Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Sukiran NL, Ma JC, Ma H, Su Z
    Plant Mol Biol, 2019 Jan;99(1-2):161-174.
    PMID: 30604322 DOI: 10.1007/s11103-018-0810-1
    KEY MESSAGE: Morphological and transcriptomic evidences provide us strong support for the function of ANAC019 in reproductive development under drought stress. Plants are sensitive to drought conditions, particularly at the reproductive stage. Several studies have reported drought effects on crop reproductive development, but the molecular mechanism underlying drought response during reproduction is still unclear. A recent study showed that drought induces in Arabidopsis inflorescence increased expression of many genes, including ANAC019. However, the function of ANAC019 in drought response during reproductive development has not been characterized. Here, we report an investigation of the ANAC019 function in the response to drought during reproduction. ANAC019 is preferentially expressed in the inflorescence compared with the leaf, suggesting possible roles in regulating both stress response and flower development. The anac019 mutant was more sensitive to drought than WT plant, and exhibited a delay in recovery of floral organ development under prolonged drought stress. Moreover, many fewer genes were differentially expressed in the anac019 inflorescence under drought than that of WT, suggesting that the mutant was impaired in drought-induced gene expression. The genes affected by ANAC019 were associated with stress and hormone responses as well as floral development. In particular, the expression levels of several key drought-induced genes, DREB2A, DREB2B, ARF2, MYB21 and MYB24, were dramatically reduced in the absence of ANAC019, suggesting that ANAC019 is an upstream regulator these genes for drought response and flower development. These results provide strong support for the potential function of ANAC019 in reproductive development under drought stress.
    Matched MeSH terms: Plant Leaves/physiology
  2. Kamakura M, Kosugi Y, Takanashi S, Uemura A, Utsugi H, Kassim AR
    Tree Physiol, 2015 Jan;35(1):61-70.
    PMID: 25595752 DOI: 10.1093/treephys/tpu109
    In this study, we demonstrated the occurrence of stomatal patchiness and its spatial scale in leaves from various sizes of trees grown in a lowland dipterocarp forest in Peninsular Malaysia. To evaluate the patterns of stomatal behavior, we used three techniques simultaneously to analyze heterobaric or homobaric leaves from five tree species ranging from 0.6 to 31 m in height: (i) diurnal changes in chlorophyll fluorescence imaging, (ii) observation and simulation of leaf gas-exchange rates and (iii) a pressure-infiltration method. Measurements were performed in situ with 1000 or 500 μmol m(-2) s(-1) photosynthetic photon flux density. Diurnal patterns in the spatial distribution of photosynthetic electron transport rate (J) mapped from chlorophyll fluorescence images, a comparison of observed and simulated leaf gas-exchange rates, and the spatial distribution of stomatal apertures obtained from the acid-fuchsin-infiltrated area showed that patchy stomatal closure coupled with severe midday depression of photosynthesis occurred in Neobalanocarpus heimii (King) Ashton, a higher canopy tree with heterobaric leaves due to the higher leaf temperature and vapor pressure deficit. However, subcanopy or understory trees showed uniform stomatal behavior throughout the day, although they also have heterobaric leaves. These results suggest that the occurrence of stomatal patchiness is determined by tree size and/or environmental conditions. The analysis of spatial scale by chlorophyll fluorescence imaging showed that several adjacent anatomical patches (lamina areas bounded by bundle-sheath extensions within the lamina) may co-operate for the distributed patterns of J and stomatal apertures.
    Matched MeSH terms: Plant Leaves/physiology
  3. Taha RM, Wafa SN
    ScientificWorldJournal, 2012;2012:359413.
    PMID: 22593677 DOI: 10.1100/2012/359413
    Tissue culture studies of Celosia cristata were established from various explants and the effects of various hormones on morphogenesis of this species were examined. It was found that complete plant regeneration occurred at highest percentage on MS medium supplemented with 2.0 mg/L NAA and 1.5 mg/L BAP, with the best response showed by shoot explants. In vitro flowering was observed on MS basal medium after six weeks. The occurrence of somaclonal variation and changes in cellular behavior from in vivo and in vitro grown plants were investigated through cytological studies and image analysis. It was observed that Mitotic Index (MI), mean chromosome numbers, and mean nuclear to cell area ratio of in vitro root meristem cells were slightly higher compared to in vivo values. However, in vitro plants produced lower mean cell areas but higher nuclear areas when compared to in vivo plants. Thus, no occurrence of somaclonal variation was detected, and this was supported by morphological features of the in vitro plants.
    Matched MeSH terms: Plant Leaves/physiology
  4. Masura SS, Parveez GK, Ti LL
    Plant Physiol Biochem, 2011 Jul;49(7):701-8.
    PMID: 21549610 DOI: 10.1016/j.plaphy.2011.04.003
    We have characterized an oil palm (Elaeis guineensis Jacq.) constitutive promoter that is derived from a translationally control tumor protein (TCTP) gene. The TCTP promoter was fused transcriptionally with the gusA reporter gene and transferred to monocot and dicot systems in order to study its regulatory role in a transient expression study. It was found that the 5' region of TCTP was capable of driving the gusA expression in all the oil palm tissues tested, including immature embryo, embryogenic callus, embryoid, young leaflet from mature palm, green leaf, mesocarp and stem. It could also be used in dicot systems as it was also capable of driving gusA expression in tobacco leaves. The results indicate that the TCTP promoter could be used for the production of recombinant proteins that require constitutive expression in the plant system.
    Matched MeSH terms: Plant Leaves/physiology
  5. Jahan MS, Nozulaidi M, Khairi M, Mat N
    J Plant Physiol, 2016 May 20;195:1-8.
    PMID: 26970687 DOI: 10.1016/j.jplph.2016.03.002
    Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure.
    Matched MeSH terms: Plant Leaves/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links