Displaying publications 21 - 40 of 330 in total

Abstract:
Sort:
  1. Ng MH, Choo YM
    J Chromatogr Sci, 2016 Apr;54(4):633-8.
    PMID: 26941414 DOI: 10.1093/chromsci/bmv241
    Palm oil is the richest source of natural carotenes, comprising 500-700 ppm in crude palm oil (CPO). Its concentration is found to be much higher in oil extracted from palm-pressed fiber, a by-product from the milling of oil palm fruits. There are 11 types of carotenes in palm oil, excluding the cis/trans isomers of some of the carotenes. Qualitative separation of these individual carotenes is particularly useful for the identification and confirmation of different types of oil as the carotenes profile is unique to each type of vegetable oil. Previous studies on HPLC separation of the individual palm carotenes reported a total analyses time of up to 100 min using C30 stationary phase. In this study, the separation was completed in <5 min. The qualitative separation was successfully carried out using a commonly used stationary phase, C18.
    Matched MeSH terms: Plant Oils/chemistry*
  2. Che Man YB, Tan CP
    Phytochem Anal, 2002 May-Jun;13(3):142-51.
    PMID: 12099104
    The effects of scanning rates (1, 5, 10 and 20 degrees C/min) on the DSC cooling profiles of 11 vegetable oils have been determined in order to monitor peak transition temperatures, onset temperatures and crystallisation enthalpies. Triacylglycerol (TAG) profiles and iodine value analyses were used to complement the DSC data. The melted samples exhibited complicated crystallising exotherms. As the cooling rate increased, the crystallisation temperature decreased and the breadth of the crystallisation exotherm on cooling from the melt increased. In addition, the intensity of the exothermic peak increased somewhat when the cooling rate was increased. At slow cooling rates, TAG had more time to interact. It is conceivable that, at a low cooling rate (1 degree C/min), a prominent exotherm would be observed on crystallisation of vegetable oils and fats. The occurrence of one exotherm upon cooling indicated the co-crystallisation of the TAG upon slow cooling. On the basis of the corollary results obtained, vegetable oils may be differentiated by their onset temperature (Ton) values in the DSC cooling curves. Generally, there was a shift of Ton toward lower values with increasing cooling rates.
    Matched MeSH terms: Plant Oils/chemistry*
  3. Hamid MF, Idroas MY, Ishak MZ, Zainal Alauddin ZA, Miskam MA, Abdullah MK
    Biomed Res Int, 2016;2016:1679734.
    PMID: 27419127 DOI: 10.1155/2016/1679734
    Torrefaction process of biomass material is essential in converting them into biofuel with improved calorific value and physical strength. However, the production of torrefied biomass is loose, powdery, and nonuniform. One method of upgrading this material to improve their handling and combustion properties is by densification into briquettes of higher density than the original bulk density of the material. The effects of critical parameters of briquetting process that includes the type of biomass material used for torrefaction and briquetting, densification temperature, and composition of binder for torrefied biomass are studied and characterized. Starch is used as a binder in the study. The results showed that the briquette of torrefied rubber seed kernel (RSK) is better than torrefied palm oil shell (POS) in both calorific value and compressive strength. The best quality of briquettes is yielded from torrefied RSK at the ambient temperature of briquetting process with the composition of 60% water and 5% binder. The maximum compressive load for the briquettes of torrefied RSK is 141 N and the calorific value is 16 MJ/kg. Based on the economic evaluation analysis, the return of investment (ROI) for the mass production of both RSK and POS briquettes is estimated in 2-year period and the annual profit after payback was approximately 107,428.6 USD.
    Matched MeSH terms: Plant Oils/chemistry*
  4. Tee LH, Yang B, Tey BT, Chan ES, Azlan A, Ismail A, et al.
    Food Chem, 2017 Nov 15;235:257-264.
    PMID: 28554634 DOI: 10.1016/j.foodchem.2017.05.021
    Dacryodes rostrata (kembayau) is an important food and oil resource for local communities in Borneo, but it is not commonly known to wider community. The objective of this work is to valorize kembayau fruit by evaluating the characteristics of the oil from the fruit. In this study, the physicochemical characteristics and the lipophilic essential nutrient; the fatty acid composition, vitamin E and beta-carotene content of oils obtained from the peel, pulp and seeds of kembayau fruits were studied. The pulp of the kembayau fruit contained highest proportion of oil, followed by peel and seed. Kembayau fruit contained vitamin E and had trace amount of beta-carotene. Besides, kembayau fruit oils were not toxic to BRL3A cells, provided hepatoprotection and reversed lipid peroxidation in paracetamol-induced toxicity. Our results suggest that kembayau can be a potential source for cooking oil as the physicochemical characteristics are comparable with commercial source such as oil palm.
    Matched MeSH terms: Plant Oils/chemistry*
  5. R NFN, Nur Hanani ZA
    Carbohydr Polym, 2017 Feb 10;157:1479-1487.
    PMID: 27987859 DOI: 10.1016/j.carbpol.2016.11.026
    This study investigated the effects of different types of plant oil (olive oil, corn oil, soybean oil and sunflower oil) on the physical and mechanical properties of kappa-carrageenan films from Euchema cottoni species. The incorporation of plant oils increased the film thickness significantly (P<0.05). However, the moisture content, solubility and tensile strength of films decreased significantly (P<0.05) as plant oils were added. The incorporation of plant oils also contributed to a plasticizing effect, whereby the values for elongation at break increased significantly (P<0.05), from 22.3% to 108.8%. Higher oil content also led to carrageenan films with lower opacity, which contradicted with previous studies. In conclusion, the plant oils used in this research significantly improved film properties, thus demonstrating the potential of these materials to be used as food packaging films and coatings.
    Matched MeSH terms: Plant Oils/chemistry*
  6. Adiiba SH, Chan ES, Lee YY, Amelia, Chang MY, Song CP
    J Sci Food Agric, 2022 Dec;102(15):6921-6929.
    PMID: 35662022 DOI: 10.1002/jsfa.12053
    BACKGROUND: Crude palm oil (CPO) is rich with phytonutrients such as carotenoids and tocols which possesses many health benefits. The aim of this research was to develop a methanol-free process to produce palm phytonutrients via enzymatic hydrolysis. In this work, triacylglycerol was hydrolyzed into free fatty acids (FFAs) using three different types of liquid lipases derived from Aspergillus oryzae (ET 2.0), Aspergillus niger (Habio) and Candida antartica (CALB).

    RESULTS: ET 2.0 was found to be the best enzyme for hydrolysis. Under the optimum condition, the FFA content achievable was 790 g kg-1 after 24 h of reaction with 1:1 water-to-oil mass ratio at 50 °C and stirring speed of 9 × g. Furthermore, with the addition of 2 g kg-1 ascorbic acid, it was found that 98% of carotenoids and 96% of tocols could be retained after hydrolysis.

    CONCLUSION: This work shows that enzymatic hydrolysis, which is inherently safer, cleaner and sustainable is feasible to replace the conventional methanolysis for the production of palm phytonutrients. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

    Matched MeSH terms: Plant Oils/chemistry
  7. Elouafy Y, El Yadini A, El Moudden H, Harhar H, Alshahrani MM, Awadh AAA, et al.
    Molecules, 2022 Nov 08;27(22).
    PMID: 36431782 DOI: 10.3390/molecules27227681
    The present study investigated and compared the quality and chemical composition of Moroccan walnut (Juglans regia L.) oil. This study used three extraction techniques: cold pressing (CP), soxhlet extraction (SE), and ultrasonic extraction (UE). The findings showed that soxhlet extraction gave a significantly higher oil yield compared to the other techniques used in this work (65.10% with p < 0.05), while cold pressing and ultrasonic extraction gave similar yields: 54.51% and 56.66%, respectively (p > 0.05). Chemical composition analysis was carried out by GC−MS and allowed 11 compounds to be identified, of which the major compound was linoleic acid (C18:2), with a similar percentage (between 57.08% and 57.84%) for the three extractions (p > 0.05). Regarding the carotenoid pigment, the extraction technique significantly affected its content (p < 0.05) with values between 10.11 mg/kg and 14.83 mg/kg. The chlorophyll pigment presented a similar content in both oils extracted by SE and UE (p > 0.05), 0.20 mg/kg and 0.16 mg/kg, respectively, while the lowest content was recorded in the cold-pressed oil with 0.13 mg/kg. Moreover, the analysis of phytosterols in walnut oil revealed significantly different contents (p < 0.05) for the three extraction techniques (between 1168.55 mg/kg and 1306.03 mg/kg). In addition, the analyses of tocopherol composition revealed that γ-tocopherol represented the main tocopherol isomer in all studied oils and the CP technique provided the highest content of total tocopherol with 857.65 mg/kg, followed by SE and UE with contents of 454.97 mg/kg and 146.31 mg/kg, respectively, which were significantly different (p < 0.05). This study presents essential information for producers of nutritional oils and, in particular, walnut oil; this information helps to select the appropriate method to produce walnut oil with the targeted quality properties and chemical compositions for the desired purpose. It also helps to form a scientific basis for further research on this plant in order to provide a vision for the possibility of exploiting these oils in the pharmaceutical, cosmetic, and food fields.
    Matched MeSH terms: Plant Oils/chemistry
  8. Rupani PF, Embrandiri A, Ibrahim MH, Shahadat M, Hansen SB, Ismail SA, et al.
    Environ Sci Pollut Res Int, 2017 May;24(14):12982-12990.
    PMID: 28378309 DOI: 10.1007/s11356-017-8938-0
    The present paper reports management of palm oil mill effluent (POME) mixed with palm-pressed fibre (PPF) POME-PPF mixture using eco-friendly, cost-effective vermicomposting technology. Vermicomposting of POME-PPF was performed to examine the optimal POME-PPF ratio with respect to the criteria of earthworm biomass and to evaluate the decomposition of carbon and nitrogen in different percentages of POME-PPF mixtures. Chemical parameters such as TOC, N, P and K contents were determined to achieve optimal decomposition of POME-PPF. On this basis, the obtained data of 50% POME-PPF mixture demonstrated more significant results throughout the experiment after addition of the earthworms. However, 60 and 70% mixtures found significant only in the last stages of the vermicomposting process. The decomposition rate in terms of -ln (CNt/CNo) showed that the 50% mixture has higher decomposition rate as compared to the 60 and 70% (k50% = 0.0498 day(-1)). The vermicomposting extracts (50, 60 and 70%) of POME-PPF mixtures were also tested to examine the growth of mung bean (Vigna radiata). It was found that among different extract dilutions, 50% POME-PPF vermicompost extract provided longer root and shoot length of mung bean. The present study concluded that the 50% mixture of POME-PPF could be chosen as the optimal mixture for vermicomposting in terms of both decomposition rate and fertilizer value of the final compost. Graphical abstract ᅟ.
    Matched MeSH terms: Plant Oils/chemistry*
  9. Yap CJ, Lam SM, Sin JC, Zeng H, Li H, Huang L, et al.
    Environ Sci Pollut Res Int, 2023 Sep;30(42):96272-96289.
    PMID: 37566326 DOI: 10.1007/s11356-023-29165-6
    Attributable to the prosperous production growth of palm oil in Malaysia, the generated palm oil mill effluent (POME) poses a high threat owing to its highly polluted characteristic. Urged by the escalating concern of environmental conservation, POME pollution abatement and potential energy recovery from the effluent are flagged up as a research topic of interest. In this study, a cutting-edge photocatalytic fuel cell (PFC) system with employment of ZnO/Zn nanorod array (NRA) photoanode, CuO/Cu cathode, and persulfate (PS) oxidant was successfully designed to improve the treatment of POME and simultaneous energy production. The photoelectrodes were fabricated and characterized by field emission scanning electron microscopy with energy (FESEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Brunauer, Emmett, and Teller analysis (BET). Owing to the properties of strong oxidant of PS, the proposed PFC/PS system has exhibited exceptional performance, attaining chemical oxygen demand (COD) removal efficiency of 96.2%, open circuit voltage (Voc) of 740.0 mV, short circuit current density (Jsc) of 146.7 μA cm-2, and power density (Pmax) of 35.6 μW cm-2. The pre-eminent PFC/PS system performance was yielded under optimal conditions of 2.5 mM of persulfate oxidant, POME dilution factor of 1:20, and natural solution pH of 8.51. Subsequently, the postulated photoelectrocatalytic POME treatment mechanism was elucidated by the radical scavenging study and Mott-Schottky (M-S) analysis. The following recycling test affirmed the stability and durability of the photoanode after four continuous repetition usages while the assessed electrical energy efficiency revealed the economic viability of PFC system serving as a post-treatment for abatement of POME. These findings contributed toward enhancing the sustainability criteria and economic viability of palm oil by adopting sustainable and efficient POME post-treatment technology.
    Matched MeSH terms: Plant Oils/chemistry
  10. Mohammed NK, Tan CP, Manap YA, Muhialdin BJ, Hussin ASM
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858785 DOI: 10.3390/molecules25173873
    The application of the spray drying technique in the food industry for the production of a broad range of ingredients has become highly desirable compared to other drying techniques. Recently, the spray drying technique has been applied extensively for the production of functional foods, pharmaceuticals and nutraceuticals. Encapsulation using spray drying is highly preferred due to economic advantages compared to other encapsulation methods. Encapsulation of oils using the spray drying technique is carried out in order to enhance the handling properties of the products and to improve oxidation stability by protecting the bioactive compounds. Encapsulation of oils involves several parameters-including inlet and outlet temperatures, total solids, and the type of wall materials-that significantly affect the quality of final product. Therefore, this review highlights the application and optimization of the spray drying process for the encapsulation of oils used as food ingredients.
    Matched MeSH terms: Plant Oils/chemistry*
  11. Ho CL, Tan YC
    Phytochemistry, 2015 Jun;114:168-77.
    PMID: 25457484 DOI: 10.1016/j.phytochem.2014.10.016
    Basal stem rot (BSR) of oil palm roots is due to the invasion of fungal mycelia of Ganoderma species which spreads to the bole of the stem. In addition to root contact, BSR can also spread by airborne basidiospores. These fungi are able to break down cell wall components including lignin. BSR not only decreases oil yield, it also causes the stands to collapse thus causing severe economic loss to the oil palm industry. The transmission and mode of action of Ganoderma, its interactions with oil palm as a hemibiotroph, and the molecular defence responses of oil palm to the infection of Ganoderma boninense in BSR are reviewed, based on the transcript profiles of infected oil palms. The knowledge gaps that need to be filled in oil palm-Ganoderma molecular interactions i.e. the associations of hypersensitive reaction (HR)-induced cell death and reactive oxygen species (ROS) kinetics to the susceptibility of oil palm to Ganoderma spp., the interactions of phytohormones (salicylate, jasmonate and ethylene) at early and late stages of BSR, and cell wall strengthening through increased production of guaiacyl (G)-type lignin, are also discussed.
    Matched MeSH terms: Plant Oils/chemistry*
  12. Kamairudin N, Gani SS, Masoumi HR, Hashim P
    Molecules, 2014;19(10):16672-83.
    PMID: 25325152 DOI: 10.3390/molecules191016672
    The D-optimal mixture experimental design was employed to optimize the melting point of natural lipstick based on pitaya (Hylocereus polyrhizus) seed oil. The influence of the main lipstick components-pitaya seed oil (10%-25% w/w), virgin coconut oil (25%-45% w/w), beeswax (5%-25% w/w), candelilla wax (1%-5% w/w) and carnauba wax (1%-5% w/w)-were investigated with respect to the melting point properties of the lipstick formulation. The D-optimal mixture experimental design was applied to optimize the properties of lipstick by focusing on the melting point with respect to the above influencing components. The D-optimal mixture design analysis showed that the variation in the response (melting point) could be depicted as a quadratic function of the main components of the lipstick. The best combination of each significant factor determined by the D-optimal mixture design was established to be pitaya seed oil (25% w/w), virgin coconut oil (37% w/w), beeswax (17% w/w), candelilla wax (2% w/w) and carnauba wax (2% w/w). With respect to these factors, the 46.0 °C melting point property was observed experimentally, similar to the theoretical prediction of 46.5 °C. Carnauba wax is the most influential factor on this response (melting point) with its function being with respect to heat endurance. The quadratic polynomial model sufficiently fit the experimental data.
    Matched MeSH terms: Plant Oils/chemistry*
  13. Khor YP, Koh SP, Long K, Long S, Ahmad SZ, Tan CP
    Molecules, 2014 Jul 01;19(7):9187-202.
    PMID: 24988188 DOI: 10.3390/molecules19079187
    Food manufacturers are interested in developing emulsion-based products into nutritional foods by using beneficial oils, such as fish oil and virgin coconut oil (VCO). In this study, the physicochemical properties of a VCO oil-in-water emulsion was investigated and compared to other commercial oil-in-water emulsion products (C1, C2, C3, and C4). C3 exhibited the smallest droplet size of 3.25 µm. The pH for the emulsion samples ranged from 2.52 to 4.38 and thus were categorised as acidic. In a texture analysis, C2 was described as the most firm, very adhesive and cohesive, as well as having high compressibility properties. From a rheological viewpoint, all the emulsion samples exhibited non-Newtonian behaviour, which manifested as a shear-thinning property. The G'G'' crossover illustrated by the VCO emulsion in the amplitude sweep graph but not the other commercial samples illustrated that the VCO emulsion had a better mouthfeel. In this context, the VCO emulsion yielded the highest zeta potential (64.86 mV), which was attributed to its strong repulsive forces, leading to a good dispersion system. C2 comprised the highest percentage of fat among all emulsion samples, followed by the VCO emulsion, with 18.44% and 6.59%, respectively.
    Matched MeSH terms: Plant Oils/chemistry*
  14. Baranitharan E, Khan MR, Prasad DM, Teo WF, Tan GY, Jose R
    Bioprocess Biosyst Eng, 2015 Jan;38(1):15-24.
    PMID: 24981021 DOI: 10.1007/s00449-014-1239-9
    Anode biofilm is a crucial component in microbial fuel cells (MFCs) for electrogenesis. Better knowledge about the biofilm development process on electrode surface is believed to improve MFC performance. In this study, double-chamber microbial fuel cell was operated with diluted POME (initial COD = 1,000 mg L(-1)) and polyacrylonitrile carbon felt was used as electrode. The maximum power density, COD removal efficiency and Coulombic efficiency were found as 22 mW m(-2), 70 and 24 %, respectively. FTIR and TGA analysis confirmed the formation of biofilm on the electrode surface during MFC operation. The impact of anode biofilm on anodic polarization resistance was investigated using electrochemical impedance spectroscopy (EIS) and microbial community changes during MFC operation using denaturing gradient gel electrophoresis (DGGE). The EIS-simulated results showed the reduction of charge transfer resistance (R ct) by 16.9 % after 14 days of operation of the cell, which confirms that the development of the microbial biofilm on the anode decreases the R ct and therefore improves power generation. DGGE analysis showed the variation in the biofilm composition during the biofilm growth until it forms an initial stable microbial community, thereafter the change in the diversity would be less. The power density showed was directly dependent on the biofilm development and increased significantly during the initial biofilm development period. Furthermore, DGGE patterns obtained from 7th and 14th day suggest the presence of less diversity and probable functional redundancy within the anodic communities possibly responsible for the stable MFC performance in changing environmental conditions.
    Matched MeSH terms: Plant Oils/chemistry*
  15. Chieng BW, Ibrahim NA, Then YY, Loo YY
    Molecules, 2014;19(10):16024-38.
    PMID: 25299820 DOI: 10.3390/molecules191016024
    Plasticized poly(lactic acid) PLA with epoxidized vegetable oils (EVO) were prepared using a melt blending method to improve the ductility of PLA. The plasticization of the PLA with EVO lowers the Tg as well as cold-crystallization temperature. The tensile properties demonstrated that the addition of EVO to PLA led to an increase of elongation at break, but a decrease of tensile modulus. Plasticized PLA showed improvement in the elongation at break by 2058% and 4060% with the addition of 5 wt % epoxidized palm oil (EPO) and mixture of epoxidized palm oil and soybean oil (EPSO), respectively. An increase in the tensile strength was also observed in the plasticized PLA with 1 wt % EPO and EPSO. The use of EVO increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The SEM micrograph of the plasticized PLA showed good compatible morphologies without voids resulting from good interfacial adhesion between PLA and EVO. Based on the results of this study, EVO may be used as an environmentally friendly plasticizer that can improve the overall properties of PLA.
    Matched MeSH terms: Plant Oils/chemistry*
  16. Lim JX, Vadivelu VM
    J Environ Manage, 2014 Dec 15;146:217-225.
    PMID: 25173730 DOI: 10.1016/j.jenvman.2014.07.023
    A sequencing batch reactor (SBR) with a working volume of 8 L and an exchange ratio of 25% was used to enrich biomass for the treatment of the anaerobically treated low pH palm oil mill effluent (POME). The influent concentration was stepwise increased from 5000 ± 500 mg COD/L to 11,500 ± 500 mg COD/L. The performance of the reactor was monitored at different organic loading rates (OLRs). It was found that approximately 90% of the COD content of the POME wastewater was successfully removed regardless of the OLR applied to the SBR. Cycle studies of the SBR show that the oxygen uptake by the biomass while there is no COD reduction may be due to the oxidation of the storage product by the biomass. Further, the growth kinetic parameters of the biomass were determined in batch experiments using respirometer. The maximum specific growth rate (μmax) was estimated to be 1.143 day(-1) while the half saturation constant (Ks) with respect to COD was determined to be 0.429 g COD/L. The decay coefficient (bD) and biomass yield (Y) were found to be 0.131 day(-1) and 0.272 mg biomass/mg COD consumed, respectively.
    Matched MeSH terms: Plant Oils/chemistry
  17. Mehmannavaz T, Ismail M, Radin Sumadi S, Rafique Bhutta MA, Samadi M, Sajjadi SM
    ScientificWorldJournal, 2014;2014:461241.
    PMID: 24696646 DOI: 10.1155/2014/461241
    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.
    Matched MeSH terms: Plant Oils/chemistry*
  18. Gantait S, Sinniah UR, Suranthran P, Palanyandy SR, Subramaniam S
    Protoplasma, 2015 Jan;252(1):89-101.
    PMID: 24893588 DOI: 10.1007/s00709-014-0660-x
    In the present study, polyembryoids of oil palm (Elaeis guineensis Jacq.) were cryopreserved with successful revival of 68 % for the first time using the droplet vitrification technique. Excised polyembryoids (3-5-mm diameter) from 3-month-old in vitro cultures were pre-cultured for 12 h in liquid Murashige and Skoog medium supplemented with 0.5 M sucrose. The polyembryoids were osmoprotected in loading solution [10% (w/v) dimethyl sulphoxide (DMSO) plus 0.7 M sucrose] for 30 min at room temperature and then placed on aluminium strips where they were individually drenched in chilled droplets of vitrification solution (PVS2) [30% (w/v) glycerol plus 15% (w/v) ethylene glycol (EG) plus 15% (w/v) DMSO plus 0.4 M sucrose] for 10 min. The aluminium strips were enclosed in cryovials which were then plunged quickly into liquid nitrogen and kept there for 1 h. The polyembryoids were then thawed and unloaded (using 1.2 M sucrose solution) with subsequent transfer to regeneration medium and stored in zero irradiance. Following for 10 days of storage, polyembryoids were cultured under 16 h photoperiod of 50 μmol m(-2) s(-1) photosynthetic photon flux density, at 23 ± 1 °C. Post-thaw growth recovery of 68% was recorded within 2 weeks of culture, and new shoot development was observed at 4 weeks of growth. Scanning electron microscopy revealed that successful regeneration of cryopreserved polyembryoids was related to maintenance of cellular integrity, presumably through PVS2 exposure for 10 min. The present study demonstrated that cryopreservation by droplet vitrification enhanced the regeneration percentages of oil palm in comparison with the conventional vitrification method previously reported.
    Matched MeSH terms: Plant Oils/chemistry*
  19. Manickam S, Abidin Nb, Parthasarathy S, Alzorqi I, Ng EH, Tiong TJ, et al.
    Ultrason Sonochem, 2014 Jul;21(4):1519-26.
    PMID: 24485395 DOI: 10.1016/j.ultsonch.2014.01.002
    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME.
    Matched MeSH terms: Plant Oils/chemistry*
  20. Bello MM, Nourouzi MM, Abdullah LC, Choong TS, Koay YS, Keshani S
    J Hazard Mater, 2013 Nov 15;262:106-13.
    PMID: 24021163 DOI: 10.1016/j.jhazmat.2013.06.053
    As Malaysia is one of the world's largest producer of palm oil, large amounts of palm oil mill effluent (POME) is generated. It was found that negatively charged components are accountable for POME color. An attempt was made to remove residual contaminants after conventional treatment using anion base resin. Adsorption experiments were carried out in fixed bed column. Various models such as the Thomas, the Yoon-Nelson, the Wolborska and BDST model were used to fit the experimental data. It was found that only the BDST model was fitted well at the initial breakthrough time. A wavelet neural network model (WNN) was developed to model the breakthrough curves in fixed bed column for multicomponent system. The results showed that the WNN model described breakthrough curves better than the commonly used models. The effects of pH, flow rate and bed depth on column performance were investigated. It was found that the highest uptake capacity was obtained at pH 3. The exhaustion time appeared to increase with increase in bed length and decrease in flow rate.
    Matched MeSH terms: Plant Oils/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links