Displaying publications 21 - 40 of 40 in total

Abstract:
Sort:
  1. Rosli R, Amiruddin N, Ab Halim MA, Chan PL, Chan KL, Azizi N, et al.
    PLoS One, 2018;13(4):e0194792.
    PMID: 29672525 DOI: 10.1371/journal.pone.0194792
    Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops.
    Matched MeSH terms: Plant Diseases/genetics*
  2. Ashkani S, Yusop MR, Shabanimofrad M, Azady A, Ghasemzadeh A, Azizi P, et al.
    Curr Issues Mol Biol, 2015;17:57-73.
    PMID: 25706446
    Allele mining is a promising way to dissect naturally occurring allelic variants of candidate genes with essential agronomic qualities. With the identification, isolation and characterisation of blast resistance genes in rice, it is now possible to dissect the actual allelic variants of these genes within an array of rice cultivars via allele mining. Multiple alleles from the complex locus serve as a reservoir of variation to generate functional genes. The routine sequence exchange is one of the main mechanisms of R gene evolution and development. Allele mining for resistance genes can be an important method to identify additional resistance alleles and new haplotypes along with the development of allele-specific markers for use in marker-assisted selection. Allele mining can be visualised as a vital link between effective utilisation of genetic and genomic resources in genomics-driven modern plant breeding. This review studies the actual concepts and potential of mining approaches for the discovery of alleles and their utilisation for blast resistance genes in rice. The details provided here will be important to provide the rice breeder with a worthwhile introduction to allele mining and its methodology for breakthrough discovery of fresh alleles hidden in hereditary diversity, which is vital for crop improvement.
    Matched MeSH terms: Plant Diseases/genetics*
  3. Ridzuan R, Rafii MY, Ismail SI, Mohammad Yusoff M, Miah G, Usman M
    Int J Mol Sci, 2018 Oct 11;19(10).
    PMID: 30314374 DOI: 10.3390/ijms19103122
    Chili anthracnose is one of the most devastating fungal diseases affecting the quality and yield production of chili. The aim of this review is to summarize the current knowledge concerning the chili anthracnose disease, as well as to explore the use of marker-assisted breeding programs aimed at improving anthracnose disease resistance in this species. This disease is caused by the Colletotrichum species complex, and there have been ongoing screening methods of chili pepper genotypes with resistance to anthracnose in the field, as well as in laboratories. Conventional breeding involves phenotypic selection in the field, and it is more time-consuming compared to molecular breeding. The use of marker-assisted selection (MAS) on the basis of inheritance, the segregation ratio of resistance to susceptibility, and the gene-controlling resistance may contribute to the development of an improved chili variety and speed up the selection process, while also reducing genetic drag in the segregating population. More importantly, by using molecular markers, the linkage groups are determined dominantly and co-dominantly, meaning that the implementation of a reliable method to produce resistant varieties is crucial in future breeding programs. This updated information will offer a supportive direction for chili breeders to develop an anthracnose-resistant chili variety.
    Matched MeSH terms: Plant Diseases/genetics*
  4. Saad N, Alcalá-Briseño RI, Polston JE, Olmstead JW, Varsani A, Harmon PF
    Sci Rep, 2020 Jul 21;10(1):12043.
    PMID: 32694553 DOI: 10.1038/s41598-020-68654-3
    A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar 'Emerald' (interspecific hybrid of Vaccinium corymbosum and V. darrowi) generated as part of a separate study on varietal tolerance to soil salinity were analyzed for plant viral sequences. The objective was to determine if the asymptomatic plants harbored the latent blueberry red ringspot virus (BRRV) in their roots. The only currently known mechanism of transmission of BRRV is through vegetative propagation; however, the virus can remain latent for years with some plants of 'Emerald' never developing red ringspot symptoms. Bioinformatic analyses of 'Emerald' transcriptomes using de novo assembly and reference-based mapping approaches yielded eight complete viral genomes of BRRV (genus Soymovirus, family Caulimoviridae). Validation in vitro by PCR confirmed the presence of BRRV in 100% of the 'Emerald' root samples. Sequence and phylogenetic analyses showed 94% to 97% nucleotide identity between BRRV genomes from Florida and sequences from Czech Republic, Japan, Poland, Slovenia, and the United States. Taken together, this study documented the first detection of a complete BRRV genome from roots of asymptomatic blueberry plants and in Florida through in silico analysis of plant transcriptomes.
    Matched MeSH terms: Plant Diseases/genetics*
  5. Passos MA, de Cruz VO, Emediato FL, de Teixeira CC, Azevedo VC, Brasileiro AC, et al.
    BMC Genomics, 2013 Feb 05;14:78.
    PMID: 23379821 DOI: 10.1186/1471-2164-14-78
    BACKGROUND: Although banana (Musa sp.) is an important edible crop, contributing towards poverty alleviation and food security, limited transcriptome datasets are available for use in accelerated molecular-based breeding in this genus. 454 GS-FLX Titanium technology was employed to determine the sequence of gene transcripts in genotypes of Musa acuminata ssp. burmannicoides Calcutta 4 and M. acuminata subgroup Cavendish cv. Grande Naine, contrasting in resistance to the fungal pathogen Mycosphaerella musicola, causal organism of Sigatoka leaf spot disease. To enrich for transcripts under biotic stress responses, full length-enriched cDNA libraries were prepared from whole plant leaf materials, both uninfected and artificially challenged with pathogen conidiospores.

    RESULTS: The study generated 846,762 high quality sequence reads, with an average length of 334 bp and totalling 283 Mbp. De novo assembly generated 36,384 and 35,269 unigene sequences for M. acuminata Calcutta 4 and Cavendish Grande Naine, respectively. A total of 64.4% of the unigenes were annotated through Basic Local Alignment Search Tool (BLAST) similarity analyses against public databases.Assembled sequences were functionally mapped to Gene Ontology (GO) terms, with unigene functions covering a diverse range of molecular functions, biological processes and cellular components. Genes from a number of defense-related pathways were observed in transcripts from each cDNA library. Over 99% of contig unigenes mapped to exon regions in the reference M. acuminata DH Pahang whole genome sequence. A total of 4068 genic-SSR loci were identified in Calcutta 4 and 4095 in Cavendish Grande Naine. A subset of 95 potential defense-related gene-derived simple sequence repeat (SSR) loci were validated for specific amplification and polymorphism across M. acuminata accessions. Fourteen loci were polymorphic, with alleles per polymorphic locus ranging from 3 to 8 and polymorphism information content ranging from 0.34 to 0.82.

    CONCLUSIONS: A large set of unigenes were characterized in this study for both M. acuminata Calcutta 4 and Cavendish Grande Naine, increasing the number of public domain Musa ESTs. This transcriptome is an invaluable resource for furthering our understanding of biological processes elicited during biotic stresses in Musa. Gene-based markers will facilitate molecular breeding strategies, forming the basis of genetic linkage mapping and analysis of quantitative trait loci.

    Matched MeSH terms: Plant Diseases/genetics
  6. Khayi S, Blin P, Pédron J, Chong TM, Chan KG, Moumni M, et al.
    BMC Genomics, 2015;16:788.
    PMID: 26467299 DOI: 10.1186/s12864-015-1997-z
    Dickeya solani is an emerging pathogen that causes soft rot and blackleg diseases in several crops including Solanum tuberosum, but little is known about its genomic diversity and evolution.
    Matched MeSH terms: Plant Diseases/genetics
  7. Rahim HA, Bhuiyan MA, Lim LS, Sabu KK, Saad A, Azhar M, et al.
    Genet. Mol. Res., 2012;11(3):3277-89.
    PMID: 23079822 DOI: 10.4238/2012.September.12.11
    Advanced backcross families derived from Oryza sativa cv MR219/O. rufipogon IRGC105491 were utilized for identification of quantitative trait loci (QTL) for blast resistance using simple sequence repeat markers. Two hundred and sixty-one BC(2)F(3) families were used to construct a linkage map, using 87 markers, which covered 2375.2 cM of 12 rice chromosomes, with a mean density of 27.3 cM. The families were evaluated in a greenhouse for resistance to blast disease caused by pathotypes P7.2 and P5.0 of Magnaporthe oryzae. Five QTLs (qBL5.1, qBL5.2, qBL6.1, qBL8.1, and qBL10.1) for pathotype P5.0 and four QTLs (qBL5.3, qBL5.4, qBL7.1, and qBL8.2) for pathotype P7.2 were identified using the BC(2)F(3) families. Another linkage map was also constructed based on 31 BC(2)F(5) families, using 63 SSR markers, which covered 474.9 cM of 9 rice chromosomes, with a mean density of 8.01 cM. Five suggestive QTLs (qBL11.2, qBL11.3, qBL12.1, qBL12.2, qBL12.3) and one putative QTL (qBL2.1) were identified for pathotype P7.2. Also, seven suggestive QTLs (qBL1.1, qBL2.2, qBL4.1, qBL4.2, qBL5.3, qBL8.3, and qBL11.1) were detected for pathotype P5.0. We conclude that there is a non-race-specific resistance spectrum of O. rufipogon against M. oryzae pathotypes.
    Matched MeSH terms: Plant Diseases/genetics
  8. Latif MA, Rafii Yusop M, Motiur Rahman M, Bashar Talukdar MR
    C. R. Biol., 2011 Apr;334(4):282-9.
    PMID: 21513897 DOI: 10.1016/j.crvi.2011.02.003
    A total of 78 alleles and 29 loci were detected from nine microsatellite and three minisatellite markers, respectively across 26 blast and ufra disease resistant genotypes. For blast resistant genotypes, the Polymorphic Information Content (PIC) values ranged from 0.280 to 0.726 and RM21 was considered as the best marker. PIC values ranged from 0.5953 to 0.8296 for ufra resistant genotypes and RM23 was the best marker for characterization of ufra resistant genotypes. The genetic similarity analysis using UPGMA clustering generated nine clusters with coefficient of 0.66 for blast resistant genotypes while five genetic clusters with similarity coefficient of 0.42 for ufra resistant genotypes. In order to develop resistant varieties of two major diseases of rice, hybridisation should be made using the parents, BR29 and NJ70507, BR36 and NJ70507 for blast, while BR11 and Aokazi, BR3 and Aokazi, Rayda and BR3 and Rayda and BR11 for ufra.
    Matched MeSH terms: Plant Diseases/genetics*
  9. Yeo FK, Wang Y, Vozabova T, Huneau C, Leroy P, Chalhoub B, et al.
    Theor Appl Genet, 2016 Feb;129(2):289-304.
    PMID: 26542283 DOI: 10.1007/s00122-015-2627-5
    Rphq2, a minor gene for partial resistance to Puccinia hordei , was physically mapped in a 188 kbp introgression with suppressed recombination between haplotypes of rphq2 and Rphq2 barley cultivars.
    Matched MeSH terms: Plant Diseases/genetics*
  10. Lau ET, Khew CY, Hwang SS
    J Biotechnol, 2020 May 20;314-315:53-62.
    PMID: 32302654 DOI: 10.1016/j.jbiotec.2020.03.014
    Black pepper is an important commodity crop in Malaysia that generates millions of annual revenue for the country. However, black pepper yield is affected by slow decline disease caused by a soil-borne fungus Fusarium solani. RNA sequencing transcriptomics approach has been employed in this study to explore the differential gene expression in susceptible Piper nigrum L. and resistant Piper colubrinum Link. Gene expression comparative analysis of the two pepper species has yielded 2,361 differentially expressed genes (DEGs). Among them, higher expression of 1,426 DEGs was detected in resistant plant. These DEGs practically demonstrated the major branches of plant-pathogen interaction pathway (Path: ko04626). We selected five groups of defence-related DEGs for downstream qRT-PCR analysis. Cf-9, the gene responsible for recognizing fungal avirulence protein activity was found inexpressible in susceptible plant. However, this gene exhibited promising expression in resistant plant. Inactivation of Cf-9 could be the factor that causes susceptible plant fail in recognition of F. solani and subsequently delay activation of adaptive response to fungal invasion. This vital study advance the understanding of pepper plant defence in response to F. solani and aid in identifying potential solution to manage slow decline disease in black pepper cultivation.
    Matched MeSH terms: Plant Diseases/genetics
  11. Ton LB, Neik TX, Batley J
    Genes (Basel), 2020 09 30;11(10).
    PMID: 33008008 DOI: 10.3390/genes11101161
    Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
    Matched MeSH terms: Plant Diseases/genetics
  12. Henry Sum MS, Yee SF, Eng L, Poili E, Lamdin J
    Biomed Res Int, 2017;2017:3608042.
    PMID: 29201901 DOI: 10.1155/2017/3608042
    Rice tungro disease (RTD) is one of the most destructive diseases of rice in South and Southeast Asia. RTD is routinely detected based on visual observation of the plant. However, it is not always easy to identify the disease in the field as it is often confused with other diseases or physiological disorders. Here we report the development of two serological based assays for ease of detection of RTD. In this study we had developed and optimized an indirect ELISA and dot-blot assay for detection of RTD. The efficiency of both assays was evaluated by comparing the specificity and sensitivity of the assays to PCR assay using established primer sets. The indirect ELISA showed 97.5% and 96.6%, while the dot-blot assay showed 97.5% and 86.4% sensitivity and specificity, respectively, when compared to established PCR method. The high sensitivity and specificity of the two assays merit the use of both assays as alternative methods to diagnose RTD. Furthermore, the dot-blot assay is a simple, robust, and rapid diagnostic assay that is suitable for field test for it does not require any specialized equipment. This is a great advantage for diagnosing RTD in paddy fields, especially in the rural areas.
    Matched MeSH terms: Plant Diseases/genetics*
  13. Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, et al.
    Nat Biotechnol, 2016 Jun;34(6):652-5.
    PMID: 27111722 DOI: 10.1038/nbt.3543
    Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5-15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution. If several cloned R genes were available, it would be possible to pyramid R genes in a crop, which might provide more durable resistance. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize.
    Matched MeSH terms: Plant Diseases/genetics*
  14. bin Yusof MT, Kershaw MJ, Soanes DM, Talbot NJ
    PLoS One, 2014;9(6):e99760.
    PMID: 24949933 DOI: 10.1371/journal.pone.0099760
    The rice blast fungus Magnaporthe oryzae causes plant disease via specialised infection structures called appressoria. These dome-shaped cells are able to generate enormous internal pressure, which enables penetration of rice tissue by invasive hyphae. Previous studies have shown that mobilisation of lipid bodies and subsequent lipid metabolism are essential pre-requisites for successful appressorium-mediated plant infection, which requires autophagic recycling of the contents of germinated spores and germ tubes to the developing appressorium. Here, we set out to identify putative regulators of lipid metabolism in the rice blast fungus. We report the identification of FAR1 and FAR2, which encode highly conserved members of the Zn2-Cys6 family of transcriptional regulators. We generated Δfar1, Δfar2 and Δfar1Δfar2 double mutants in M. oryzae and show that these deletion mutants are deficient in growth on long chain fatty acids. In addition, Δfar2 mutants are also unable to grow on acetate and short chain fatty acids. FAR1 and FAR2 are necessary for differential expression of genes involved in fatty acid β-oxidation, acetyl-CoA translocation, peroxisomal biogenesis, and the glyoxylate cycle in response to the presence of lipids. Furthermore, FAR2 is necessary for expression of genes associated with acetyl-CoA synthesis. Interestingly, Δfar1, Δfar2 and Δfar1Δfar2 mutants show no observable delay or reduction in lipid body mobilisation during plant infection, suggesting that these transcriptional regulators control lipid substrate utilization by the fungus but not the mobilisation of intracellular lipid reserves during infection-related morphogenesis.
    Matched MeSH terms: Plant Diseases/genetics
  15. Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL
    Mol Biol Rep, 2013 Jan;40(1):147-58.
    PMID: 23065213 DOI: 10.1007/s11033-012-2043-8
    Chitinases are glycosyl hydrolases that cleave the β-1,4-glycosidic linkages between N-acetylglucosamine residues in chitin which is a major component of fungal cell wall. Plant chitinases hydrolyze fungal chitin to chitin oligosaccharides that serve as elicitors of plant defense system against fungal pathogens. However, plants synthesize many chitinase isozymes and some of them are not pathogenesis-related. In this study, three full-length cDNA sequences encoding a putative chitinase (EgChit3-1) and two chitinase-like proteins (EgChit1-1 and EgChit5-1) have been cloned from oil palm (Elaeis guineensis) by polymerase chain reaction (PCR). The abundance of these transcripts in the roots and leaves of oil palm seedlings treated with Ganoderma boninense (a fungal pathogen) or Trichoderma harzianum (an avirulent symbiont), and a combination of both fungi at 3, 6 and 12 weeks post infection were profiled by real time quantitative reverse-transcription (qRT)-PCR. Our findings showed that the gene expression of EgChit3-1 increased significantly in the roots of oil palm seedlings treated with either G. boninense or T. harzianum and a combination of both; whereas the gene expression of EgChit1-1 in the treated roots of oil palm seedlings was not significantly higher compared to those of the untreated oil palm roots. The gene expression of EgChit5-1 was only higher in the roots of oil palm seedlings treated with T. harzianum compared to those of the untreated oil palm roots. In addition, the gene expression of EgChit1-1 and EgChit3-1 showed a significantly higher gene expression in the leaf samples of oil palm seedlings treated with either G. boninense or T. harzianum.
    Matched MeSH terms: Plant Diseases/genetics
  16. Sangappillai V, Nadarajah K
    Int J Mol Sci, 2020 Sep 30;21(19).
    PMID: 33007862 DOI: 10.3390/ijms21197224
    Lipid biosynthesis produces glycerol, which is important in fueling turgor pressure necessary for germination and penetration of plant host by fungi. As the relationship between pathogenicity and the lipid biosynthetic pathway is not fully understood, we have elucidated the role of the fatty acid synthase beta subunit dehydratase (FAS1) gene in lipid biosynthesis. The FAS1 gene was silenced through homologous double crossover in Magnaporthe oryzae strain S6 to study the effect on lipid biosynthesis. The vegetative growth of Δfas1 mutants show the highest drop on oleic acid (between 10 and 50%), while the mycelial dry weight of mutants dropped significantly on all media. Conidiation of FAS1 mutants show a ~10- and ~5-fold reduction on oatmeal and Potato Dextrose Agar (PDA), respectively. Mutants formed mycelium that were mildly pigmented, indicating that the deletion of FAS1 may have affected melanin biosynthesis. Biochemical and gene expression studies concluded that the fatty acid degradation pathway might have been interrupted by FAS1 deletion. FAS1 mutants showed no enzyme activity on glucose or olive oil, suggesting that the mutants may lack functional peroxisomes and be defective in β-oxidation of fatty acids, hence explaining the reduced lipid deposits in the spores.
    Matched MeSH terms: Plant Diseases/genetics
  17. Habib MA, Yuen GC, Othman F, Zainudin NN, Latiff AA, Ismail MN
    Biochem. Cell Biol., 2017 04;95(2):232-242.
    PMID: 28177774 DOI: 10.1139/bcb-2016-0144
    The natural rubber latex extracted from the bark of Hevea brasiliensis plays various important roles in today's modern society. Following ultracentrifugation, the latex can be separated into 3 layers: C-serum, lutoids, and rubber particles. Previous studies have shown that a large number of proteins are present in these 3 layers. However, a complete proteome for this important plant is still unavailable. Protein sequences have been recently translated from the completed draft genome database of H. brasiliensis, leading to the creation of annotated protein databases of the following H. brasiliensis biosynthetic pathways: photosynthesis, latex allergens, rubberwood formation, latex biosynthesis, and disease resistance. This research was conducted to identify the proteins contained within the latex by way of de novo sequencing from mass spectral data obtained from the 3 layers of the latex. Peptides from these proteins were fragmented using collision-induced dissociation, higher-energy collisional dissociation, and electron-transfer dissociation activation methods. A large percentage of proteins from the biosynthetic pathways (63% to 100%) were successfully identified. In addition, a total of 1839 unique proteins were identified from the whole translated draft genome database (AnnHBM).
    Matched MeSH terms: Plant Diseases/genetics
  18. Alizadeh F, Abdullah SN, Khodavandi A, Abdullah F, Yusuf UK, Chong PP
    J Plant Physiol, 2011 Jul 01;168(10):1106-13.
    PMID: 21333381 DOI: 10.1016/j.jplph.2010.12.007
    The expression profiles of Δ9 stearoyl-acyl carrier protein desaturase (SAD1 and SAD2) and type 3 metallothionein (MT3-A and MT3-B) were investigated in seedlings of oil palm (Elaeis guineensis) artificially inoculated with the pathogenic fungus Ganoderma boninense and the symbiotic fungus Trichoderma harzianum. Expression of SAD1 and MT3-A in roots and SAD2 in leaves were significantly up-regulated in G. boninense inoculated seedlings at 21 d after treatment when physical symptoms had not yet appeared and thereafter decreased to basal levels when symptoms became visible. Our finding demonstrated that the SAD1 expression in leaves was significantly down-regulated to negligible levels at 42 and 63 d after treatment. The transcripts of MT3 genes were synthesized in G. boninense inoculated leaves at 42 d after treatment, and the analyses did not show detectable expression of these genes before 42 d after treatment. In T. harzianum inoculated seedlings, the expression levels of SAD1 and SAD2 increased gradually and were stronger in roots than leaves, while for MT3-A and MT3-B, the expression levels were induced in leaves at 3d after treatment and subsequently maintained at same levels until 63d after treatment. The MT3-A expression was significantly up-regulated in roots at 3d after treatment and thereafter were maintained at this level. Both SAD and MT3 expression were maintained at maximum levels or at levels higher than basal. This study demonstrates that oil palm was able to distinguish between pathogenic and symbiotic fungal interactions, thus resulting in different transcriptional activation profiles of SAD and MT3 genes. Increases in expression levels of SAD and MT3 would lead to enhanced resistance against G. boninense and down-regulation of genes confer potential for invasive growth of the pathogen. Differences in expression profiles of SAD and MT3 relate to plant resistance mechanisms while supporting growth enhancing effects of symbiotic T. harzianum.
    Matched MeSH terms: Plant Diseases/genetics
  19. Kwan YM, Meon S, Ho CL, Wong MY
    J Plant Physiol, 2015 Feb 01;174:131-6.
    PMID: 25462975 DOI: 10.1016/j.jplph.2014.10.003
    Nitric oxide associated 1 (NOA1) protein is implicated in plant disease resistance and nitric oxide (NO) biosynthesis. A full-length cDNA encoding of NOA1 protein from oil palm (Elaeis guineensis) was isolated and designated as EgNOA1. Sequence analysis suggested that EgNOA1 was a circular permutated GTPase with high similarity to the bacterial YqeH protein of the YawG/YlqF family. The gene expression of EgNOA1 and NO production in oil palm root tissues treated with Ganoderma boninense, the causal agent of basal stem rot (BSR) disease were profiled to investigate the involvement of EgNOA1 during fungal infection and association with NO biosynthesis. Real-time PCR (qPCR) analysis revealed that the transcript abundance of EgNOA1 in root tissues was increased by G. boninense treatment. NO burst in Ganoderma-treated root tissue was detected using Griess reagent, in advance of the up-regulation of the EgNOA1 transcript. This indicates that NO production was independent of EgNOA1. However, the induced expression of EgNOA1 in Ganoderma-treated root tissues implies that it might be involved in plant defense responses against pathogen infection.
    Matched MeSH terms: Plant Diseases/genetics*
  20. Goh KM, Dickinson M, Supramaniam CV
    Physiol Plant, 2018 Mar;162(3):274-289.
    PMID: 28940509 DOI: 10.1111/ppl.12645
    Lignification of the plant cell wall could serve as the first line of defense against pathogen attack, but the molecular mechanisms of virulence and disease between oil palm and Ganoderma boninense are poorly understood. This study presents the biochemical, histochemical, enzymology and gene expression evidences of enhanced lignin biosynthesis in young oil palm as a response to G. boninense (GBLS strain). Comparative studies with control (T1), wounded (T2) and infected (T3) oil palm plantlets showed significant accumulation of total lignin content and monolignol derivatives (syringaldehyde and vanillin). These derivatives were deposited on the epidermal cell wall of infected plants. Moreover, substantial differences were detected in the activities of enzyme and relative expressions of genes encoding phenylalanine ammonia lyase (EC 4.3.1.24), cinnamate 4-hydroxylase (EC 1.14.13.11), caffeic acid O-methyltransferase (EC 2.1.1.68) and cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195). These enzymes are key intermediates dedicated to the biosynthesis of lignin monomers, the guaicyl (G), syringyl (S) and ρ-hydroxyphenyl (H) subunits. Results confirmed an early, biphasic and transient positive induction of all gene intermediates, except for CAD enzyme activities. These differences were visualized by anatomical and metabolic changes in the profile of lignin in the oil palm plantlets such as low G lignin, indicating a potential mechanism for enhanced susceptibility toward G. boninense infection.
    Matched MeSH terms: Plant Diseases/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links