therapeutic use*
  3. Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 Jul;112:110925.
    PMID: 32409075 DOI: 10.1016/j.msec.2020.110925
    Wounds associated with diabetes mellitus are the most severe co-morbidities, which could be progressed to cause cell necrosis leading to amputation. Statistics on the recent status of the diabetic wounds revealed that the disease affects 15% of diabetic patients, where 20% of them undergo amputation of their limb. Conventional therapies are found to be ineffective due to changes in the molecular architecture of the injured area, urging novel deliveries for effective treatment. Therefore, recent researches are on the development of new and effective wound care materials. Literature is evident in providing potential tools in topical drug delivery for wound healing under the umbrella of nanotechnology, where nano-scaffolds and nanofibers have shown promising results. The nano-sized particles are also known to promote healing of wounds by facilitating proper movement through the healing phases. To date, focuses have been made on the efficacy of silver nanoparticles (AgNPs) in treating the diabetic wound, where these nanoparticles are known to exploit potential biological properties in producing anti-inflammatory and antibacterial activities. AgNPs are also known to activate cellular mechanisms towards the healing of chronic wounds; however, associated toxicities of AgNPs are of great concern. This review is an attempt to illustrate the use of AgNPs in wound healing to facilitate this delivery system in bringing into clinical applications for a superior dressing and treatment over wounds and ulcers in diabetes patients.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  4. Lee WH, Loo CY, Leong CR, Young PM, Traini D, Rohanizadeh R
    Expert Opin Drug Deliv, 2017 08;14(8):937-957.
    PMID: 27759437 DOI: 10.1080/17425247.2017.1247804
    INTRODUCTION: The effectiveness of conventional cancer chemotherapy is hampered by the occurrence of multidrug resistance (MDR) in tumor cells. Although many studies have reported the development of novel MDR chemotherapeutic agents, clinical success is lacking owing to the high associated toxicity. Nanoparticle-based delivery of chemotherapeutic drugs has emerged as alternative approach to treat MDR cancers via exploitation of leaky vasculature in the tumor microenvironment. Accordingly, functionalization of nanoparticles with target specific ligands can be employed to achieve significant improvements in the treatment of MDR cancer. Areas covered: This review focuses on the recent advances in the functionalization of nanocarriers with specific ligands, including antibodies, transferrin, folate, and peptides to overcome MDR cancer. The limitations of effective ligand-functionalized nanoparticles as well as therapeutic successes in ligand targeting are covered in the review. Expert opinion: Targeting MDR tumors with ligand-functionalized nanoparticles is a promising approach to improve the treatment of cancer. With this approach, higher drug concentrations at targeted sites would be achieved with lower dosage frequencies and reduced side effects in comparison to existing formulations of chemotherapeutic drugs. However, potential toxicities and immunological responses to ligands should be carefully reviewed for viable options in for future MDR cancer treatment.
    Matched MeSH terms: Nanoparticles/therapeutic use
  5. Md S, Haque S, Madheswaran T, Zeeshan F, Meka VS, Radhakrishnan AK, et al.
    Drug Discov Today, 2017 Aug;22(8):1274-1283.
    PMID: 28456749 DOI: 10.1016/j.drudis.2017.04.010
    Topical photodynamic therapy (PDT) is a non-invasive technique used in the treatment of malignant and non-malignant skin diseases. It offers great promise because of its simplicity, enhanced patient compliance, localisation of the photosensitizer, as well as the use of light and oxygen to achieve photocytotoxicity. Despite progress in photosensitizer-mediated topical PDT, its clinical application is limited by poor penetration of photosensitizers through the skin. Therefore, much effort has been made to develop nanocarriers that can tackle the challenges of conventional photosensitizer-mediated PDT for topical delivery. This review discusses recent data on the use of different types of lipid-based nanocarriers in delivering photosensitizer for topical PDT.
    Matched MeSH terms: Nanoparticles/therapeutic use
  6. Tan KX, Danquah MK, Sidhu A, Lau SY, Ongkudon CM
    Biotechnol Prog, 2018 01;34(1):249-261.
    PMID: 28699244 DOI: 10.1002/btpr.2524
    Targeted delivery of drug molecules to specific cells in mammalian systems demonstrates a great potential to enhance the efficacy of current pharmaceutical therapies. Conventional strategies for pharmaceutical delivery are often associated with poor therapeutic indices and high systemic cytotoxicity, and this result in poor disease suppression, low surviving rates, and potential contraindication of drug formulation. The emergence of aptamers has elicited new research interests into enhanced targeted drug delivery due to their unique characteristics as targeting elements. Aptamers can be engineered to bind to their cognate cellular targets with high affinity and specificity, and this is important to navigate active drug molecules and deliver sufficient dosage to targeted malignant cells. However, the targeting performance of aptamers can be impacted by several factors including endonuclease-mediated degradation, rapid renal filtration, biochemical complexation, and cell membrane electrostatic repulsion. This has subsequently led to the development of smart aptamer-immobilized biopolymer systems as delivery vehicles for controlled and sustained drug release to specific cells at effective therapeutic dosage and minimal systemic cytotoxicity. This article reports the synthesis and in vitro characterization of a novel multi-layer co-polymeric targeted drug delivery system based on drug-loaded PLGA-Aptamer-PEI (DPAP) formulation with a stage-wise delivery mechanism. A thrombin-specific DNA aptamer was used to develop the DPAP system while Bovine Serum Albumin (BSA) was used as a biopharmaceutical drug in the synthesis process by ultrasonication. Biophysical characterization of the DPAP system showed a spherical shaped particulate formulation with a unimodal particle size distribution of average size ∼0.685 µm and a zeta potential of +0.82 mV. The DPAP formulation showed a high encapsulation efficiency of 89.4 ± 3.6%, a loading capacity of 17.89 ± 0.72 mg BSA protein/100 mg PLGA polymeric particles, low cytotoxicity and a controlled drug release characteristics in 43 days. The results demonstrate a great promise in the development of DPAP formulation for enhanced in vivo cell targeting. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:249-261, 2018.
    Matched MeSH terms: Nanoparticles/therapeutic use
  7. Gaddam SA, Kotakadi VS, Subramanyam GK, Penchalaneni J, Challagundla VN, Dvr SG, et al.
    Sci Rep, 2021 11 09;11(1):21969.
    PMID: 34753977 DOI: 10.1038/s41598-021-01281-8
    The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var. bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of its high negative zeta potential (- 34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use
  8. Demirdöğen RE, Emen FM, Ocakoglu K, Murugan P, Sudesh K, Avşar G
    Int J Biol Macromol, 2018 Feb;107(Pt A):436-445.
    PMID: 28888547 DOI: 10.1016/j.ijbiomac.2017.09.011
    Carbon dioxide assisted particle formation combined with electrospraying using supercritical CO2 (scCO2) as an aid (Carbon Dioxide Assisted Nebulization-Electrodeposition, CAN-ED) was used to produce Bortezomib loaded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(3HB-co-3HHx) nanoparticles for sustained release. The morphology and structure of the prepared nanoparticles were investigated by SEM, TEM and FT-IR spectroscopy. Average diameter of particles obtained was 155nm and the average core sizes of P(3HB-co-3HHx) nanoparticles were between 6 and 13nm. The drug loading capacity, drug release and stability of Bortezomib loaded P(3HB-co-3HHx) nanoparticles were analyzed. The maximum loading capacity was achieved at pH=6.0 in phosphate buffer (K2HPO4/KH2PO4). It was found that temperature did not affect the stability of Bortezomib loaded nanoparticles and it was good both at 37°C and 4°C. This study pointed out that CAN-ED is a green method to produce P(3HB-co-3HHx) nanoparticles for pH responsive targeting of Bortezomib especially to parts of the body where size exclusion is not crucial.
    Matched MeSH terms: Nanoparticles/therapeutic use
  9. AlMatar M, Makky EA, Var I, Koksal F
    Curr Drug Deliv, 2018;15(4):470-484.
    PMID: 29219055 DOI: 10.2174/1567201815666171207163504
    BACKGROUND: Until recently, one of the main reasons for mortality has been infectious diseases, and bacteria that are drug-resistant have emerged as a result of the wide application, as well as the misuse of antibacterial medications. Having multidrug-resistance, bacteria present a great problem for the efficient management of bacterial infections and this challenge has resulted in the creation of other means of dealing with bacterial diseases. Of late, metallic nanoparticles (NPs), employed as antibacterial agents, have the potential for use against resistance to bacterial drugs.

    OBJECTIVE: The mechanisms of bacterial resistance are described in this review and this is followed by an outline of the features and uses of metallic NPs as antibiotic agents to address bacteria that are antibiotic- sensitive and resistant. Additionally, a general impression of metallic NPs as antibiofilm bactericidal agents is presented.

    CONCLUSION: Biofilms and bacterial strains that are resistant to antibiotics present a grave public health challenge and this has enhanced the need to develop new bactericidal agents. Therefore, nanomaterials are considered as a potential platform for managing bacterial infections.

    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  10. Rudramurthy GR, Swamy MK
    J Biol Inorg Chem, 2018 Dec;23(8):1185-1204.
    PMID: 30097748 DOI: 10.1007/s00775-018-1600-6
    Nanotechnology advancements have led to the development of its allied fields, such as nanoparticle synthesis and their applications in the field of biomedicine. Nanotechnology driven innovations have given a hope to the patients as well as physicians in solving the complex medical problems. Nanoparticles with a size ranging from 0.2 to 100 nm are associated with an increased surface to volume ratio. Moreover, the physico-chemical and biological properties of nanoparticles can be modified depending on the applications. Different nanoparticles have been documented with a wide range of applications in various fields of medicine and biology including cancer therapy, drug delivery, tissue engineering, regenerative medicine, biomolecules detection, and also as antimicrobial agents. However, the development of stable and effective nanoparticles requires a profound knowledge on both physico-chemical features of nanomaterials and their intended applications. Further, the health risks associated with the use of engineered nanoparticles needs a serious attention.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  11. Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, et al.
    Int J Nanomedicine, 2020;15:275-300.
    PMID: 32021180 DOI: 10.2147/IJN.S233789
    Gold nanoparticles (AuNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. There are various methods to synthesize AuNPs which are generally categorized into two main types: chemical and physical synthesis. Continuous efforts have been devoted to search for other more environmental-friendly and economical large-scale methods, such as environmentally friendly biological methods known as green synthesis. Green synthesis is especially important to minimize the harmful chemical and toxic by-products during the conventional synthesis of AuNPs. Green materials such as plants, fungi, microorganisms, enzymes and biopolymers are currently used to synthesize various NPs. Biosynthesized AuNPs are generally safer for use in biomedical applications since they come from natural materials themselves. Multiple surface functionalities of AuNPs allow them to be more robust and flexible when combined with different biological assemblies or modifications for enhanced applications. This review focuses on recent developments of green synthesized AuNPs and discusses their numerous biomedical applications. Sources of green materials with successful examples and other key parameters that determine the functionalities of AuNPs are also discussed in this review.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  12. Kura AU, Ain NM, Hussein MZ, Fakurazi S, Hussein-Al-Ali SH
    Int J Mol Sci, 2014;15(4):5916-27.
    PMID: 24722565 DOI: 10.3390/ijms15045916
    Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 µg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA) released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment.
    Matched MeSH terms: Nanoparticles/therapeutic use
  13. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al.
    Parasitol Int, 2016 Jun;65(3):276-84.
    PMID: 26873539 DOI: 10.1016/j.parint.2016.02.003
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  14. Najafi R, Hosseini A, Ghaznavi H, Mehrzadi S, Sharifi AM
    Brain Res Bull, 2017 May;131:117-122.
    PMID: 28373151 DOI: 10.1016/j.brainresbull.2017.03.013
    OBJECTIVE: Neuropathies are a nerve disorders that caused by diabetes. Neuropathy affects over 50% of diabetic patients. High blood glucose and their toxic byproducts are the main causes for nerve dysfunction. In the present study, we examined the neroprotective effects of cerium oxide (CeO2) nanoparticles in diabetic rats.

    METHOD: Rats divided into four groups: control group, diabetic group, the diabetic group treated with CeO2nanoparticle at a dose of 65mg/kg and diabetic group received CeO2nanoparticle at a dose of 85mg/kg. Diabetes was induced by single intraperitoneal injection of 65mg/kg streptozotocin (STZ). 8 weeks after the induction of diabetes, body weight and pain sensitivity in all groups were measured. The blood sample was collected for biochemical analysis. The dorsal root ganglion (DRG) neurons were isolated for histopathological stain and morphometric parameters studies.

    RESULTS: Reduction of body weight, total thiol molecules (TTM), total antioxidant power (TAP) and ADP/ATP ratio in diabetic rat was reversed by CeO2nanoparticles administration. We showed that lipid peroxidation (LPO) and nociception latency were significantly increased in STZ-treated rats and decreased after CeO2nanoparticles administration. DRG neurons showed obvious vacuole and various changes in diameter, area and the count of A and B cells in STZ-diabetic rat. CeO2nanoparticles improved the histopathology and morphological abnormalities of DRG neurons.

    CONCLUSION: Our study concluded the CeO2nanoparticles have a protective effect against the development of DN.

    Matched MeSH terms: Nanoparticles/therapeutic use
  15. Kusrini E, Sabira K, Hashim F, Abdullah NA, Usman A, Putra N, et al.
    Acta Ophthalmol, 2021 Mar;99(2):e178-e188.
    PMID: 32701190 DOI: 10.1111/aos.14541
    PURPOSE: Contact lenses have direct contact with the corneal surface and can induce sight-threatening infection of the cornea known as Acanthamoeba keratitis. The objective of this study was to evaluate the dysprosium-based nanoparticles (Dy-based NPs), namely Fe3 O4 -PEG-Dy2 O3 nanocomposites and Dy(OH)3 nanorods, as an active component against Acanthamoeba sp., as well as the possibility of their loading onto contact lenses as the drug administering vehicle to treat Acanthamoeba keratitis (AK).

    METHODS: The Dy-based NPs were synthesized, and they were loaded onto commercial contact lenses. The loading content of the NPs and their release kinetics was determined based on the absorbance of their colloidal solution before and after soaking the contact lenses. The cytotoxicity of the NPs was evaluated, and the IC50 values of their antiamoebic activity against Acanthamoeba sp. were determined by MTT colorimetric assay, followed by observation on the morphological changes by using light microscopy. The mechanism of action of the Dy-based NPs against Acanthamoeba sp. was evaluated by DNA laddering assays.

    RESULTS: The loading efficiencies of the Dy-based NPs onto the contact lens were in the range of 30.6-36.1% with respect to their initial concentration (0.5 mg ml-1 ). The Dy NPs were released with the flux approximately 5.5-11 μg cm-2  hr-1 , and the release was completed within 10 hr. The emission of the NPs consistently showed a peak at 575 nm due to Dy3+ ion, offering the possible monitoring and tracking of the NPs. The SEM images indicated the NPs are aggregated on the surface of the contact lenses. The DNA ladder assay suggested that the cells underwent DNA fragmentation, and the cell death was due most probably to necrosis, rather than apoptosis. The cytotoxicity assay of Acanthamoeba sp. suggested that Fe3 O4 -PEG, Fe3 O4 -PEG-Dy2 O3 , Dy(NO3 )3 .6H2 O and Dy(OH)3 NPs have an antiamoebic activity with the IC50 value being 4.5, 5.0, 9.5 and 22.5 μg ml-1 , respectively.

    CONCLUSIONS: Overall findings in this study suggested that the Dy-based NPs can be considered as active antiamoebic agents and possess the potential as drugs against Acanthamoeba sp. The NPs could be loaded onto the contact lenses; thus, they can be potentially utilized to treat Acanthamoeba keratitis (AK).

    Matched MeSH terms: Nanoparticles/therapeutic use*
  16. Ahmad P, Khandaker MU, Muhammad N, Rehman F, Ullah Z, Khan G, et al.
    Appl Radiat Isot, 2020 Dec;166:109404.
    PMID: 32956924 DOI: 10.1016/j.apradiso.2020.109404
    The shortcomings in Boron neutron capture therapy (BNCT) and Hyperthermia for killing the tumor cell desired for the synthesis of a new kind of material suitable to be first used in BNCT and later on enable the conditions for Hyperthermia to destroy the tumor cell. The desire led to the synthesis of large band gap semiconductor nano-size Boron-10 enriched crystals of hexagonal boron nitride (10BNNCs). The contents of 10BNNCs are analyzed with the help of x-ray photoelectron spectroscopy (XPS) and counter checked with Raman and XRD. The 10B-contents in 10BNNCs produce 7Li and 4He nuclei. A Part of the 7Li and 4He particles released in the cell is allowed to kill the tumor (via BNCT) whereas the rest produce electron-hole pairs in the semiconductor layer of 10BNNCs suggested to work in Hyperthermia with an externally applied field.
    Matched MeSH terms: Nanoparticles/therapeutic use
  17. Suk KH, Gopinath SCB
    Curr Med Chem, 2017;24(30):3310-3321.
    PMID: 28464786 DOI: 10.2174/0929867324666170502122444
    BACKGROUND: Drug encapsulated nanoparticle has the potency to act as an effective antidote for various diseases. It is possible to enhance the bioavailability of drug encapsulated nanoparticle, whereby the yield is significantly higher compared to the standard formulation. The development with drug encapsulated nanoparticle has been improved drastically after demonstrating its capability of showing the enhanced thermophysical properties and stability of the drug. It is also utilized widely in cancer diagnoses, whereby the surface of the nanoparticle can be modified to enable the nanocarriers to reach the targeted location. Thus, the encapsulated nanoparticle can reveal neural stem cell differentiation due to the multifaceted nature and the biophysical cues to control the cell differentiation.

    OBJECTIVE: In this overview, different advantages of the drug encapsulated nanoparticle for the downstream applications are narrated with its appealing characteristics.

    CONCLUSION: The application of the drug encapsulated nanoparticle is unrestricted as it can be customized to the specific target cell in the living system.

    Matched MeSH terms: Nanoparticles/therapeutic use
  18. Nawaz A, Wong TW
    J Invest Dermatol, 2018 11;138(11):2412-2422.
    PMID: 29857069 DOI: 10.1016/j.jid.2018.04.037
    5-Fluorouracil delivery profiles in the form of chitosan-folate submicron particles through skin and melanoma cells in vitro were examined using microwaves as the penetration enhancer. The in vivo pharmacokinetic profile of 5-fluorouracil was also determined. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate was synthesized and processed into submicron particles by spray-drying technique. The size, zeta potential, morphology, drug content, and drug release, as well as skin permeation and retention, pharmacokinetics, in vitro SKMEL-28 melanoma cell line cytotoxicity, and intracellular trafficking profiles of drug/particles, were examined as a function of skin/melanoma cell treatment by microwaves at 2,450 MHz for 5 + 5 minutes. The level of skin drug/particle retention in vitro and in vivo increased in skin treated by microwaves. This was facilitated by the drug conjugating to chitosan and microwaves fluidizing both the protein and lipid domains of epidermis and dermis. The uptake of chitosan-folate particles by melanoma cells was mediated via lipid raft route. It was promoted by microwaves, which fluidized the lipid and protein regimes of the cell membrane, and this increased drug cytotoxicity. In vivo pharmacokinetic study indicated skin treatment by microwave-enhanced drug retention but not permeation. The combination of microwaves and submicron particles synergized skin drug retention and intracellular drug delivery.
    Matched MeSH terms: Nanoparticles/therapeutic use*
  19. Sisin NNT, Abdul Razak K, Zainal Abidin S, Che Mat NF, Abdullah R, Ab Rashid R, et al.
    Int J Nanomedicine, 2019;14:9941-9954.
    PMID: 31908451 DOI: 10.2147/IJN.S228919
    Purpose: The aim of this study was to investigate the potential of the synergetic triple therapeutic combination encompassing bismuth oxide nanoparticles (BiONPs), cisplatin (Cis), and high dose rate (HDR) brachytherapy with Ir-192 source in breast cancer and normal fibroblast cell line.

    Methods: In vitro models of breast cancer cell lines (MCF-7, MDA-MB-231) and normal fibroblast cell line (NIH/3T3) were employed. Cellular localization and cytotoxicity studies were conducted prior to inspection on the radiosensitization effects and generation of reactive oxygen species (ROS) on three proposed radiosensitizers: BiONPs, Cis, and BiONPs-Cis combination (BC). The optimal, non-cytotoxic concentration of BiONPs (0.5 mM) and the 25% inhibitory concentration of Cis (1.30 µM) were applied. The radiosensitization effects were evaluated by using a 0.38 MeV Iridium-192 HDR brachytherapy source over a prescribed dose range of 0 Gy to 4 Gy.

    Results: The cellular localization of BiONPs was visualized by light microscopy and accumulation of the BiONPs within the vicinity of the nuclear membrane was observed. Quantification of the sensitization enhancement ratio extrapolated from the survival curves indicates radiosensitization effects for MCF-7 and MDA-MB-231 when treated with BiONPs, Cis, and BC. However, NIH/3T3 cells exhibited contradictive behavior as it only reacted towards the BC combination. Nonetheless, the MCF-7 cell line loaded with BC shows the highest SER of 4.29. ROS production analysis, on the other hand, shows that Cis and BC radiosensitizers generated the highest free radicals in comparison to BiONPs alone.

    Conclusion: A BiONPs-Cis combination was unveiled as a novel approach that offers promising radiosensitization enhancement that will increase the efficiency of tumor control while preserving the normal tissue at a reduced dose. This data is the first precedent to prove the synergetic implication of BiONPs, Cis, and HDR brachytherapy that will be beneficial for future chemoradiotherapy strategies in cancer care.

    Matched MeSH terms: Nanoparticles/therapeutic use
  20. Darvishi B, Dinarvand R, Mohammadpour H, Kamarul T, Sharifi AM
    Mol Pharm, 2021 09 06;18(9):3302-3325.
    PMID: 34297586 DOI: 10.1021/acs.molpharmaceut.1c00248
    Microvascular complications are among the major outcomes of patients with type II diabetes mellitus, which are the consequences of impaired physiological functioning of small blood vessels and angiogenic responses in these patients. Overproduction and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl byproduct of glycolysis pathway, has been acclaimed as the main inducer of impaired angiogenic responses and microvascular dysfunction in diabetic patients with uncontrolled hyperglycemia. Hence, an effective approach to overcome diabetes-associated microvascular complications is to neutralize the deleterious activity of enhanced the concentration of MGO in the body. Owing to the glycation inhibitory activity of Aloe vera whole extract, and capability of l-carnosine, an endogenous dipeptide, in attenuating MGO's destructive activity, we examined whether application of a combination of l-carnosine and A. vera could be an effective way of synergistically weakening this reactive dicarbonyl's impaired angiogenic effects. Additionally, overcoming the poor cellular uptake and internalization of l-carnosine and A. vera, a nanophytosomal formulation of the physical mixture of two compounds was also established. Although l-carnosine and A. vera at whole studied combination ratios could synergistically enhance viability of human umbilical vein endothelial cells (HUVECs) treated with MGO, the 25:1 w/w ratio was the most effective one among the others (27 ± 0.5% compared to 12 ± 0.3 to 18 ± 0.4%; F (4, 15) = 183.9, P < 0.0001). Developing dual nanophytosomes of l-carnosine/A. vera (25:1) combination ratio, we demonstrated superiority of the nanophytosomal formulation in protecting HUVECs against MGO-induced toxicity following a 24-72 h incubation period (17.3, 15.8, and 12.4% respectively). Moreover, 500 μg/mL concentration of dual l-carnosine/A. vera nanophytosomes exhibited a superior free radical scavenging potency (63 ± 4 RFU vs 83 ± 5 RFU; F (5, 12) = 54.81, P < 0.0001) and nitric oxide synthesizing capacity (26.11 ± 0.19 vs 5.1 ± 0.33; F (5, 12) = 2537, P < 0.0001) compared to their physical combination counterpart. Similarly, 500 μg/mL dual l-carnosine/A. vera nanophytosome-treated HUVECs demonstrated a superior tube formation capacity (15 ± 3 vs 2 ± 0.3; F (5, 12) = 30.87, P < 0.001), wound scratch healing capability (4.92 ± 0.3 vs 3.07 ± 0.3 mm/h; F (5, 12) = 39.21, P < 0.0001), and transwell migration (586 ± 32 vs 394 ± 18; F (5, 12) = 231.8, P < 0.001) and invasion (172 ± 9 vs 115 ± 5; F (5, 12) = 581.1, P < 0.0001) activities compared to the physical combination treated ones. Further confirming the proangiogenic activity of the dual l-carnosine/A. vera nanophytosomes, a significant shift toward expression of proangiogenic genes including HIF-1α, VEGFA, bFGF, KDR, and Ang II was reported in treated HUVECs. Overall, dual l-carnosine/A. vera nanophytosomes could be a potential candidate for attenuating type II DM-associated microvascular complications with an impaired angiogenesis background.
    Matched MeSH terms: Nanoparticles/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links