Displaying publications 21 - 40 of 1122 in total

Abstract:
Sort:
  1. Chou LY, Clarke CM, Dykes GA
    Arch Microbiol, 2014 Oct;196(10):709-17.
    PMID: 25005571 DOI: 10.1007/s00203-014-1011-1
    Nepenthes pitcher plants produce modified jug-shaped leaves to attract, trap and digest insect prey. We used 16S rDNA cloning and sequencing to compare bacterial communities in pitcher fluids of each of three species, namely Nepenthes ampullaria, Nepenthes gracilis and Nepenthes mirabilis, growing in the wild. In contrast to previous greenhouse-based studies, we found that both opened and unopened pitchers harbored bacterial DNA. Pitchers of N. mirabilis had higher bacterial diversity as compared to other Nepenthes species. The composition of the bacterial communities could be different between pitcher types for N. mirabilis (ANOSIM: R = 0.340, p < 0.05). Other Nepenthes species had similar bacterial composition between pitcher types. SIMPER showed that more than 50 % of the bacterial taxa identified from the open pitchers of N. mirabilis were not found in other groups. Our study suggests that bacteria in N. mirabilis are divided into native and nonnative groups.
    Matched MeSH terms: Plant Leaves/microbiology*
  2. Sirat HM, Jani NA
    Nat Prod Res, 2013;27(16):1468-70.
    PMID: 22946537 DOI: 10.1080/14786419.2012.718772
    Hydrodistillation of the fresh leaves of Alpinia mutica afforded 0.005% colourless essential oil. GC and GC-MS analysis revealed the presence of 33 components accounting for 92.9% of the total oil, dominated by 20 sesquiterpenes (76.7%) and 10 monoterpenes (8.3%). The major constituent was found to be β-sesquiphellandrene which was 29.2% of the total oil. Soxhlet extraction, followed by repeated column chromatography of the dried leaves yielded two phenolic compounds, identified as 5,6-dehydrokawain and aniba dimer A, together with one amide assigned as auranamide. The structures of these compounds were determined by using spectroscopic analysis. Antibacterial screening of the essential oil, the crude and isolated compounds showed weak to moderate inhibitory activity.
    Matched MeSH terms: Plant Leaves/chemistry*
  3. Starkenmann C, Luca L, Niclass Y, Praz E, Roguet D
    J Agric Food Chem, 2006 Apr 19;54(8):3067-71.
    PMID: 16608232
    Polygonum odoratum Lour. has been reclassified as Persicaria odorata (Lour.) Soják [Wilson, K. L. Polygonum sensu lato (Polygonaceae) in Australia. Telopea 1988, 3, 177-182]; other synonyms currently used are Vietnamese mint or Vietnamese coriander and, in Malaysia, Daun Laksa or Laksa plant. The aerial parts of Laksa plant are highly aromatic, and they contain many organic compounds such as (Z)-3-hexenal, (Z)-3-hexenol, decanal, undecanal, and dodecanal that are typical for green, citrus, orange peel, and coriander odors. In addition to these aldehydes, 3-sulfanyl-hexanal and 3-sulfanyl-hexan-1-ol were discovered for the first time in this herb. The fresh leaves are pungent when they are chewed, although the active compound has never been identified. The pungency of Persicaria hydropiper (L.) Spach (formerly Polygonum hydropiper L., synonym water pepper) is produced by polygodial, a 1,4-dialdehyde derived from drimane terpenoids. We also identified polygodial as the active pungent compound in P. odorata (Lour.) Soják.
    Matched MeSH terms: Plant Leaves/chemistry
  4. Wah LK, Abas F, Cordell GA, Ito H, Ismail IS
    Steroids, 2013 Feb;78(2):210-9.
    PMID: 23178158 DOI: 10.1016/j.steroids.2012.09.011
    Seven new 23-oxo-cholestane derivatives named as grandol A (1), B (2), C (3), D (4), E (5), F (6), and G (7) were isolated from Dysoxylum grande leaves alongside with a new 3,4-secodammar-4(28)-en-3-oic acid derivative (8). The structures of the compounds were elucidated based on the interpretation of spectroscopic data, and their relative configurations were established by NOESY 2D NMR data. All of the isolates were tested for anti-acetylcholinesterase activity using thin layer chromatography (TLC)-bioautography with fast blue B salt. Only grandol A (1) and B (2) showed positive results, with clear discoloration at a concentration of 12.5 ppm. However, the obtained IC(50) values for grandol A and B, when using Ellman's method, were not significant (>200 μg/ml).
    Matched MeSH terms: Plant Leaves/chemistry*
  5. Aung HH, Chia LS, Goh NK, Chia TF, Ahmed AA, Pare PW, et al.
    Fitoterapia, 2002 Aug;73(5):445-7.
    PMID: 12165348
    Plumbagin, isoshinanolone, epishinanolone, shinanolone, quercetin and kaempferol were isolated from the leaves of Nepenthes gracilis. Spectral data of shinanolone are presented.
    Matched MeSH terms: Plant Leaves/chemistry
  6. Lucas PW, Teaford MF
    Folia Primatol., 1995;64(1-2):30-6.
    PMID: 7665120
    Leaves of two plant species eaten by Macaca fascicularis in Bukit Timah Nature Reserve, Singapore, were collected and colour-tested. Leaves matching those eaten by M. fascicularis were examined by energy-dispersive X-ray micro-analysis. The leaves of Streblus elongatus (Moraceae) and Gluta wallichii (Anacardiaceae), together forming 19.6% of the leaf diet of the macaques, contained silica. In G. wallichii, this in the base of hairs that project from the underside of the leaf, whereas S. elongatus leaves have short sharp siliceous trichomes which are densely packed on the undersurface of leaf veins. We predict from an indentation analysis that chewing on the latter species could cause dental microwear at low occlusal forces. The leaves are reportedly common in the diet of three other primate species in peninsular Malaysia and the finding could have general significance for studies of dental wear.
    Matched MeSH terms: Plant Leaves/ultrastructure
  7. Osada N, Takeda H
    Ann Bot, 2003 Jan;91(1):55-63.
    PMID: 12495920
    To investigate crown development patterns, branch architecture, branch-level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves ('bare' branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of 'leafy' parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch-level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first-order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch-level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species.
    Matched MeSH terms: Plant Leaves/physiology
  8. ul Hassan MN, Zainal Z, Ismail I
    Plant Biotechnol J, 2015 Aug;13(6):727-39.
    PMID: 25865366 DOI: 10.1111/pbi.12368
    Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology.
    Matched MeSH terms: Plant Leaves/metabolism*
  9. Farag MA, Elmetwally F, Elghanam R, Kamal N, Hellal K, Hamezah HS, et al.
    Food Chem, 2023 Mar 15;404(Pt B):134628.
    PMID: 36283313 DOI: 10.1016/j.foodchem.2022.134628
    Tea is one of the world's most popular beverages, with several health benefits. Polyphenols are the predominant constituents to account for its health benefits. Despite the well-known benefits of tea on health, the uniqueness of its aroma, taste, and features is an added value that contribute to the increased popularity of this beverage worldwide, and they are associated with the alterations in the metabolites during tea processing and cultivation. The manufacturing of tea consists of several stages with various processes as withering, fixing, rolling, fermentation and drying. The classification into tea types is according to such processing. The high-quality production of the various tea classes also depends on agricultural conditions, such as shading, plucking, climate, and soil composition. Metabolomics is well recognized as an effective tool for evaluating the quality of tea products. Applications in controlling the quality of tea products and adulterant detection are discussed in this review.
    Matched MeSH terms: Plant Leaves/chemistry
  10. Ahmad A, Abdullah SRS, Hasan HA, Othman AR, Ismail N'
    Environ Sci Pollut Res Int, 2022 Jan;29(2):2579-2587.
    PMID: 34374006 DOI: 10.1007/s11356-021-15541-7
    The performance of local plants was tested using synthetic turbid water resembling real wastewater by measuring their ability to remove turbidity. The selected plants were A. indica, S. palustris, D. linearis, S. polyanthum, M. esculenta, P. sarmentosum, and M. malabathricum which can easily be found locally. The experiment was run based on coagulant dosages varied from 0 to 10 g/L for each plant with a rapid mixing speed at 180 rpm for 3 min, slow mixing speed at 10 rpm for 20 min, and settling time for 30 min. The results demonstrated that each plant has been capable of reducing turbidity by different amounts, with an increase in the coagulant dosage. The optimum coagulant dosages achieved for A. indica, S. palustris, S. polyanthum, and D. linearis were 10 g/L with turbidity removal at 26.9%, 24.9%, 24.9%, and 17.5%, respectively. P. sarmentosum and M. esculenta attained optimum coagulant dosages at 5 g/L with turbidity removal at 24.2% and 22.2%, and lastly M. malabathricum at 0.1 g/L (12.2%). P. sarmentosum was suggested to the best natural coagulant which achieved the highest removal of turbidity with a low dosage used.
    Matched MeSH terms: Plant Leaves/chemistry
  11. Xiao Y, Sloan J, Hepworth C, Fradera-Soler M, Mathers A, Thorley R, et al.
    New Phytol, 2023 Jan;237(2):441-453.
    PMID: 36271620 DOI: 10.1111/nph.18564
    Leaf structure plays an important role in photosynthesis. However, the causal relationship and the quantitative importance of any single structural parameter to the overall photosynthetic performance of a leaf remains open to debate. In this paper, we report on a mechanistic model, eLeaf, which successfully captures rice leaf photosynthetic performance under varying environmental conditions of light and CO2 . We developed a 3D reaction-diffusion model for leaf photosynthesis parameterised using a range of imaging data and biochemical measurements from plants grown under ambient and elevated CO2 and then interrogated the model to quantify the importance of these elements. The model successfully captured leaf-level photosynthetic performance in rice. Photosynthetic metabolism underpinned the majority of the increased carbon assimilation rate observed under elevated CO2 levels, with a range of structural elements making positive and negative contributions. Mesophyll porosity could be varied without any major outcome on photosynthetic performance, providing a theoretical underpinning for experimental data. eLeaf allows quantitative analysis of the influence of morphological and biochemical properties on leaf photosynthesis. The analysis highlights a degree of leaf structural plasticity with respect to photosynthesis of significance in the context of attempts to improve crop photosynthesis.
    Matched MeSH terms: Plant Leaves/metabolism
  12. Mussa ZH, Al-Ameer LR, Al-Qaim FF, Deyab IF, Kamyab H, Chelliapan S
    Environ Monit Assess, 2023 Jul 12;195(8):940.
    PMID: 37436672 DOI: 10.1007/s10661-023-11432-1
    Water bodies with the dye methylene blue pose serious environmental and health risks to humans. Therefore, the creation and investigation of affordable, potential adsorbents to remove methylene blue dye from water resources as a long-term fix is one focus of the scientific community. Food plants and other carbon-source serve as a hotspot for a wider range of application on different pollutants that impact the environment and living organisms. Here, we reviewed the use of treated and untreated biosorbents made from plant waste leaves for removing the dye methylene blue from aqueous media. After being modified, activated carbon made from various plant leaves improves adsorption performance. The range of activating chemicals, activation methods, and bio-sorbent material characterisation using FTIR analysis, Barunauer-Emmett-Teller (BET) surface area, scanning electron microscope (SEM-EDX), and SEM-EDX have all been covered in this review. It has been thoroughly described how the pH solution of the methylene blue dye compares to the pHPZC of the adsorbent surface. The presentation also includes a thorough analysis of the application of the isotherm model, kinetic model, and thermodynamic parameters. The selectivity of the adsorbent is the main focus of the adsorption kinetics and isotherm models. It has been studied how adsorption occurs, how surface area and pH affect it, and how biomass waste compares to other adsorbents. The use of biomass waste as adsorbents is both environmentally and economically advantageous, and it has been discovered to have exceptional color removal capabilities.
    Matched MeSH terms: Plant Leaves/chemistry
  13. Chong PL, Singh AK, Kok SL
    PLoS One, 2019;14(6):e0218758.
    PMID: 31237903 DOI: 10.1371/journal.pone.0218758
    Electrical energy can be harvested from the living plants as a new potential renewable energy source. Characterization of the electrical signal is needed to enable an optimum energy harvesting setup condition. In the present paper, an investigation is conducted to analyze the characteristic of Aloe Barbadensis Miller (Aloe Vera) leaves in terms of electrical energy generation under specific experimental setups. The experimental results show that 1111.55uW electrical power can be harvested from the Aloe Vera with 24 pairs of electrodes and this energy is capable to be stored in a capacitor. This energy has a high potential to be used to power up a low power consumption device.
    Matched MeSH terms: Plant Leaves/metabolism
  14. Wahyuni DK, Yoku BF, Mukarromah SR, Purnama PR, Ilham M, Rakashiwi GA, et al.
    Braz J Biol, 2023;83:e274315.
    PMID: 38126630 DOI: 10.1590/1519-6984.274315
    Safety regarding herbal products is very necessary; therefore, routine identification of raw materials should be performed to ensure that the raw materials used in pharmaceutical products are suitable for their intended use. In order for the identification-related data obtained to be accurate, the identification of various kinds of markers is also very necessary. The purpose of this study was to describe the characteristics of Eclipta alba (L.) Hassk. based on qualitative morpho-anatomical markers and quantitative DNA coding. The morphology of this plant has herbaceous habit with a taproot and a stem with branches that appear from the middle. Leaves are single type imperfectly arranged oppositely, lanceolatus, finely serrated on the edges, tapered at the base, pointed at the end, and have a pinnate and hairy leaf surface. The flowers consist of ray flowers and tube flowers with a cup shape. Meanwhile, in terms of anatomy, E. alba has aerenchyma, which are scattered in the cortex of the root and stem. In addition, there are anisocytic stomata, glandular trichomes, and non-glandural trichomes with an elongated shape accompanied by ornamentation found on the leaf epidermis. The results of sequence alignment and phylogenetic tree reconstruction show that the sample plants are closely related to species in the genus Eclipta.
    Matched MeSH terms: Plant Leaves/anatomy & histology
  15. Ma H, Crowther TW, Mo L, Maynard DS, Renner SS, van den Hoogen J, et al.
    Nat Plants, 2023 Nov;9(11):1795-1809.
    PMID: 37872262 DOI: 10.1038/s41477-023-01543-5
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
    Matched MeSH terms: Plant Leaves/metabolism
  16. Mahmud K, Weitz H, H Kritzler U, Burslem DFRP
    PLoS One, 2024;19(3):e0297686.
    PMID: 38507439 DOI: 10.1371/journal.pone.0297686
    Aluminium (Al) is toxic to most plants, but recent research has suggested that Al addition may stimulate growth and nutrient uptake in some species capable of accumulating high tissue Al concentrations. The physiological basis of this growth response is unknown, but it may be associated with processes linked to the regulation of carbon assimilation and partitioning by Al supply. To test alternative hypotheses for the physiological mechanism explaining this response, we examined the effects of increasing Al concentrations in the growth medium on tissue nutrient concentrations and carbon assimilation in two populations of the Al-accumulator Melastoma malabathricum. Compared to seedlings grown in a control nutrient solution containing no Al, mean rates of photosynthesis and respiration increased by 46% and 27%, respectively, total non-structural carbohydrate concentrations increased by 45%, and lignin concentration in roots decreased by 26% when seedlings were grown in a nutrient solution containing 2.0 mM Al. The concentrations of P, Ca and Mg in leaves and stems increased by 31%, 22%, and 26%, respectively, in response to an increase in nutrient solution Al concentration from 0 to 2.0 mM. Elemental concentrations in roots increased for P (114%), Mg (61%) and K (5%) in response to this increase in Al concentration in the nutrient solution. Plants derived from an inherently faster-growing population had a greater relative increase in final dry mass, net photosynthetic and respiration rates and total non-structural carbohydrate concentrations in response to higher external Al supply. We conclude that growth stimulation by Al supply is associated with increases in photosynthetic and respiration rates and enhanced production of non-structural carbohydrates that are differentially allocated to roots, as well as stimulation of nutrient uptake. These responses suggest that internal carbon assimilation is up-regulated to provide the necessary resources of non-structural carbohydrates for uptake, transport and storage of Al in Melastoma malabathricum. This physiological mechanism has only been recorded previously in one other plant species, Camellia sinensis, which last shared a common ancestor with M. malabathricum more than 120 million years ago.
    Matched MeSH terms: Plant Leaves/chemistry
  17. Chan CH, Ngoh GC, Yusoff R
    Pharmacogn Rev, 2012 Jan;6(11):22-8.
    PMID: 22654401 DOI: 10.4103/0973-7847.95854
    A study has been conducted with the aim to provide researchers with general information on anti diabetic extracts based on relevant research articles collected from 34 reliable medical journals. The study showed that Asian and African continents have 56% and 17% share of the worldwide distribution of therapeutic herbal plants, respectively. In Asia, India and China are the leading countries in herbal plants research, and there has been an increase in medicinal research on plants extract for diabetes treatment since 1995 in these regions. The information collected shows that plant leaves are about 20% more favorable for storing active ingredients, as compared to other parts of herbal plants. A brief review on the extraction techniques for the mentioned parts is also included. Furthermore, the acting mechanisms for the anti diabetic activity were described, and the related active ingredients were identified. The findings reveal that most of the anti diabetic research is focused on the alteration of glucose metabolism to prevent diabetes.
    Matched MeSH terms: Plant Leaves
  18. Hew CS, Gam LH
    Appl Biochem Biotechnol, 2011 Dec;165(7-8):1577-86.
    PMID: 21938418 DOI: 10.1007/s12010-011-9377-x
    Gynura procumbens (Lour.) Merr. is a traditionally used medicinal plant to decrease cholesterol level, reduce high blood pressure, control diabetics, and for treatment of cancer. In our present study, a proteomic approach was applied to study the proteome of the plant that had never analyzed before. We have identified 92 abundantly expressed proteins from the leaves of G. procumbens (Lour.) Merr. Amongst the identified proteins was miraculin, a taste-masking agent with high commercial value. Miraculin made up ∼0.1% of the total protein extracted; the finding of miraculin gave a great commercial value to G. procumbens (Lour.) Merr. as miraculin's natural source is limited while the production of recombinant miraculin faced challenges of not being able to exhibit the taste-masking effect as in the natural miraculin. We believe the discovery of miraculin in G. procumbens (Lour.) Merr., provides commercial feasibility of miraculin in view of the availability of G. procumbens (Lour.) Merr. that grow wildly and easily in tropical climate.
    Matched MeSH terms: Plant Leaves/genetics; Plant Leaves/metabolism; Plant Leaves/chemistry
  19. He S, Zhao K, Ma L, Yang J, Chang Y, Ashraf MA
    Saudi J Biol Sci, 2016 Mar;23(2):198-204.
    PMID: 26981000 DOI: 10.1016/j.sjbs.2015.10.007
    To discuss the cold resistance performance of different Herba Rhodiolae and successfully transplant Herba Rhodiolae to the Gansu plateau area for nursing, domestication and planting, this paper systematically studies six physiological and biochemical features of Rhodiola kirilowii, Rhodiola algida, Rhodiola crenulata and Herba Rhodiolae that are closely associated with cold resistance features and concludes with the cold resistance capability of Rhodiola kirilowii. In the selected six main indexes of the Herba Rhodiolae, the POD, SOD and CAT activity and MDA and Pro content in the leaf are the main physiological and biochemical indexes to indicate the cold resistance performance of four Herba Rhodiolae seedlings and can be regarded as the preliminary indexes to assess the winter performance of Herba Rhodiolae. The research work will provide the theoretical basis for the wild variants of Herba Rhodiolae and GAPJ base construction.
    Matched MeSH terms: Plant Leaves
  20. Parasuraman S, Balamurugan S, Christapher PV, Petchi RR, Yeng WY, Sujithra J, et al.
    Pharmacognosy Res, 2015 Apr-Jun;7(2):156-65.
    PMID: 25829789 DOI: 10.4103/0974-8490.151457
    OBJECTIVE: The aim was to evaluate the anti-diabetic and anti-hyperlipidemic effects of hydroalcoholic extract of leaves of Ocimum tenuiflorum (Lamiaceae) and prediction of biological activities of its phytoconstituents using in vivo anti-diabetic model and in silico analysis respectively.
    MATERIALS AND METHODS: The leaves of O. tenuiflorum were extracted with 60% ethanol, and the extract was used for further pharmacological screening. The acute toxicity of the extract was evaluated as per the guidelines set by the Organization for Economic Co-operation and Development, revised draft guidelines 423. The oral anti-diabetic activity of the hydroalcoholic extract of O. tenuiflorum (125, 250 and 500 mg/kg) was studied against streptozotocin (STZ) (50 mg/kg; i.p.) + nicotinamide (120 mg/kg; i.p.) induced diabetes mellitus. The animals were treated with the investigational plant extract and standard drug (glibenclamide) for 21 consecutive days and the effect of hydroalcoholic extract of O. tenuiflorum on blood glucose levels was measured at regular intervals. At the end of the study, blood samples were collected from all the animals for biochemical estimation, then the animals were sacrificed and the liver and kidney were collected for organ weight analysis. Prediction for pharmacological and toxicological properties of phytoconstituents of O. tenuiflorum was carried out using online web tools such as online pass prediction and lazar toxicity prediction.
    RESULTS: The hydroalcoholic extract of O. tenuiflorum showed significant anti-diabetic and anti-hyperlipidemic activity at 250 and 500 mg/kg, and this effect was comparable with that of glibenclamide. Predicted biological activities of phytoconstituents of O. tenuiflorum showed presence of various pharmacological actions, which includes anti-diabetic and anti-hyperlipidemic activities. Prediction of toxicological properties of phytoconstituents of O. tenuiflorum did not show any major toxic effects.
    CONCLUSION: The hydroalcoholic extract of O. tenuiflorum showed significant anti-diabetic and anti-hyperlipidemic activity against STZ + nicotinamide induced diabetes mellitus in rats. Further studies are required to confirm the anti-diabetic and anti-hyperlipidemic activities of individual phytoconstituents of O. tenuiflorum.
    KEYWORDS: Anti-diabetic activity; Anti-hyperlipidemic activity; In silico analysis; Ocimum tenuiflorum; Phytoconstituents
    Matched MeSH terms: Plant Leaves
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links