Displaying publications 21 - 40 of 88 in total

Abstract:
Sort:
  1. Teow SY, Wong MM, Yap HY, Peh SC, Shameli K
    Molecules, 2018 06 06;23(6).
    PMID: 29882775 DOI: 10.3390/molecules23061366
    Nanoparticles (NPs) are nano-sized particles (generally 1⁻100 nm) that can be synthesized through various methods. The wide range of physicochemical characteristics of NPs permit them to have diverse biological functions. These particles are versatile and can be adopted into various applications, particularly in biomedical field. In the past five years, NPs’ roles in biomedical applications have drawn considerable attentions, and novel NPs with improved functions and reduced toxicity are continuously increasing. Extensive studies have been carried out in evaluating antibacterial potentials of NPs. The promising antibacterial effects exhibited by NPs highlight the potential of developing them into future generation of antimicrobial agents. There are various methods to synthesize NPs, and each of the method has significant implication on the biological action of NPs. Among all synthetic methods, green technology is the least toxic biological route, which is particularly suitable for biomedical applications. This mini-review provides current update on the antibacterial effects of NPs synthesized by green technology using plants. Underlying challenges in developing NPs into future antibacterials in clinics are also discussed at the present review.
    Matched MeSH terms: Oxides/chemistry*
  2. Kumar R, Singh L, Zularisam AW, Hai FI
    Bioresour Technol, 2016 Nov;220:537-542.
    PMID: 27614156 DOI: 10.1016/j.biortech.2016.09.003
    This study aims to investigate the potential of porous Co3O4 nanorods as the cathode catalyst for oxygen reduction reaction (ORR) in aqueous air cathode microbial fuel cells (MFCs). The porous Co3O4 nanorods were synthesized by a facile and cost-effective hydrothermal method. Three different concentrations (0.5mg/cm(2), 1mg/cm(2), and 2mg/cm(2)) of Co3O4 nanorods coated on graphite electrodes were used to test its performance in MFCs. The results showed that the addition of porous Co3O4 nanorods enhanced the electrocatalytic activity and ORR kinetics significantly and the overall resistance of the system was greatly reduced. Moreover, the MFC with a higher concentration of the catalyst achieved a maximum power density of 503±16mW/m(2), which was approximately five times higher than the bare graphite electrode. The improved catalytic activity of the cathodes could be due to the porous properties of Co3O4 nanorods that provided the higher number of active sites for oxygen.
    Matched MeSH terms: Oxides/chemistry*
  3. Damanik N, Ong HC, Tong CW, Mahlia TMI, Silitonga AS
    Environ Sci Pollut Res Int, 2018 Jun;25(16):15307-15325.
    PMID: 29721797 DOI: 10.1007/s11356-018-2098-8
    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.
    Matched MeSH terms: Nitrogen Oxides/chemistry
  4. Rosid SJM, Toemen S, Iqbal MMA, Bakar WAWA, Mokhtar WNAW, Aziz MMA
    Environ Sci Pollut Res Int, 2019 Dec;26(36):36124-36140.
    PMID: 31748998 DOI: 10.1007/s11356-019-06607-8
    A rapid growth in the development of power generation and transportation sectors would result in an increase in the carbon dioxide (CO2) concentration in the atmosphere. As it will continue to play a vital role in meeting current and future needs, significant efforts have been made to address this problem. Over the past few years, extensive studies on the development of heterogeneous catalysts for CO2 methanation have been investigated and reported in the literatures. In this paper, a comprehensive overview of methanation research studies over lanthanide oxide catalysts has been reviewed. The utilisation of lanthanide oxides as CO2 methanation catalysts performed an outstanding result of CO2 conversion and improvised the conversion of acidity from CO2 gas to CH4 gas. The innovations of catalysts towards the reaction were discussed in details including the influence of preparation methods, the structure-activity relationships as well as the mechanism with the purpose of outlining the pathways for future development of the methanation process.
    Matched MeSH terms: Oxides/chemistry*
  5. Malekbala MR, Soltani S, Abdul Rashid S, Abdullah LC, Choong TSY
    PLoS One, 2019;14(7):e0219936.
    PMID: 31365558 DOI: 10.1371/journal.pone.0219936
    In this research work, carbon nanofibers (CNFs) were synthesized on honeycomb monolith substrates using injection chemical vapor deposition (ICVD) technique. The effect of various wash-coated materials and catalyst promoter on the growth rate of CNFs on monolith substrates were examined. The characteristics of the synthesized CNFs-coated monolith composites were examined using Raman spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), and Transmission electron microscopy (TEM) techniques. According to the textural characterization study, the specific surface area and pore volume of CNFs-coated monolith composites were significantly improved as compared to bare monolith which might be attributed to the growth of highly pure and aligned CNFs over monolith substrate. Besides that, the synthesized CNFs-coated monolith possessed extremely well thermal stability up to the temperature of 550 °C which was corresponded to the strong attachment of highly graphitized CNFs over monolith substrates.
    Matched MeSH terms: Oxides/chemistry
  6. Ghadiry M, Gholami M, Lai CK, Ahmad H, Chong WY
    PLoS One, 2016;11(4):e0153949.
    PMID: 27101247 DOI: 10.1371/journal.pone.0153949
    Generally, in a waveguide-based humidity sensors, increasing the relative humidity (RH) causes the cladding refractive index (RI) to increase due to cladding water absorption. However, if graphene oxide (GO) is used, a reverse phenomenon is seen due to a gap increase in graphene layers. In this paper, this interesting property is applied in order to fabricate differential humidity sensor using the difference between RI of reduced GO (rGO) and nano-anatase TiO2 in a chip. First, a new approach is proposed to prepare high quality nano-anatase TiO2 in solution form making the fabrication process simple and straightforward. Then, the resulted solutions (TiO2 and GO) are effortlessly drop casted and reduced on SU8 two channels waveguide and extensively examined against several humid conditions. Investigating the sensitivity and performance (response time) of the device, reveals a great linearity in a wide range of RH (35% to 98%) and a variation of more than 30 dB in transmitted optical power with a response time of only ~0.7 sec. The effect of coating concentration and UV treatment are studied on the performance and repeatability of the sensor and the attributed mechanisms explained. In addition, we report that using the current approach, devices with high sensitivity and very low response time of only 0.3 sec can be fabricated. Also, the proposed device was comprehensively compared with other state of the art proposed sensors in the literature and the results were promising. Since high sensitivity ~0.47dB/%RH and high dynamic performances were demonstrated, this sensor is a proper choice for biomedical applications.
    Matched MeSH terms: Oxides/chemistry*
  7. Cahyanto A, Rath P, Teo TX, Tong SS, Malhotra R, Cavalcanti BN, et al.
    J Dent Res, 2023 Dec;102(13):1425-1433.
    PMID: 37861249 DOI: 10.1177/00220345231198185
    Calcium silicate (C3S) cements are available in kits that do not account for patients' specific needs or clinicians' preferences regarding setting time, radiopacity, mechanical, and handling properties. Moreover, slight variations in powder components and liquid content affect cement's properties and bioactivity. Unfortunately, it is virtually impossible to optimize several cement properties simultaneously via the traditional "one variable at a time" strategy, as inputs often induce trade-offs in properties (e.g., a higher water-to-powder ratio [W/P] increases flowability but decreases mechanical properties). Herein, we used Taguchi's methods and genetic algorithms (GAs) to simultaneously analyze the effect of multiple inputs (e.g., powder composition, radiopacifier concentration, and W/P) on setting time, pH, flowability, diametral tensile strength, and radiopacity, as well as prescribe recipes to produce cements with predicted properties. The properties of cements designed with GAs were experimentally tested, and the results matched the predictions. Finally, we show that the cements increased the genetic expression of odonto/osteogenic genes, alkaline phosphatase activity, and mineralization potential of dental pulp stem cells. Hence, GAs can produce cements with tailor-made properties and differentiation potential for personalized endodontic treatment.
    Matched MeSH terms: Oxides/chemistry
  8. Isah AA, Mahat NA, Jamalis J, Attan N, Zakaria II, Huyop F, et al.
    Prep Biochem Biotechnol, 2017 Feb 07;47(2):199-210.
    PMID: 27341522 DOI: 10.1080/10826068.2016.1201681
    The chemical route of producing geranyl propionate involves the use of toxic chemicals, liberation of unwanted by-products as well as problematic separation process. In view of such problems, the use of Rhizomucor miehei lipase (RML) covalently bound onto activated chitosan-graphene oxide (RML-CS/GO) support is suggested. Following analyses using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and thermogravimetry, properties of the RML-CS/GO were characterized. A response surface methodological approach using a 3-level-four-factor (incubation time, temperature, substrate molar ratio, and stirring rate) Box-Behnken design was used to optimize the experimental conditions to maximize the yield of geranyl propionate. Results revealed that 76 ± 0.02% of recovered protein had yielded 7.2 ± 0.04 mg g(-1) and 211 ± 0.3% U g(-1) of the maximum protein loading and esterification activity, respectively. The actual yield of geranyl propionate (49.46%) closely agreed with the predicted value (49.97%) under optimum reaction conditions (temperature: 37.67°C, incubation time: 10.20 hr, molar ratio (propionic acid:geraniol): 1:3.28, and stirring rate: 100.70 rpm) and hence, verifying the suitability of this approach. Since the method is performed under mild conditions, the RML-CS/GO biocatalyst may prove to be an environmentally benign alternative for producing satisfactory yield of geranyl propionate.
    Matched MeSH terms: Oxides/chemistry
  9. Habiba U, Islam MS, Siddique TA, Afifi AM, Ang BC
    Carbohydr Polym, 2016 09 20;149:317-31.
    PMID: 27261756 DOI: 10.1016/j.carbpol.2016.04.127
    Chitosan/PVA/Na-titanate/TiO2 composite was synthesized by solution casting method. The composite was analyzed via Fourier Transform Infrared Spectroscopy, X-ray diffraction, Field Emission Scanning Electron Microscopy, Thermal gravimetric analysis and water stability test. Incorporation of Na-titanate shown decrease of crystallinity for chitosan but increase water stability. However, the composite structure was deteriorated with considerable weight loss in acidic medium. Two anionic dyes, methyl orange and congo red were used for the adsorption test. The adsorption behavior of the composites were described by pseudo-second-order kinetic model and Lagergren-first-order model for methyl orange and congo red, respectively. For methyl orange, adsorption was started with a promising decolorization rate. 99.9% of methyl orange dye was removed by the composite having higher weightage of chitosan and crystalline TiO2 phase. On the other hand, for the congo red the composite having higher chitosan and Na-titanate showed an efficient removal capacity of 95.76%. UV-vis results showed that the molecular backbone of methyl orange and congo red was almost destroyed when equilibrium was obtained, and the decolorization rate was reaching 100%. Kinetic study results showed that the photocatalytic degradation of methyl orange and congo red could be explained by Langmuir-Hinshelwood model. Thus, chitosan/PVA/Na-titanate/TiO2 possesses efficient adsorptivity and photocatalytic property for dye degradation.
    Matched MeSH terms: Oxides/chemistry*
  10. Muthoosamy K, Bai RG, Manickam S
    Curr Drug Deliv, 2014;11(6):701-18.
    PMID: 24909150
    Motivated by the success and exhaustive research on carbon nanotubes (CNTs) based drug delivery, graphene, a two-dimensional; honey-comb crystal lattice has emerged as the rising star in recent years. Graphene is a flat monolayer of carbon atoms that holds many promising properties such as unparalleled thermal conductivity, remarkable electronic properties, and most intriguingly higher planar surface and superlative mechanical strength, which are attractive in biotechnological applications. Delivery of anti-cancer drugs using graphene and its derivatives has sparked major interest in this emerging field. The anti-cancer therapies often pose a limitation of insolubility, administration problems and cell penetration ability. In addition, systemic toxicity caused by lack of selective targeting towards cancer cells and inefficient distribution limits its clinical applications. Graphene nanocomposite is a promising tool to address these drawbacks. This review will focus on various synthesis and functionalization of graphene and graphene oxide for providing better solubility and targeted drug delivery at cancer cells. A more advanced and 'smart' graphene hybrid nanostructures that have several functionalities such as stimulus-response mediated delivery, imaging at release sites as well as transfection into cancer cells are also presented. A brief description on the challenges and perspectives for future research in this field is also discussed.
    Matched MeSH terms: Oxides/chemistry*
  11. Yung LC, Fei CC, Mandeep J, Binti Abdullah H, Wee LK
    PLoS One, 2014;9(5):e97484.
    PMID: 24830317 DOI: 10.1371/journal.pone.0097484
    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.
    Matched MeSH terms: Oxides/chemistry
  12. Mamat M, Samad SA, Hannan MA
    Sensors (Basel), 2011;11(6):6435-53.
    PMID: 22163964 DOI: 10.3390/s110606435
    This paper reports the design of an electronic nose (E-nose) prototype for reliable measurement and correct classification of beverages. The prototype was developed and fabricated in the laboratory using commercially available metal oxide gas sensors and a temperature sensor. The repeatability, reproducibility and discriminative ability of the developed E-nose prototype were tested on odors emanating from different beverages such as blackcurrant juice, mango juice and orange juice, respectively. Repeated measurements of three beverages showed very high correlation (r > 0.97) between the same beverages to verify the repeatability. The prototype also produced highly correlated patterns (r > 0.97) in the measurement of beverages using different sensor batches to verify its reproducibility. The E-nose prototype also possessed good discriminative ability whereby it was able to produce different patterns for different beverages, different milk heat treatments (ultra high temperature, pasteurization) and fresh and spoiled milks. The discriminative ability of the E-nose was evaluated using Principal Component Analysis and a Multi Layer Perception Neural Network, with both methods showing good classification results.
    Matched MeSH terms: Oxides/chemistry
  13. Dahlan I, Ahmad Z, Fadly M, Lee KT, Kamaruddin AH, Mohamed AR
    J Hazard Mater, 2010 Jun 15;178(1-3):249-57.
    PMID: 20137857 DOI: 10.1016/j.jhazmat.2010.01.070
    In this work, the application of response surface and neural network models in predicting and optimizing the preparation variables of RHA/CaO/CeO(2) sorbent towards SO(2)/NO sorption capacity was investigated. The sorbents were prepared according to central composite design (CCD) with four independent variables (i.e. hydration period, RHA/CaO ratio, CeO(2) loading and the use of RHA(raw) or pretreated RHA(600 degrees C) as the starting material). Among all the variables studied, the amount of CeO(2) loading had the largest effect. The response surface models developed from CCD was effective in providing a highly accurate prediction for SO(2) and NO sorption capacities within the range of the sorbent preparation variables studied. The prediction of CCD experiment was verified by neural network models which gave almost similar results to those determined by response surface models. The response surface models together with neural network models were then successfully used to locate and validate the optimum hydration process variables for maximizing the SO(2)/NO sorption capacities. Through this optimization process, it was found that maximum SO(2) and NO sorption capacities of 44.34 and 3.51 mg/g, respectively could be obtained by using RHA/CaO/CeO(2) sorbents prepared from RHA(raw) with hydration period of 12h, RHA/CaO ratio of 2.33 and CeO(2) loading of 8.95%.
    Matched MeSH terms: Oxides/chemistry*
  14. Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR
    Environ Sci Technol, 2006 Oct 01;40(19):6032-7.
    PMID: 17051796
    Siliceous materials such as rice husk ash (RHA) have potential to be utilized as high performance sorbents for the flue gas desulfurization process in small-scale industrial boilers. This study presents findings on identifying the key factorfor high desulfurization activity in sorbents prepared from RHA. Initially, a systematic approach using central composite rotatable design was used to develop a mathematical model that correlates the sorbent preparation variables to the desulfurization activity of the sorbent. The sorbent preparation variables studied are hydration period, x1 (6-16 h), amount of RHA, x2 (5-15 g), amount of CaO, x3 (2-6 g), amount of water, x4 (90-110 mL), and hydration temperature, x5 (150-250 degrees C). The mathematical model developed was subjected to statistical tests and the model is adequate for predicting the SO2 desulfurization activity of the sorbent within the range of the sorbent preparation variables studied. Based on the model, the amount of RHA, amount of CaO, and hydration period used in the preparation step significantly influenced the desulfurization activity of the sorbent. The ratio of RHA and CaO used in the preparation mixture was also a significant factor that influenced the desulfurization activity of the sorbent. A RHA to CaO ratio of 2.5 leads to the formation of specific reactive species in the sorbent that are believed to be the key factor responsible for high desulfurization activity in the sorbent. Other physical properties of the sorbent such as pore size distribution and surface morphology were found to have insignificant influence on the desulfurization activity of the sorbent.
    Matched MeSH terms: Oxides/chemistry*
  15. Abdulmalek E, Arumugam M, Basri M, Rahman MB
    Int J Mol Sci, 2012;13(10):13140-9.
    PMID: 23202943 DOI: 10.3390/ijms131013140
    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H(2)O(2)) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%-99%) under the optimum reaction conditions, including temperature (35 °C), initial H(2)O(2) concentration (30%), H(2)O(2) amount (4.4 mmol), H(2)O(2) addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H(2)O(2) with a catalytic activity of 190.0 Ug-1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker.
    Matched MeSH terms: Oxides/chemistry
  16. Hashim SP, Sidek HA, Halimah MK, Matori KA, Yusof WM, Zaid MH
    Int J Mol Sci, 2013;14(1):1022-30.
    PMID: 23296276 DOI: 10.3390/ijms14011022
    A systematic set of borotellurite glasses doped with manganese (1-x) [(B(2)O(3))(0.3)(TeO(2))(0.7)]-xMnO, with x = 0.1, 0.2, 0.3 and 0.4 mol%, were successfully synthesized by using a conventional melt and quench-casting technique. In this study, the remelting effect of the glass samples on their microstructure was investigated through density measurement and FT-IR spectra and evaluated by XRD techniques. Initial experimental results from XRD evaluation show that there are two distinct phases of glassy and crystallite microstructure due to the existence of peaks in the sample. The different physical behaviors of the studied glasses were closely related to the concentration of manganese in each phase. FTIR spectra revealed that the addition of manganese oxide contributes the transformation of TeO(4) trigonal bipyramids with bridging oxygen (BO) to TeO(3) trigonal pyramids with non-bridging oxygen (NBO).
    Matched MeSH terms: Oxides/chemistry
  17. Lee KT, Bhatia S, Mohamed AR, Chu KH
    Chemosphere, 2006 Jan;62(1):89-96.
    PMID: 15996711
    High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.
    Matched MeSH terms: Oxides/chemistry*
  18. Rusi, Majid SR
    PLoS One, 2016;11(5):e0154566.
    PMID: 27182595 DOI: 10.1371/journal.pone.0154566
    Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN)6 electrolyte.
    Matched MeSH terms: Oxides/chemistry*
  19. Dennis JO, Ahmad F, Khir MH, Bin Hamid NH
    Sensors (Basel), 2015;15(8):18256-69.
    PMID: 26225972 DOI: 10.3390/s150818256
    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.
    Matched MeSH terms: Oxides/chemistry*
  20. Rusi, Chan PY, Majid SR
    PLoS One, 2015;10(7):e0129780.
    PMID: 26158447 DOI: 10.1371/journal.pone.0129780
    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.
    Matched MeSH terms: Oxides/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links