Displaying publications 21 - 40 of 839 in total

Abstract:
Sort:
  1. Sahhugi Z, Hasenan SM, Jubri Z
    Oxid Med Cell Longev, 2014;2014:673628.
    PMID: 25505937 DOI: 10.1155/2014/673628
    Aging is characterized by progressive decline in physiological and body function due to increase in oxidative damage. Gelam honey has been accounted to have high phenolic and nonphenolic content to attenuate oxidative damage. This study was to determine the effect of local gelam honey on oxidative damage of aged rats. Twenty-four male Spraque-Dawley rats were divided into young (2 months) and aged (19 months) groups. Each group was further divided into control (fed with plain water) and supplemented with 2.5 mg/kg body weight of gelam honey for 8 months. DNA damage level was determined by comet assay and plasma malondialdehyde (MDA) by high performance liquid chromatography (HPLC). The activity of blood and cardiac antioxidant enzymes was determined by spectrophotometer. The DNA damage and MDA level were reduced in both gelam honey supplemented groups. Gelam honey increases erythrocytes CAT and cardiac SOD activities in young and cardiac CAT activity in young and aged groups. The DNA damage was increased in the aged group compared to young group, but reduced at the end of the study. The decline of oxidative damage in rats supplemented with gelam honey might be through the modulation of antioxidant enzyme activities.
    Matched MeSH terms: Oxidative Stress/drug effects*
  2. Pandanaboina SC, Kondeti SR, Rajbanshi SL, Kunala PN, Pandanaboina S, Pandanaboina MM, et al.
    Food Chem, 2012 May 1;132(1):150-9.
    PMID: 26434274 DOI: 10.1016/j.foodchem.2011.10.046
    Recent advances in our understanding of the pathogenesis of alcohol-induced hepato-renal injury and the development of new approaches to its treatment have been reported in various works. This study involves alcohol-induced oxidative stress linked to the metabolism of ethanol involving both mitochondrial and peroxisomal fractions of liver and kidney. Alcohol treatment resulted in the depletion of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), Glutathione-S-Transferase (GST) activities, and reduced glutathione (GSH) content, higher level of malondialdehyde (MDA) and lower levels of protein carbonyls (PC) causing malfunction of hepatic and renal tissues, when compared to control rats. Thespesia populnea (TP) leaf extracts, administered to chronic alcohol ingested rats, were envisaged to possess significant antioxidant defence properties and help in the recovery of tissues from alcohol-induced oxidative damage. The results showed that degenerative changes in hepatic and renal cells of alcoholic groups were minimized by the administration of TP leaf extracts as also revealed by histopathological examination. The current findings indicate that treatment with TP extracts reduces alcohol-induced oxidative stress, thereby protecting the hepatic and renal tissue from alcohol-induced damage.
    Matched MeSH terms: Oxidative Stress/drug effects*
  3. Chandramathi S, Suresh K, Anita ZB, Kuppusamy UR
    Parasitology, 2009 Mar;136(3):359-63.
    PMID: 19154644 DOI: 10.1017/S0031182008005465
    Oxidative stress has been implicated as an important pathogenic factor in the pathophysiology of various life-threatening diseases such as cancer, cardiovascular diseases and diabetes. It occurs when the production of free radicals (generated during aerobic metabolism, inflammation, and infections) overcome the antioxidant defences in the body. Although previous studies have implied that oxidative stress is present in serum of patients with parasitic infection there have been no studies confirming oxidative stress levels in the Malaysian population infected with intestinal parasites. Three biochemical assays namely hydrogen peroxide (H2O2), lipid peroxidation (LP) and advanced oxidative protein product (AOPP) assays were carried out to measure oxidative stress levels in the urine of human subjects whose stools were infected with parasites such as Blastocystis hominis, Ascaris, Trichuris, hookworm and microsporidia. The levels of H2O2, AOPP and LP were significantly higher (P<0.001, P<0.05 and P<0.05 respectively) in the parasite-infected subjects (n=75) compared to the controls (n=95). In conclusion, the study provides evidence that oxidative stress is elevated in humans infected by intestinal parasites. This study may influence future researchers to consider free radical-related pathways to be a target in the interventions of new drugs against parasitic infection and related diseases.
    Matched MeSH terms: Oxidative Stress*
  4. Prakash A, Dhaliwal GK, Kumar P, Majeed AB
    Int J Neurosci, 2017 Feb;127(2):99-108.
    PMID: 27044501
    Alzheimer's disease (AD) is the most common form of dementia. Several hypotheses have been put forward to explain the basis of disease onset and progression. A complicated array of molecular events has been implicated in the pathogenesis of AD. It is attributed to a variety of pathological conditions that share similar critical processes, such as oxidative stress, proteinaceous aggregations, mitochondrial dysfunctions and energy failure. There is increasing evidence suggesting that metal homeostasis is dysregulated in the pathology of AD. Biometals play an important role in the normal body functioning but AD may be mediated or triggered by disproportion of metal ions leading to changes in critical biological systems and initiating a cascade of events finally leading to neurodegeneration and cell death. The link is multifactorial, and although the source of the shift in oxidative homeostasis is still unclear, current evidence points to changes in the balance of redox transition metals, especially iron, copper (Cu) and other trace metals. Their levels in the brain are found to be elevated in AD. In other neurodegenerative disorders, Cu, zinc, aluminum and manganese are involved. This paper is a review of recent advances of the role of metals in the pathogenesis and pathophysiology of AD and related neurodegenerative diseases.
    Matched MeSH terms: Oxidative Stress/physiology
  5. Zaidun NH, Thent ZC, Latiff AA
    Life Sci, 2018 Sep 01;208:111-122.
    PMID: 30021118 DOI: 10.1016/j.lfs.2018.07.017
    The incidence of diseases related to oxidative stress disorders have been increased dramatically. Alternatives medicine or the active compound extracted from the natural products received great attention among researches at the present era. Naringenin (NG), a common dietary flavanone, found in the citrus fruits such as oranges, bergamots, lemons and grapefruit. It is used in the several oxidative stress disorders as the nutraceutical value of the compound emerges. Functionally, the antioxidants effect of NG is primarily attributed by reducing the free radical like reactive oxygen species (ROS) and enhancing the antioxidants activity such as superoxide dismutase (SOD), catalase, glutathione (GSH) in chronic diseases such as cardiovascular, neurodegenerative, diabetes, pulmonary, cancer and nephropathy. The present review article summarised the antioxidant property of NG and its molecular mechanism towards such diseases. Pubmed, Science Direct, Scopus, Web of Science and Google scholar were searched using the terms 'naringenin', 'oxidative stress disorders', 'naringenin and cardiovascular diseases', 'naringenin and diabetes mellitus', 'naringenin and neurodegenerative diseases', 'naringenin and pulmonary diseases', 'naringenin and cancer' and 'naringenin and nephropathy'. There has been special attention on evaluating anti-oxidative effect of NG on neurodegenerative diseases. Although some mechanisms of action remain vague, the current review highlighted the potential use of NG as a oxidative stress reliever which can be used as next prophylaxis compound in the treatment of the various oxidative stress disorders.
    Matched MeSH terms: Oxidative Stress/drug effects*
  6. Rasool M, Malik A, Abdul Basit Ashraf M, Mubbin R, Ayyaz U, Waquar S, et al.
    Bioengineered, 2021 12;12(1):4593-4604.
    PMID: 34346287 DOI: 10.1080/21655979.2021.1955528
    The Vaccinium genus comprises more than 126 genera of perennial flowering plants that are commonly adapted to poor and acidic soils or epiphytic environments. Their molecular and genomic characterization is a result of the recent advent in next-generation sequencing technology. In the current research, extracts were prepared in different media, such as petroleum ether, methanol and ethanol. An extract of Vaccinium macrocarpon (cranberry) was used at a dose of 200-400 mg/kg by weight (B.wt). Levels of oxidative stress markers, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), advanced oxidation protein products (AOPPs) and malondialdehyde (MDA), were measured. A histopathological study of six vital organs in rats was also conducted. The results indicated that the antioxidant levels were lower in the group given only ethylene oxide (EtO) but higher in the groups receiving cranberry extract as a treatment. Major improvements were also observed in stress markers such as advanced oxidation protein products (AOPPs) and MDA following cranberry treatment. Histopathological changes induced by EtO were observed in the heart, kidney, liver, lung, stomach and testis and were reversed following cranberry treatment. The major toxic effects of EtO were oxidative stress and organ degeneration, as observed from various stress markers and histopathological changes. Our study showed that this extract contains strong antioxidant properties, which may contribute to the amelioration of the observed toxic effects.
    Matched MeSH terms: Oxidative Stress/drug effects*
  7. Abboud MM, Al-Rawashde FA, Al-Zayadneh EM
    J Asthma, 2022 Nov;59(11):2154-2161.
    PMID: 34855555 DOI: 10.1080/02770903.2021.2008426
    BACKGROUNDS: The development of asthma is highly affected by exposure to exogenous and endogenous oxidative molecules, but the impact of this exposure on the pathophysiology of asthma has received little attention.

    OBJECTIVES: Evaluating group of selective oxidative stress markers as a tool in the management of asthma disease.

    METHODS: In comparison with matched healthy controls, levels of the oxidant and antioxidant markers: lipid peroxidation malondialdehyde (MDA), Total glutathione (tGSH), Uric acid (UA), Glutathione peroxidase (GPx), Catalase (CAT) superoxide dismutase (SOD), and Total antioxidant capacity (TAC) were assessed in serum and saliva of different asthma groups.

    RESULTS: All oxidative markers in serum and saliva of asthma patients showed significant alterations from normal healthy controls (P  0.05).

    CONCLUSION: Determination of the oxidative markers GPx, CAT, UA in serum or saliva can distinguish asthma from healthy states. The serum levels of UA and TAC are highly effective in monitoring asthma severity, while the salivary GPx, CAT, UA, MDA are beneficial in the management of childhood asthma. Discrimination of the age factor between asthma groups can be achieved by testing GPx, SOD, TAC in serum.

    Matched MeSH terms: Oxidative Stress/physiology
  8. Jing X, Sarker MMR, Gifari MAJ, Maruf MRA, Alam S, Khan F, et al.
    Cell Mol Biol (Noisy-le-grand), 2022 Sep 30;68(9):1-13.
    PMID: 36905282 DOI: 10.14715/cmb/2022.68.9.1
    Piper betle L. leaves are very popular and traditionally used to chew with betel nut in many Asian countries. In this study, P. betle leaves juice (PBJ) was subjected to evaluation for its antihyperlipidemic activity in the high-fat-diet-induced hyperlipidemic rats model. Swiss albino rats were allowed to high-fat- diet for one month, followed by concurrent administration of PBJ for another month. The rats were then sacrificed and collected blood, tissues and organs. Pharmacokinetic, toxicological studies and molecular docking studies were performed using SwissADME, admetSAR and schrodinger suit-2017. Our investigation showed a promising effect of PBJ on body weight, lipid profile, oxidative and antioxidative enzymes, and the principle enzyme responsible for the synthesis of cholesterol. PBJ at 0.5 - 3.0 mL/rat significantly reduced body weight of hyperlipidemic rats compared to control. PBJ at the doses of 1.0, 1.5, 2.0, and 3.0 mL/rat significantly (p<0.05, p<0.01, p<0.001) improved the levels of TC, LDL-c, TG, HDL-c and VLDL-c. Similarly, PBJ doses starting from 1.0 mL/rat to 3.0 mL/rat reduced the oxidative biomarkers AST, ALT, ALP, and creatinine. The level of HMG-CoA was significantly reduced by PBJ doses 1.5, 2, and 3 ml/rat. A number of compounds have been found to have good pharmacokinetic profile and safety and 4-coumaroylquinic acid exerted the best docking score among them. Thus our findings clearly demonstrated the potential lipid-lowering activities of PBJ both in vivo and in silico studies. PBJ can be a good candidate for the development of antihyperlipidemic medication or as an alternative medicine.
    Matched MeSH terms: Oxidative Stress*
  9. Ma NL, Rahmat Z, Lam SS
    Int J Mol Sci, 2013 Apr 08;14(4):7515-41.
    PMID: 23567269 DOI: 10.3390/ijms14047515
    Physiological and ecological constraints that cause the slow growth and depleted production of crops have raised a major concern in the agriculture industry as they represent a possible threat of short food supply in the future. The key feature that regulates the stress signaling pathway is always related to the reactive oxygen species (ROS). The accumulation of ROS in plant cells would leave traces of biomarkers at the genome, proteome, and metabolome levels, which could be identified with the recent technological breakthrough coupled with improved performance of bioinformatics. This review highlights the recent breakthrough in molecular strategies (comprising transcriptomics, proteomics, and metabolomics) in identifying oxidative stress biomarkers and the arising opportunities and obstacles observed in research on biomarkers in rice. The major issue in incorporating bioinformatics to validate the biomarkers from different omic platforms for the use of rice-breeding programs is also discussed. The development of powerful techniques for identification of oxidative stress-related biomarkers and the integration of data from different disciplines shed light on the oxidative response pathways in plants.
    Matched MeSH terms: Oxidative Stress/physiology*
  10. Erejuwa OO, Sulaiman SA, Ab Wahab MS
    Molecules, 2012 Apr 12;17(4):4400-23.
    PMID: 22499188 DOI: 10.3390/molecules17044400
    The global prevalence of chronic diseases such as diabetes mellitus, hypertension, atherosclerosis, cancer and Alzheimer's disease is on the rise. These diseases, which constitute the major causes of death globally, are associated with oxidative stress. Oxidative stress is defined as an "imbalance between oxidants and antioxidants in favor of the oxidants, potentially leading to damage". Individuals with chronic diseases are more susceptible to oxidative stress and damage because they have elevated levels of oxidants and/or reduced antioxidants. This, therefore, necessitates supplementation with antioxidants so as to delay, prevent or remove oxidative damage. Honey is a natural substance with many medicinal effects such as antibacterial, hepatoprotective, hypoglycemic, reproductive, antihypertensive and antioxidant effects. This review presents findings that indicate honey may ameliorate oxidative stress in the gastrointestinal tract (GIT), liver, pancreas, kidney, reproductive organs and plasma/serum. Besides, the review highlights data that demonstrate the synergistic antioxidant effect of honey and antidiabetic drugs in the pancreas, kidney and serum of diabetic rats. These data suggest that honey, administered alone or in combination with conventional therapy, might be a novel antioxidant in the management of chronic diseases commonly associated with oxidative stress. In view of the fact that the majority of these data emanate from animal studies, there is an urgent need to investigate this antioxidant effect of honey in human subjects with chronic or degenerative diseases.
    Matched MeSH terms: Oxidative Stress/drug effects
  11. Karim NA, Noor AM, Lee YY, Lai OM
    J Food Sci, 2015 Dec;80(12):C2678-85.
    PMID: 26523850 DOI: 10.1111/1750-3841.13119
    The oxidative and thermal stability of low diglycerides palm oil produced via silica treatment (sPO) and enzymatic treatment (ePO) compared with standard quality palm oil (SQ) and premium quality palm oil (PQ) was investigated. Both of the oils displayed better oxidative stability compared with SQ as well as significantly higher (P < 0.05) thermal resistance and oxidative strength than SQ and PQ due to lower amounts of partial glycerides. Although the initial induction periods (IPs) of sPO and ePO were significantly lower compared with SQ and PQ, both the oils showed slower drops in their IP values. The darkening effect after frying was significantly (P < 0.05) slower in sPO compared with SQ, PQ, and ePO. Besides, there is no difference p > 0.05 in the rate of FFA formation between sPO and PQ. The anisidine value and peroxide values were lowest in sPO, followed by ePO, PQ, and SQ.
    Matched MeSH terms: Oxidative Stress
  12. Mior Azmai, W. N. S., Abdul Latif, N. S., Md Zain, N.
    MyJurnal
    Tomatoes require appropriate environment to stay sturdy due to earlier decay process. Deterioration causes short shelf life of tomatoes with unfavourable quality, resulting in potential rejection by customers. The objective of the study is to observe the effect of combined coatings of chitosan (Ch) and cinnamic acid (CA) in extending the tomato shelf life. Layer by layer coating of chitosan prior to the cinnamic acid (single coating for each) were applied on fresh graded tomato at two maturity stages; breaker and turning. Twelve days observations at ambient temperature with three-day intervals were recorded. Combined coating of chitosan and cinnamic acid were expected to influence firmness, TSS value, hue angle and weight loss. Results showed that a combined coating of 1.0% Ch + 3 mM CA has significant increament at breaker stage to firmness (8.26 N), hue angle (60.42%) and weight loss value (6.51%) compared to untreated tomato whereas for turning stage, the results showed there were no significant different in all parameters observed except the changes of fruit sweetness (TSS). 1.0% Ch + 4 mM CA show highest TSS value, 3.48% indicating 21% difference than untreated tomato (3.27%). Cinnamic acid helped chitosan in improving coating ability by serving better barrier from pathogen and oxidative gas penetration to prevent earlier spoilage problem.
    Matched MeSH terms: Oxidative Stress
  13. Gundamaraju R, Lu W, Manikam R
    Cancers (Basel), 2021 Jan 23;13(3).
    PMID: 33498743 DOI: 10.3390/cancers13030432
    The Warburg effect has immensely succored the study of cancer biology, especially in highlighting the role of mitochondria in cancer stemness and their benefaction to the malignancy of oxidative and glycolytic cancer cells. Mitochondrial genetics have represented a focal point in cancer therapeutics due to the involvement of mitochondria in programmed cell death. The mitochondrion has been well established as a switch in cell death decisions. The mitochondrion's instrumental role in central bioenergetics, calcium homeostasis, and translational regulation has earned it its fame in metastatic dissemination in cancer cells. Here, we revisit and review mechanisms through which mitochondria influence oncogenesis and metastasis by underscoring the oncogenic mitochondrion that is capable of transferring malignant capacities to recipient cells.
    Matched MeSH terms: Oxidative Stress
  14. NG PEI QI, NOR HAYATI IBRAHIM, AZLIN SHAFRINA HASIM
    MyJurnal
    Biopolymer interaction in oil-in-water (o/w) emulsions has been demonstrated to positively modify the emulsion physicochemical properties which lead to desirable stability. The present work focused on the effect of pea protein isolate (PPI), pectin, carboxymethyl cellulose (CMC) and their interaction on physicochemical properties and oxidative stability of o/w emulsions using a mixture design approach. The emulsions were prepared with 40 % sunflower oil stabilized with 1 % of PPI, pectin and CMC, respectively, as well as their mixtures according to a simplex-centroid design (10 points). ThepH values for all emulsions were within acidic condition (3.22 to 4.66) and increased significantly (p
    Matched MeSH terms: Oxidative Stress
  15. Durairajanayagam D, Agarwal A, Baskaran S, Vij S
    Andrologia, 2021 Mar;53(2):e13819.
    PMID: 33620116 DOI: 10.1111/and.13819
    Matched MeSH terms: Oxidative Stress
  16. Noor Zalikha Mohamed Islam, Nadras Othman, Zulkifli Ahmad, Hanafi Ismail
    Sains Malaysiana, 2011;40:1123-1127.
    This paper describes the effect of pro-degradant additives (PDA) on photo-oxidative aging of polypropylene (PP) films after being time accelerated in UV-weathering chamber. Thin films (0.12 mm) containing these additives were prepared by sheeting process. The effect of UV on PP films in the presence of these additives was investigated. Changes in the PP films appearance, tensile properties and carbonyl index (CI) were used to investigate the degradation behavior. The films became completely pulverised after 100 h of photo-oxidative treatment and could not be tested further. Films containing PDA showed rapid loss in tensile properties within 100 h of photo-oxidative aging. In addition, the CI results of photo-oxidative films increased with increasing PDA amount within the time interval of aging and the activity was due to the mechanism reaction of PP with PDA particles. During the aging process the material becomes denser due to tighter packing and incorporation of oxygen into the amorphous regions of the polymer. The results indicated that the presence of PDA contributed to the photo degradation and the activity was very much influenced by the amount PDA.
    Matched MeSH terms: Oxidative Stress
  17. Sains Malaysiana, 2018;47:1393-1400.
    Numerous studies have shown that parasites potentially become bio-accumulators for heavy metals. The heavy metals
    content in parasite-infected fish was reported to be lower compared to the parasite non-infected fish. Evaluation of heavy
    metal content in Nemipterus peronii and Paraphilometroides nemipteri was performed using ICP-OES. Our result has
    shown that arsenic was the most abundance heavy metal content in muscle N. peronii and P. nemipteri, suggesting that
    the parasite has the ability to accumulate heavy metals. Heavy metals were reported to induce oxidative stress where
    glutathione and p38 protein may be involved. Thus, expression of the p38 protein was determined using western blot
    technique and glutathione content was measured fluorometrically. The p38 expression in P. nemipteri of Pulau Kambing
    was higher compared to P. nemipteri of Besut has shown that the parasite may exposed to stress. Glutathione content
    showed no significant changes due to detoxification mechanism occurred in the parasite. In this study, we could conclude
    that P. nemipteri could be a bio-accumulator, whereas p38 protein and glutathione as indicator of stress level in the
    parasite that exposed to the heavy metals.
    Matched MeSH terms: Oxidative Stress
  18. Goh XX, Tang PY, Tee SF
    Asian J Psychiatr, 2022 Jan;67:102932.
    PMID: 34839098 DOI: 10.1016/j.ajp.2021.102932
    Increased reactive species due to the effect of antipsychotics on oxidative stress may be involved in the development of schizophrenia. However, antipsychotics may have different direct antioxidant effects due to their chemical structures. The present meta-analysis aimed to investigate whether the cause increased oxidant status in schizophrenia patients is due to the illness or induction by antipsychotics. Studies published from 1964 to 2021 were selected from Pubmed and Scopus databases. Data were analysed using Comprehensive Meta-Analysis version 2. Effect sizes were calculated and compared between unmedicated and medicated patients and healthy controls. Heterogeneity and publication bias were assessed. Subgroup analyses were conducted on drug-free and drug-naïve patients, and patients treated with atypical and typical antipsychotics. We found that medicated patients had significantly higher malondialdehyde (MDA), thiobarbituric acid reactive substances (TBARS) and total oxidant status (TOS). Meanwhile, significantly increased plasma/serum MDA and nitric oxide (NO) were observed in unmedicated patients only. Higher lipid peroxidation in the drug-naïve group may be associated schizophrenia. However, both atypical and typical antipsychotics may worsen lipid peroxidation. Antipsychotic discontinuation in the drug-free group led to significantly increased plasma/serum NO, with larger effect size than the atypical antipsychotic group. In conclusion, medicated schizophrenia patients were more suffered from increased oxidative stress. Therefore, future study may focus on the mechanism of action of specific antipsychotic on oxidative stress.
    Matched MeSH terms: Oxidative Stress
  19. Morvaridzadeh M, Estêvão MD, Morvaridi M, Belančić A, Mohammadi S, Hassani M, et al.
    Prostaglandins Other Lipid Mediat, 2022 Dec;163:106666.
    PMID: 35914666 DOI: 10.1016/j.prostaglandins.2022.106666
    Conjugated Linoleic Acid (CLA) are thought to pose beneficial effects on inflammatory responses and oxidative stress (OS). Thus, the present systematic review and meta-analysis of randomized controlled trials (RCTs) aimed to assess the net effects of CLA supplementation on various OS parameters and antioxidant enzymes. PubMed/MEDLINE, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials databases were searched for publications on CLA supplementation effects on OS parameters up to March 2021. The data extracted from eligible studies were expressed as standardized mean difference with 95% confidence intervals and then combined into meta-analysis using the random-effects model. Overall, 11 RCTs (enrolling 586 participants) met the inclusion criteria and were included in meta-analysis; however, since those trials evaluated different OS parameters, meta-analysis was carried out considering different sets for each parameter separately. According to our results, CLA supplementation significantly increases 8-iso-PGF2α urinary concentration (SMD: 2; 95% CI: 0.74, 3.27; I2 = 87.7%). On contrary, the intervention does not seem to change 15-keto-dihydro-PGF2α urinary concentration, nor the serum levels of CAT, SOD, GPx and MDA. Taken all together, CLA supplementation does not appear to have substantial effects on OS markers in general; albeit due to relatively small sample size and high level of heterogeneity between studies, the obtained findings should be interpreted with caution. Further large well-designed RCTs, investigating the impact of CLA and including various groups of patients, are still needed.
    Matched MeSH terms: Oxidative Stress
  20. Desai K, Dharaskar S, Khalid M, Gupta TCSM
    Environ Sci Pollut Res Int, 2021 Jun;28(21):26747-26761.
    PMID: 33491146 DOI: 10.1007/s11356-021-12391-1
    The novel phosphonium-based ionic liquid (IL), triphenyl methyl phosphonium tosylate ([TPMP][Tos]), has been synthesized and applied as a phase transfer catalyst (PTC) in the ultrasound-assisted oxidative desulfurization (UAODS). Oxidation of model fuel (MF) containing dibenzothiophene (DBT) was carried out using an equimolar mixture of H2O2-CH3COOH as an oxidant at 40-70 °C in the presence of IL. The sulfur compound is converted into polar sulfone, and the maximum desulfurization efficiency was examined. The effect of process parameters such as reaction temperature, reaction time, molar ratio of oxidant to sulfur (n(O/S)), and the mass ratio of ionic liquid to model fuel (m(IL/MF)) was studied, and the conditions for maximizing the DBT conversion rate were found. Maximum conversion (> 99%) was obtained at a temperature of 70 °C with m(IL/MF) of 0.8. The oxidation reactivity of various sulfur compounds was studied at different time intervals. To verify the effect of ionic liquid and ultrasound irradiation, extractive desulfurization (EDS), oxidative desulfurization (ODS), and UAODS in the presence of IL were carried out. The experimental results show that the UAODS process gives the highest desulfurization efficiency. A kinetic study was performed to estimate the rate constant and the order of oxidation reaction.
    Matched MeSH terms: Oxidative Stress
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links